
396 The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022

AFTM-Agent Based Fault Tolerance Manager in

Cloud Environment

Shivani Jaswal

University Institute of Computing

Chandigarh University

Punjab, India

shivanijaswal.uic@cumail.in

Manisha Malhotra

University Institute of Computing

Chandigarh University

Punjab, India

manisha.mca@cumail.in

Abstract: As the number of cloud users are increasing with times, the probability of failures also increases that takes place in

any cloud virtual machine. Failures can occur at any point of time in service delivery. There are numerous techniques for

reacting proactively towards these failures. In this framework, a service provider is allocated to the user on the basis of

ranking of the service provider. This ranking is done by considering parameters such as trust values (calculated by feedback

mechanism), check pointing overheads, availability and throughput. Checkpoints are beneficial in triggering save point so that

minimal loss of data takes place if any failure occurs. This paper has also compared the proposed framework with Optimal

Checkpoints Interval (OCI) framework which is based on triggering checkpoints on constant rates. Results have proven that

Agent based Fault Tolerance Manager (AFTM) has 33% to 50% better efficiency results as compared to OCI framework. The

results shown in paper demonstrates how better the check pointing overheads, availability and throughput are handled by

using AFTM framework. Also, the overheads were reduced to 50% as compared to OCI framework.

Keywords: Agents, checkpoints, virtualization, fault tolerant agent, overheads.

Received January 6, 2021; accepted April 28, 2021

https://doi.org/10.34028/iajit/19/3/14

1. Introduction

Cloud Computing lies on the basis of virtualization.

The various services are delivered to the users through

Cloud Computing. These services can be software as a

Service, Platform as a Service and Infrastructure as a

Service. These cloud services can be delivered to its

users through private, public, hybrid or community

cloud [9, 24, 28]. The virtual machines are allocated to

it users for the purpose of cloud services. These virtual

resources have benefited small as well as large

enterprise to migrate their data on Cloud [18].

Therefore, more the users, more is the probability

that any fault can be arisen in the service delivery

process. A fault is a state in which is able to work and

is not as “unavailable” or “downtime”. Also, if a fault

has been generated, service provider looks for other

machines so that fault free services can be used by the

consumer. A faulty system leads to non-fulfilment of

tasks in given amount of time. The faults can occur in

the system due to number of reasons such network

failures, non-availability of resources, increasing

workload [5, 29], system failures etc., [15].

Broadly, there are two techniques for handling fault

tolerance i.e., reactive and proactive. In first technique,

the damage to be caused by faults can be handled

whereas in second technique, probability of fault

occurrence can be reduced priorly. Out of both, the

best method is of checkpointing that lies under reactive

methods. In this a save point is being triggered in the

System so that loss of data can be reduced to minimal

even if the fault probability is there. This technique

actually helps in dealing with other overheads that can

lead to decreased efficiency of cloud service provider.

In case of failure is recognised then the machine will

restart its performance form last saved checkpoint.

In the case of large-scale enterprises, where high

speed performances take place, sometimes, a system

faces a failure which can be due to some execution

constraints, addition or removal of multiple resources

in the same cloud environment [6].

On the basis of techniques, number of fault

tolerance models have been proposed in the past times.

Many of them are able to check the faults but many

times, overheads related to the technique has been

noted. For example, in Optimal Check pointing

Interval (OCI) i.e., checkpoints are used on constant

rates. This leads to wastage of time, efficiency,

checkpoints overheads. Therefore, a mechanism is

required that can actually deliver a cloud service which

is fault free and can predict the fault occurrence on the

basis of history of service provider. This paper

proposes a mechanism naming Agent based Fault

Tolerance Manager (AFTM) that discovers the

following:

 AFTM helps in identifying the fault occurring

probability in environment and unfortunately, if

fault occurs then minimal loss of data to be reported

due to efficient triggering of checkpoints.

https://doi.org/10.34028/iajit/19/3/14

AFTM-Agent Based Fault Tolerance Manager in Cloud Environment 397

 The proposed mechanism works under various

layers. Trust is also an important component here

that contributes in identifying the cloud service

providers those are actually ranked on the basis of

various parameters.

 Similarly, fault is also one of the parameters that is

considered for ranking of service provider so that

user gets the best service provider and having

minimal chance of fault occurrence.

This paper is an extension of AFTTM [19] in which

there were layers which was Cloud Administrative

Layer which interacts with Trust Evaluation layer for

updation of trust values with trust agent. However, in

AFTM, broker layer has been introduced that

negotiates all the terms of SLA and provides services

to the cloud users. Additionally, in AFTM, the

checkpoints are triggered at one-third completion of

the task. This helps in reducing the checkpoint

overheads and hence reduces the monetary issues.

Moreover, the main layer which is fault tolerance layer

is overall handled by fault tolerance manager i.e.,

FTM.

Section 1 has covered the basic introduction of

cloud computing followed by the underlining concepts

of fault tolerance. Section 2 covers the related work.

Section 3 proposed the framework. Section 4 illustrates

the algorithm of mechanism in detail. Section 5 shows

the evaluation results performed on Cloud Sim and its

comparison with OCI. Last section i.e., 6 describes the

conclusion and future scope of the proposed

mechanism.

2. Related Work

Fault Tolerance has been considered as one of the most

important issue in workflow management other than

scheduling. In [4, 5] authors have used the technique of

replication to handle faults in the system. This

technique can be used in a system in which deadline is

used for completion of tasks. In [27], authors have

been shown appropriate balance between replication

and resubmission techniques. But by following all

these techniques, the performance is decreased and

compromise increases in terms of Service Level

Agreement (SLAs).

Mishra et al. [25], considered a mechanism for

DDoS attacks mitigation based on reputation score

policy and Bayesian game theory. In this, the

knowledge based on probability concept is being

utilized by cloud service provider to detect intrusion by

malicious users within a cloud-environment.

Another technique that can be considered is check

pointing which can be used other than replication and

resubmission. In [14, 31, 36], authors have used check

pointing technique that creates checkpoints

periodically in between running tasks. The approach

that has been proposed in [36], uses coordinated check

pointing in two phases which actually increases

overheads of the system. Nguyen and Desideri [26]

uses the concept of independent check pointing which

leads to domino effect.

Authors have proposed a secure framework using

blockchain and key chain cryptography. It has actually

helped in addressing the several issues related to data

security and authentication in healthcare. Also,

distributed framework to detect DDoS attacks in fog

computing. Various parameters were considered such

as rate of detection, rate of accuracy and false alarm

rate. The proposed framework was far superior than

the compared techniques. A framework was proposed

namely Secured privacy preserving framework i.e.,

SP2F. It comprises of two engines i.e., two level

privacy and deep learning-based engine. In this, SAE

was used for converting data into encoded form of

prevention of attack [21, 22, 23].

Author have proposed an algorithm that selected an

individual fault tolerance technique for individual

virtual machine. These techniques can be of replication

method i.e., multi-version and parallel. A replication-

based fault tolerance is proposed that actually reduced

the service time and eventually increased the systems

availability. Additionally, in this likelihood of forth

coming faults is reduced. It is achieved by not

allocating scheduled tasks to those servers whose rate

of success is quite low [34, 35].

Akinwunmi et al. [1] have proposed an approach

that identifies the trust worthy services with the help of

several agents. Authors have performed experiments

by considering response time and scalability. Several

previous experiments were left out. Also fault

tolerance concept can also be in uncalculated.

Hassan et al. [16] have proposed a Quality of

Service (QoS) based trust model. In this accumulative

value of trust is calculated and updated dynamically

and is reflected each time to the providers. Also, a

curative mathematical technique has been used to

evaluate credibility of user’s feedback. Parameter of

computing power of resources at run time is

considered.

Srimachari and Anandharaj [30], presented a fault

tolerance scheme that helped in reducing faults in a

cloud environment by inducing coordinated

checkpoints in virtual machine. This method helped in

removing the unavailability status for checkpoint

recovery.

Multi-Agent System (MAS) is a distributed system

consisting of multiple software agents, which form “a

loosely coupled network, called a MAS, to work

together to solve problems that are beyond their

individual capabilities or knowledge of each entity”

[13]. MAS are a community of autonomous agents

working together in order to achieve a goal [33]. Of

particular interest are MAS in which the individual

agents display significant intelligence and autonomy.

Over the years, MAS technologies have found

398 The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022

applications in many distributed systems such as

distributed problem solving, distributed information

fusion, and distributed scientific computing [12, 17,

20] .

Although there are many differences between cloud

computing and MAS, both are two distributed

computing models, therefore several common

problems can be identified and many more benefits can

be obtained by the combined use of cloud computing

systems and multi-agents [31]. There are several

researches that have attempted the use of agent

technology in cloud computing.

Dahiya and Gupta [10], have proposed a technique

based on mitigation that actually deals with network

attacks. The technique possesses quite high detection

rate of Distributed Denial of Service (DDoS) attacks

and also the false positive rate is quite low. Authors

performed a series of experiments by comparing three

protocols. The final conclusion results in delay in miss

rate, rate of restart and delay in communication [2].

In [3, 11], a paper was published in which authors

illustrated a checkpoint method which is adaptive in

nature. In this, the checkpoints those are not necessary

are eliminated and additional checkpoints those are

required are added in current cloud environment.

3. Proposed Framework

AFTM has works in multiple layers step by step. These

layers are service consumer layer, broker layer, trust

evaluation layer and virtualization layer embedded in

service provider layer only as shown in Figure 1. A

request is sent to broker through service consumer

layer. In broker layer, there will be broker agent that

will contact trust evaluation layer for getting the trust

values of cloud service providers. Here, the trust values

are calculated by the considering number of parameters

such as availability, reliability, turnaround efficiency,

response time, data integrity and fault tolerance. The

broker agent will contact the concerned service

providers available in-service provider layer having

highest trust values for signing of agreements i.e.,

SLAs and negotiation of services. Finally, the service

is delivered to the user and at last after the services

usage, the feedback is taken by broker agent regarding

the service usage. This feedback is submitted to trust

evaluation layer contributing to dynamic and credible

value of trust. Here, feedback is segregated as positive

and negative feedback and furthermore, the values are

computed along with parameters mentioned above so

that trust value can be generated. Now, the

virtualization layer is associated with service provider

layer as shown in Figure 2.

Figure 1. High level of AFTM.

AFTM-Agent Based Fault Tolerance Manager in Cloud Environment 399

Figure 2. Detailed view of fault tolerance layer.

In this, a fault tolerance manager is installed over

the hypervisor or virtual machine monitor which

actually performs the principle tasks in this

mechanism. Any type of faults occurring in the system

is handled by this layer. In this layer, there are four

modules working with each other.

 Fault Log Table (FLT): This table consists of

details regarding any fault occurring in system. It

gets updated as long as the fault generates or

removes. The structure of the data stored in FLT is

shown in Table 1.

 Fault Tolerant Agent: This agent remains active

throughout its lifecycle. It helps in communication

among all the modules of this layer and at the end

also submit the generated ranks to trust evaluation

layer so that for next time, user gets the best service

provider as available.

 Checkpoint Module: This module is based on

reactive method of controlling fault tolerance. A FT

agent is informed that a machine restart process is

going to takes place and hence no further processing

of the request will take place until and unless the

reboot process in completed. The checkpoints are

triggered considering history of service providers. If

the history is good, then the lesser number of

checkpoints will be used else vice versa. However,

service provider having no previous history, then

checkpoints are handled after every one-third

completion of tasks.

 Fault Control and Evaluation System (FCES):
This is one of the most important module of fault

tolerance layer. All the computations related to fault

detection and evaluations takes place in this module.

Table 1. Format for FLT.

Host_ID Fault_ID Fault_Type Status

H_01 F_01 VM Failure Non - Active

H_02 F_05
Network

unavailable
Non-Active

H_03 Null Null Active

4. Fault Tolerant Agent Algorithm

The fault tolerant agent works in virtualization layer in

timely triggering of checkpoints and removal of faults

(if any). The algorithm [19] depicts how the fault

tolerant agent actually helps in smooth functioning of

fault tolerance manager.

5. Performance Validation

Number of simulators are available for implementing

simulation of cloud services. Cloud Sim is one of the

most efficient simulators [7, 32]. It is easy to perform

simulation on Cloud Sim and it is only simulator which

can actually create the probability of occurring faults.

In this, extra classes are created in which packages are

imported. By creating these classes, new fault-based

algorithms can be developed that actually monitors

various virtual machines so that faults can be detected

and resolved. Our proposed mechanism i.e., AFTM

implements check pointing module.

The trust value has been evaluated by using

following parameters as below:

Trust value (Ṯi) = ∑
𝑇𝑖

𝑛
𝑛
𝑖=1

Where

 Ti = {(pi ∗ α) + (pi ∗ β) + (pi ∗ σ) + (pi ∗ μ) + (pi ∗ γ)}

Where pi represents are the feedbacks submitted by

provider agent along with the parameters i.e.,

availability, reliability, data integrity, turnaround

efficiency and response time and analysed by the

feedback collector existing in the trust evaluation layer.

The proposed mechanism has been compared with

OCI i.e., in this, the checkpoints are occurred at

constant rates. The simulation results have been

compared with OCI [8]. The parameters used in AFTM

are throughput, availability and checkpoints overhead.

In AFTM, the checkpoints are triggered as per the last

ranking of cloud service provider. If the ranking is

greater than threshold then the lesser number of

checkpoints are used and vice versa.

Generally, for detection of failures event driven and

time evolved techniques are considered. It works on

the principle of stochastic process. In cloud system the

random variables of time periods in following

distribution and process considered in semi marked

process.

In this model, it is assumed that Poisson distribution

is followed. It denotes that the faults occurring is

independent of the change of time. Therefore,

following equation needs to be considered:

Failure probability distribution of VM in given time

is given by:

Fp (Nn) = (e^(-μ) μ^n)/n! 0<Fp (N) <=1 and n=0, 1, 2

Where N (n0, n1, n2……….) represents failures and µ

represents the average number of failures.

The values of µ is given by:

(2)

(1)

400 The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022

µ=fn/(Ti/τjn)

Where fn: number of failures and Ti represents the time

period at which fn occurred.

τjn: Estimated time at which at which request

occurred.

Probability of one error to take place is denoted by:

Fp (N1) = μe−μ

Finally, the rank of VM is calculated by considering

another component known as ranker. Its value is

obtained from status database. Hence, the equation is

Rp = μe−μ x Pi

Where Pi represents the percentage of profit earned

through correct usage of VM

Table 2 shows the actual system configuration can

which computations results were carried out in

CloudSim.

Table 2. Values of configuration for AFTM computation.

List of Services Assumed Values

Virtual Machines 10 (in number)

Ethernet Speed 100 Mbps

RAM 10GB

Storage 2TB

Customer Request 500 to 3500

6. Results

The results have been shown in this section and graph

curves shows that the AFTM has better availability and

throughput. Also, the checkpoint overheads have been

reduced considerably as compared to OCI.

 Case 1: Throughput

In this, number of requests are shown in x-axis and y-

axis depicts throughput results which is measured in

requests per hour. Here, AFTM has been compared

with OCI. Figure 3 shows that AFTM has better results

as compared to OCI. It is because of the reason as

before provisioning any service, its ranking is being

considered through trust value that was generated. As,

the ranking of the Cloud Service Provider (CSP) will

be greater, more will be the throughput value of CSP

and hence, better the results than compared one.

Figure 3. Comparison of AFTM and OCI on basis of throughput.

 Case 2: Checkpoint overheads

In this, user requests are represented on x-axis and

throughput on y-axis as shown in Figure 4. The result

graphs shows that checkpoints overheads have reduced

considerably in case of AFTM. In this case,

checkpoints are triggered as and when required.

Therefore, unnecessary checkpoints will not be used

and this has actually reduced the overheads in terms of

checkpoints.

Figure 4. Comparison of AFTM and OCI on basis of checkpoints

overheads.

 Case 3: Availability

As the cloud services are delivered on the basis of

ranking and trust values. Therefore, availability of the

concerned cloud service provider will be much higher

as compared to OCI which has been shown in Figure 5.

Figure 5. Comparison of AFTM and OCI on basis of checkpoints

overheads.

7. Conclusions

As we know, failures can be avoided in cloud

environment to some extent but not to full extend. To

resolve this issue, a manager has been deputed in the

virtualization layer naming AFTM: Agent based Fault

Tolerance Manager in Cloud environment. This

manager helps in generating checkpoints when and

how required. It helps in inducing checkpoints and also

reduces the loss of data that takes place during any

fault. Many parameters have been used such as

availability, checkpoints overheads and throughput.

Results have proven that AFTM has better throughout

and availability. The mechanism of checkpoint actually

helps in reducing the loss of data caused due to faults

in the delivery of services. Also, the overheads related

to checkpoints have been reduced to half when AFTM

is considered as unnecessary checkpoints will be

avoided. The future work can be carried out on how

other techniques of handling fault tolerance can be

0.3

0.32

0.34

0.36

0.38

0.4

500 100015002000250030003500

T
h

ro
u

g
h

p
u

t

(R
eq

u
es

ts
/H

o
u

r)

user Requests

Throughput

0

1000

2000

500 1000 1500 2000 2500 3000 3500

C
h
ec

k
p

o
in

t
o

v
er

h
ea

d
s

(h
o

u
r)

user requests

Checkpoint overheads

OCI AFTM

50

100

500 1000 1500 2000 2500 3000 3500

A
v
ai

la
b

il
it

y
 (

p
er

ce
n

ta
g
e)

No. of Requests

Availability

OCI AFTM

(3)

(4)

(5)

AFTM-Agent Based Fault Tolerance Manager in Cloud Environment 401

done so that faults can be managed timely with

minimal loss of data. The further work can be carried

out by considering restarting, replication techniques on

AFTM so that efficient delivery of cloud services takes

place.

References

[1] Akinwunmi A., Olajubu E., and Aderounmu G.,

“A Multi-Agent System Approach for

Trustworthy Cloud Service Discovery,” Cogent

Engineering, vol. 3, no. 1, pp. 1256084, 2016.

[2] Al-Qerem A., Alauthman M., Almomani A., and

Gupta B., “IoT Transaction Processing Through

Cooperative Concurrency Control on Fog-Cloud

Computing Environment,” Soft Computing, vol.

24, no. 8, pp. 5695-5711, 2020.

[3] Amon M., “Adaptive Framework for Reliable

Cloud Computing Environment,” IEEE

Access, vol. 4, pp. 9469-9478, 2016.

[4] Arockiam L. and Francis G., “FTM-A Middle

Layer Architecture for Fault Tolerance in Cloud

Computing,” IJCA Special Issue on Issues and

Challenges in Networking, Intelligence and

Computing Technologies, vol. 2, pp. 12-16, 2012.

[5] Ben-Yehuda O., Schuster A., Sharov A.,

Silberstein M., and Iosup A., “Expert: Pareto-

Efficient Task Replication on Grids and A

Cloud,” in Proceedings IEEE 26th International

Parallel and Distributed Processing Symposium,

Shanghai, pp. 167-178, 2012.

[6] Bilal K., Khalid O., Malik S., Khan M., Khan S.,

and Zomaya A., Fault Tolerance in the Cloud,

Encyclopedia of Cloud Computing, pp. 291-300,

2016.

[7] Calheiros R., Ranjan R., Beloglazov A., De Rose

C., and Buyya R., “CloudSim: A Toolkit for

Modeling and Simulation of Cloud Computing

Environments and Evaluation of Resource

Provisioning Algorithms,” Software: Practice

and Experience, vol. 41, no. 1, pp. 23-50, 2011.

[8] Cao J., Simonin M., Cooperman G., and Morin

C., “Checkpointing as a Service in

Heterogeneous Cloud Environments,” in

Proceedings of 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid

Computing, Shenzhen, pp. 61-70, 2015.

[9] Chen M., Ma Y., Song J., Lai C., and Hu B.,

“Smart Clothing: Connecting Human with

Clouds and Big Data for Sustainable Health

Monitoring,” Mobile Networks and Applications,

vol. 21, no. 5, pp. 825-845, 2016.

[10] Dahiya A. and Gupta B., “A Reputation Score

Policy and Bayesian Game Theory Based

Incentivized Mechanism for DDOS Attacks

Mitigation and Cyber Defense.” Future

Generation Computer Systems, vol. 117, pp. 193-

204, 2021.

[11] Damodhar M. and Poojitha S., “An Adaptive

Fault Reduction Scheme to Provide Reliable

Cloud Computing Environment,” IOSR Journal

of Computer Engineering, vol. 19, no. 4, pp. 64-

73, 2017.

[12] Drashansky T., Houstis E., Ramakrishnan N., and

Rice J., “Networked Agents for Scientific

Computing,” Communications of the ACM, vol.

42, no. 3, pp. 48-ff, 1999.

[13] Durfee E. and Montgomery T., “MICE: A

Flexible Test Bed for Intelligent Coordination

Experiments,” in Proceedings of the Distributed

AI Workshop, pp. 25-40, 1989.

[14] Egwutuoha I., Chen S., Levy D., Selic B., and

Calvo R., “A Proactive Fault Tolerance

Approach to High Performance Computing

(HPC) in the Cloud,” in Proceedings of 2nd

International Conference on Cloud and Green

Computing, Xiangtan pp. 268-273, 2012.

[15] Gómez A., Carril L., Valin R., Mouriño J., and

Cotelo C., “Fault-Tolerant Virtual Cluster

Experiments on Federated Sites using

BonFIRE,” Future Generation Computer

Systems, vol. 34, pp. 17-25, 2014.

[16] Hassan H., El-Desouky A., Ibrahim A., El-

Kenawy E., and Arnous R., “Enhanced QoS-

based Model for Trust Assessment in Cloud

Computing Environment,” IEEE Access, vol. 8,

pp. 43752-43763, 2020.

[17] Honavar V., Miller L., and Wong J., “Distributed

Knowledge Networks,” in Proceedings of IEEE

Information Technology Conference, Information

Environment for the Future (Cat. No. 98EX228),

Syracuse, pp. 87-90, 1998.

[18] Jararweh Y., Alshara Z., Jarrah M., Kharbutli M.,

and Alsaleh M., “Teachcloud: a Cloud

Computing Educational Toolkit,” International

Journal of Cloud Computing vol. 1, no. 2-3, pp.

237-257, 2013.

[19] Jaswal S. and Malhotra M., “AFTTM: Agent-

Based Fault Tolerance Trust Mechanism in

Cloud Environment,” International Journal of

Cloud Applications and Computing, vol. 12, no.

1, pp. 1-12, 2022.

[20] Khosla R. and Dillon T., “Intelligent Hybrid

Multi-Agent Architecture for Engineering

Complex Systems,” in Proceedings of

International Conference on Neural Networks,

Houston, pp. 2449-2454, 1997.

[21] Kumar P., Kumar R., Gupta G., and Tripathi R.,

“A Distributed Framework for Detecting Ddos

Attacks in Smart Contract‐Based Blockchain‐IoT

Systems by Leveraging Fog Computing,”

Transactions on Emerging Telecommunications

Technologies, vol. 32, no. 6, pp. e4112, 2021.

[22] Kumar R. and Tripathi R., Blockchain

Cybersecurity, Trust and Privacy, Springer,

2020.

402 The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022

[23] Kumar R. and Tripathi R., “DBTP2SF: A Deep

Blockchain‐Based Trustworthy

Privacy‐Preserving Secured Framework in

Industrial Internet of Things Systems,”
Transactions on Emerging Telecommunications

Technologies, vol. 32, no. 4, 2021.

[24] Malik S. and Huet F., “Adaptive Fault Tolerance

in Real Time Cloud Computing,” in Proceedings

of IEEE World Congress on Services,

Washington, pp. 280-287, 2011.

[25] Mishra A., Gupta N., and Gupta B., “Defense

Mechanisms Against DDoS Attack based on

Entropy in SDN-Cloud Using POX Controller,”

Telecommunication Systems, vol. 77, no. 1, pp.

47-62, 2021.

[26] Nguyen T. and Desideri J., “Resilience Issues for

Application Workflows on Clouds,”

in Proceedings of ICNS2012-8th International

Conference on Networking and Services,

Netherlands pp. 35-42, 2012.

[27] Palaniammal P. and Santhosh R., “Failure

Prediction for Scalable Checkpoints in Scientific

Workflows Using Replication and Resubmission

Task in Cloud Computing,” International

Journal of Science, Engineering and Technology

Research, vol. 2, no. 4, pp. 985-991, 2013.

[28] Pei X., Wang Y., Ma X., and Xu F., “Repairing

Multiple Failures Adaptively with Erasure Codes

In Distributed Storage Systems,” Concurrency

and Computation: Practice and Experience, vol.

28, no. 5, pp. 1437-1461, 2016.

[29] Singh K., Smallen S., Tilak S., and Saul L.,

“Failure Analysis and Prediction for the CIPRES

Science Gateway,” Concurrency and

Computation: Practice and Experience, vol. 28,

no. 7, pp. 1971-1981, 2016.

[30] Srimachari P. and Anandharaj G., “An Efficient

Protocol Framework Solution for Resource-

Constraint Mobile Devices Allocation in Cloud

Computing Environments,” International Journal

of Computer Science and Engineering

Technology, vol. 4, no. 4, pp.119-126, 2017.

[31] Talia D., “Cloud Computing and Software

Agents: Towards Cloud Intelligent

Services,” WOA, vol. 11, pp. 2-6, 2011.

[32] Wickremasinghe B., Calheiros R., and Buyya R.,

“Cloudanalyst: A Cloudsim-Based Visual

Modeller for Analysing Cloud Computing

Environments and Applications,” in Proceedings

of 24th IEEE International Conference on

Advanced Information Networking and

Applications, Perth, pp. 446-452, 2010.

[33] Wooldridge M., an Introduction to Multiagent

Systems, John Wiley and Sons, 2009.

[34] Zhang M., Jin H., Shi X., and Wu S., “VirtCFT:

A Transparent VM-Level Fault-Tolerant System

for Virtual Clusters,” in Proceedings of IEEE 16th

International Conference on Parallel and

Distributed Systems, Shanghai, pp. 147-154,

2010.

[35] Zhang Y., Zheng Z., and Lyu M., “BFTCloud: A

Byzantine Fault Tolerance Framework for

Voluntary-Resource Cloud Computing,” IEEE 4th

International Conference on Cloud Computing,

Washington, pp. 444-451, 2011.

[36] Zheng Z., Zhou T., Lyu M., and King I.,

“Component Ranking for Fault-Tolerant Cloud

Applications,” IEEE Transactions on Services

Computing, vol. 5, no. 4, pp. 540-550, 2011.

Shivani Jaswal has an incredible

record in teaching and education.

She is pursuing her PhD from

Chandigarh University in Cloud

Computing. Her keen areas of

research are Cloud Computing, Trust

in Cloud Computing and Fault

Tolerance in Cloud Computing. She has successfully

published many papers in scopus and SCI journals.

Also, she has published three chapters with scopus

indexed. She is a member of various professional

bodies such as ACM, IAENG etc. She is a reviewer of

IJEBR, IGI Global.

Manisha Malhotra working as a

Professor in Chandigarh University,

India. She has credible record of

various degrees like Ph.D (Computer

Science & Applications), MCA

(With Distinction), and BSC

(Computer Science). She has

published more than 20 research papers in various

National/International Conferences, International

Journal having indexed with Sci, Elsevier, Scopus, 34

and ACM. Dr. Malhotra is the members of various

professional bodies like ACM, IEEE, CSI, and

IAENG. She also has the members of editorial boards

of various journals. She has been awarded as Young

Faculty in the field of Cloud Computing in July 2016.

She has also been awarded as Outstanding Researcher

Award Green Thinker’s Society in Interdisciplinary

Research for Sustainable Development (IRSD – 2017)

organized by Spoken Tutorial IIT Bombay, MHRD,

Govt. of India at NITTTR, Chandigarh. Her research

area includes Cloud Computing, Agent Technology,

and Information Retrieval etc.

