
150 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

Compact Tree Structures for Mining High Utility

Itemsets

Anup Bhat

Department of Computer Science and

Engineering, Manipal Academy of

Higher Education, India

bhatanupb@gmail.com

Harish Venkatarama

Department of Computer Science and

Engineering, Manipal Academy of

Higher Education, India

harish.sv@manipal.edu

Geetha Maiya

Department of Computer Science and

Engineering, Manipal Academy of

Higher Education, India

geetha.maiya@manipal.edu

Abstract: High Utility Item set Mining (HUIM) from large transaction databases has garnered significant attention as it

accounts for the revenue of the items purchased in a transaction. Existing tree-based HUIM algorithms discard unpromising

items and require at most two database scans for their construction. Hence, whenever utility threshold is changed, the trees

have to be reconstructed from scratch. In this regard, the current study proposes to not only incorporate all the items in the

tree structure but compactly represent transaction information. The proposed trees namely- Utility Prime Tree (UPT), Prime

Cantor Function Tree (PCFT), and String based Utility Prime Tree (SUPT) store transaction-level information in a node

unlike item-based prefix trees. Experiments conducted on both real and synthetic datasets compare the execution time and

memory of these tree structures with a proposed Utility Count Tree (UCT) and existing IHUP, UP-Growth trees. Due to

transaction-level encoding, these structures consume significantly less memory when compared to the tree structures in the

literature.

Keywords: High utility itemset mining, tree based algorithms.

Received February 11, 2020; accepted July 13, 2021

https://doi.org/10.34028/iajit/19/2/2

1. Introduction

Mining frequent itemsets from a large transaction

database is an indispensable step in obtaining patterns

that indicate associations among items. Such a task

addresses the market basket analysis problem of

identifying frequently purchased items by a customer

on his visit to a supermarket store [2]. Since its

inception, Frequent Itemset Mining (FIM) has been

applied in diverse areas such as text mining [13],

Bioinformatics [24], Pharmacovigilance [10] and so on

and has delivered novel insights. Amongst plethora of

application areas-Recommendation Systems [23],

intrusion detection systems [6], detection of fraudulent

transactions [25], Web-click analysis [12] are

noteworthy. Due to its versatility, FIM is viewed as a

general and popular data mining task [1].
FIM algorithms are designed to consider only the

frequency of occurrence of an itemset in a transaction

database. However, the factors such as purchase

quantities of items and their unit profit are not handled.

Consequently, the patterns obtained are devoid of the

revenue information. High Utility Itemset Mining

(HUIM) provides for a model where the

aforementioned factors can be accommodated during

mining. Hence, this area has played a pivotal role since

the past decade as a more generalised form of FIM.

Most of the algorithms employed for FIM work on the

downward closure property of the support or frequency

of an itemset in order to enumerate the patterns.

However, the revenue or utility measured as (unit

profit×purchase quantities) is neither monotone nor

anti monotone. For e.g., if the database shown in

Table 2 is considered, the utilities of itemsets {1}, {1,

2} and {1, 2, 4} are respectively 20, 15 and 21. If the

user defined threshold of minimum utility to extract

the high utility patterns were set to 18, then the high

utility itemset {1, 2, 4} contains both a high utility-1}

and low utility-{1, 2} subsets. Hence, the utility

measure for an itemset does not satisfy the downward

closure property.

HUIM has evolved from two-phase to single phase

algorithms. Although there is an absence of downward

closure property, studies have explored various

measures to prune the search space and efficiently

mine High Utility Itemsets (HUIs). Generally, the

algorithms discard the items that are deemed to be

unpromising during the initial phase when a data

structure such as a tree or a list is constructed. If the

user requests for mining with a lower threshold,

certain unpromising items may turn out to be

promising. In such a scenario, the data structures have

to be reconstructed from scratch.

In order to alleviate these shortcomings, the current

work proposes trees that compactly represent the

transaction database. Most of the existing trees encode

the transaction information on a per item basis in the

nodes of the tree. In contrast to this, the proposed tree

structures compactly encode information in the nodes

of the tree at the transaction level thus providing a

https://doi.org/10.34028/iajit/19/2/2

Compact Tree Structures for Mining High Utility Itemsets 151

higher abstraction. Also, the memory efficiency of

these structures namely Utility Prime Tree (UPT),

Prime Cantor Function Tree (PCFT), and String based

Utility Prime Tree (SUPT) have been compared with a

conventional prefix-sharing tree called the Utility

Count Tree (UCT). The significance and advantages of

the proposed tree structures are enumerated below:

 All these trees are complete i.e., these are

constructed using a single database scan without

discarding any items. This ensures faster

construction as multiple database scans (a costly I/O

operation) in discarding the unpromising items is

overcome.

 The trees are compact due to the encoding of

information with respect to a transaction rather than

per item basis (except UCT) in the nodes of the

trees. Also, experimental evaluations prove that they

are memory efficient.

The rest of this paper is organized as follows. In

subsections 2.1 and 2.2 of section 2 formal concepts

and related work in the area of HUIM have been

described. The proposed data structures have been

detailed in section 3. The paper concludes with

experimental evaluation and conclusion provided in

sections 4 and 5 respectively.

2. Background

2.1. Preliminary

Given a transaction database D, each transaction Td in

D is identified by TID, the transaction identifier and

records a collection of items purchased along with its

quantity or internal utility. Formally, T⊆ I where I={i1,

i2, i3,. . . , in} denotes the collection of items. A typical

transaction database is as shown in Table 2. An ordered

pair (ix,qx) in each transaction indicates that the item ix

was purchased in qx quantities in that transaction. Each

item is also associated with unit profit or external utility

as shown in Table 1.

Table 1. Profit table.

Item 1 2 3 4 5 6 7

Profit 5 2 1 2 3 5 1

Table 2. Transaction table.

TID Transactions

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)}

T2 {(3,3)(5,1)(2,4)(4,3)}

T3 {(3,1)(1,1)(4,1)}

T4 {(3,6)(5,2)(1,2)(7,5)}

T5 {(3,2)(5,1)(2,2)(7,2)}

 Definition 1: Utility of an item i in transaction Td,

denoted by u(i,Td) is measured as the product of

quantity q(i, Td) and unit profit p(i).

 Definition 2: Utility of an itemset X in transaction Td,

denoted by u(X, Td) is defined as

∑ 𝑢(𝑖, 𝑇𝑑)𝑖∈𝑋 ⋀ 𝑋⊆𝑇𝑑

 Definition 3: Utility of an itemset X in D denoted

by u(X), is defined as

𝑢(𝑋) = ∑ 𝑢(𝑋, 𝑇𝑑)

𝑋⊆𝑇𝑑 ⋀ 𝑇𝑑∈𝐷

For e.g.,: u({2}, T2)= 4×2=8

u({2,3},T2) = u({2}, T2)+u({3}, T2)=8+3=11

u({2,3}) = u({2,3}, T1)+u({2,3}, T2)+u({2, 3}, T5)=11

+11+6=28

 Definition 4: An itemset X is called a High Utility

Itemset (HUI) if u(X) ≥ min_util, where min_util is

the minimum utility provided by the user.

 Definition 5: Transaction Utility of a transaction Td,

denoted by TU(Td) is defined as the sum of the

utilities of all the items in that transaction i.e.,

∑ 𝑢(𝑖, 𝑇𝑑)𝑖⊆𝑇𝑑

 Definition 6: Transaction Weighted Utility of an

itemset X, denoted by TWU(X), is defined as the

sum of the transaction utility of all the transactions

in D that contain X, i.e., ∑ 𝑇𝑈(𝑇𝑑)𝑋⊆𝑇𝑑 ⋀ 𝑇𝑑∈𝐷

 Definition 7: An itemset X is a high-transaction

weighted utility itemset (HTWUI), if TWU(X) ≥

min_util. Also, if an itemset X is not a HTWUI,

then it cannot be a HUI.

 Property 1 (TWU Downward Closure Property) If

an itemset X is a HTWUI, then all its subsets are

HTWUIs or if an itemset X is not a HTWUI, then

none of its supersets can be HTWUIs.

2.2. Related Work

For an itemset X, u(X) is upper bounded by TWU(X).

Also, TWU(X) is downward closed. Hence, most of

the algorithms that generate and test candidates in a

level-wise manner [15, 16, 21] employ this measure to

prune the search space. However, repeated database

scans are required to determine the TWU of candidate

itemsets at every level. Further, the join operation

adds to the complexity of enumerating higher order

itemsets. To minimise database scans, several

algorithms have been proposed that transform the

information in the database to a data structure. The

subsequent mining involves operating on this data

structure for mining; thus eliminating repeated

database scans.

In this regard, the role of HUP-Growth [17], HUC-

Prune [3] based on FP- Growth [9] is significant.

While these algorithms transform the database into a

tree with a node for every item of a transaction, the

former captures the quantity information in one of the

elements of the node. Due to the absence of a

mechanism to enumerate itemsets from the HUP-tree

efficiently, a lot of candidate itemsets have to be

examined. In contrast, HUC-Tree makes use of

Property 1in conjunction with pattern-growth to

enumerate candidate HUIs. Although both the

algorithms generate significantly lesser number of

candidates in comparison to the Two-Phase algorithm,

(1)

152 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

the tree structure needs to be reconstructed once the

user defined threshold for minimum utility, i.e.,

min_util is modified.

UP-Growth [28] and UP-Growth+ [27] are the

efficient state of the art tree based algorithms. Here, the

authors proposed several strategies to prune the search

space during construction and recursive mining of the

UP-Tree. At the very outset, during the first database

scan, those 1-items that were not HTWUI are

discarded. Further, the utilities of each item is

calculated without considering its descendants. In a

similar manner, during the mining operation local UP-

trees are constructed after discarding local unpromising

items and decreasing minimum utilities of descendant

nodes. The bounds are further strengthened in UP-

Growth+based on path utilities and estimated utilities

of descendant nodes.

In order to facilitate efficient incremental and

interactive mining of HUIs, IHUP algorithm that

constructs tree without ignoring any items based on

TWU was proposed [4]. Authors proposed three

different approaches of tree construction- based on

lexicographic order of items called IHUPL-Tree, based

on descending order of Transaction Frequency called

IHUPTF-Tree and based on descending order of TWU

called IHUPTWU-tree. After N transactions are read,

IHUPTF-Tree and IHUPTWU-Tree has to be reordered

that increases the data structure construction time.

Apart from the tree based algorithms, several list

based algorithms are available in the literature such as

HUI-Miner [20], HUP-Miner [14], d2HUP [18, 19].

These algorithms are mostly single-phase and employ

pruning strategies similar to the tree-based algorithms.

However, the memory consumed in storing the Utility

Lists and the costly comparison and join operation is a

severe performance bottleneck. Further, a recent study

has indicated that trees can outperform list based and

projection based algorithms [5]. However, the recursive

mining operation on trees necessitate the creation of

large number of conditional pattern trees that consume

the memory space.

Not many studies for mining HUIs incorporate all

the items in the tree structure. Besides, these trees are

prefix-shared on items in the transaction. To address

the shortcomings, a prefix-based tree structure called

Utility Count Tree is proposed. Further, to achieve

better compaction, the items and their utilities are

encoded such that each node in the tree represents a

transaction. In addition to this, the proposed compact

trees are prefix-sharing with respect to the transaction

information stored in the node. Also, these trees ensure

completeness and memory efficiency.

3. Methodology

In this section four different tree structures are

proposed to represent the transaction database namely:

 Utility Count Tree (UCT)

 Utility Prime Tree (UPT)

 Prime Cantor Function Tree (PCFT)

 String based Utility Prime Tree (SUPT)

The following subsections are dedicated to each of

these tree structures where the node structure and brief

procedure of representing the information in the

database is described.

3.1. Utility Count Tree

A node in the Utility Count Tree has the following

fields:

1. Item which denotes the name of the item

2. Count that indicates the count of the item in the

given path of the tree

3. Utility that accumulates the utility of the item in the

given path of the tree

4. Parent pointer that points to the parent of the node

UCT is constructed without discarding any items

during the initial tree construction unlike HUP-

Growth or HUC-Prune. The database is scanned and a

node, N is constructed for every item in a transaction

Tj. The brief procedure for inserting transactions into

UCT is provided in Algorithm (1). Initially N is set to

the root node of the tree. The items in the transaction

are inserted as child nodes of one another. Hence, each

path of the tree corresponds to a particular transaction.

If a transaction contains a node that is already present

in the tree, the procedure updates the count and utility

instead of creating a new node in the given path. This

ensures prefix sharing. The UCT for sample database

in Table 1 is displayed in Figure 1.

Algorithm 1. Inserting into Utility Count Tree

Step 0. Input: UCT, Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik

∈ I, 1≤ k ≤ n and Tj ∈ D)

 Step 1. N ← the root node of UCT

Step 2. For each(ix, qx) ∈ Tj

Step 3. If N has a child C such that C. item = ix then

Step 4. C. count ← C. count + 1

Step 5. C. nodeUtility ← C. nodeUtility + u(ix, Tj)

Step 6. Else

Step 7. Create a new child node C with:

Step 8. C. item← ix, C.count← 1 and

C. utility ← u(ix, Tj)

Step 9. C.parent ← N

Step 10. End If

Step 11. N ← C

Step 12.End For

With a single scan of the database, UCT captures

relevant information in its tree structure. Although the

count field indicates the number of transactions a

given item is participating, reconstructing the database

from this information is not possible. For example,

consider the paths <3, 5, 2, 4> and < 3, 5, 2, 7 > for

Compact Tree Structures for Mining High Utility Itemsets 153

UCT shown in Figure 1. The count field for item 2 has

the value 2 as it is participating in two transactions, T2

and T5. However, the utility value is cumulative of

utilities in these two transactions and does not enable in

resolving the utility individually across the two

transactions.

Figure 1. UCT for database in Table 2.

3.2. Utility Prime Tree

Utility Prime Tree captures the transaction level

information in a single node unlike the UCT. The items

and utilities are mapped to corresponding prime

numbers by employing them as indices [22]. The

assigned prime numbers are then stored compactly in a

node of the UPT. Every node of the UPT contains the

following fields:

 Prime Items- This field stores the product obtained

after multiplying the prime numbers assigned to

every item of a transaction

 TU-This field stores the Transaction Utility of a

transaction

 Prime Utility (Tj)- This field stores the product

obtained after multiplying the prime numbers

assigned to utility of every item of a transaction

 Paren- pointer that points to the parent of the node

A node in the UPT captures compressed transaction

level information, i.e., prime Items(Tj) and prime

Utility(Tj) in the first and the third fields respectively.

e.g., consider the transaction T2: the items <3, 5, 2, 4>

are assigned their corresponding prime numbers as <5,

11, 3, 7> and utilities <3, 3, 8, 6> get assigned to <5, 5,

19, 13>. Now, the node corresponding to T2 has prime

Items(T2)=1155 and prime Utility(T2)=6175. The

second field of the node stores the TU of this

transaction.

Every node is inserted from the root of the UPT. In

order to ensure prefix sharing, transactions with

common items share the same path. This is ensured by

checking if any node in UPT has its prime Item

divisible by prime Item(Tj). For example, transaction

T2 is inserted as child of T1 because prime Item (T1)=

30030 is divisible by prime Item(T2)=1155. Hence,

transactions that are sub-transactions of one another

(with respect to the items participating) share a

common parent.

The database reconstruction involves factorising the

prime Item and prime Utility of every node to retrieve

the transaction level information. For example, if the

node corresponding to T2 is considered from the tree,

upon factorising prime Item and prime Utility we get,

<3, 5, 7, 11> and <5, 5, 13, 19>. These factors

correspond to <2, 3, 4, 5> th and <3, 3, 6, 8> th prime

numbers. However, this incorrectly maps the utilities

of items 2 and 5 to 3 and 8 instead of 8 and 3.

Although the items and utilities are intact, it is not

possible to resolve the utilities of every item correctly.

Hence, utility values are encoded to ((prime(ix))
u(ix, Tj))

th prime number and multiplied to get primeUtility.

The procedure is highlighted in Algorithm (2). For T2,

primeUtility(T2)=5(3).11(3).3(8).7(6) instead of previously

obtained value of 6175. During database

reconstruction, it is easier to map the utilities which

are present as exponents of the corresponding prime

encoded items. Figure 2 shows transactions encoded

using this procedure.

Figure 2. UPT for database in Table 2.

Algorithm 2. Inserting into Utility Prime Tree

Step 0. Input:Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈ I,

1≤ k ≤ n and Tj ∈ D)

Step 1.For transaction Tj∈ D

Step 2. Calculate TU(Tj)

Step 3. Replace item ix with ixth prime number, prime(ix)

Step 4.Replace u(ix, Tj) with prime(ix)
u(ix, Tj)

Step 5. primeItems(Tj) ← product of prime encoded items

Step 6. primeUtility(Tj) ← product of prime encoded item

utilities

Step 7. End For

Step 8.procedure INSERT_TRANSACTION_UPT(root, Tj)

Step 9. Create a new child node S with:

Step 10. S.primeItems ←primeItems(Tj)

Step 11. S.TU ← TU(Tj)

Step 12. S.primeUtility← primeUtility(Tj)

Step 13. I froot has child C such that (

3 5 13

5 4 15 1 1 5

1 2 15 2 2 12

15

2 1 10 7 1 5 4 1 6 7 1 2

4 1 6

6 1 5

4 1 2

154 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

(C.primeItems % primeItems(Tj) = 0 OR (primeItems(Tj) %

C.primeItems) = 0)

Step 14. S.parent← C

Step 15. Else

Step 16. S.parent ← root

Step 17. End If

Step 18. End procedure

UPT compactly stores the database information by

capturing the information at the transaction level

instead of creating node for every item in a transaction.

However, as the number of items and transactions

increase, the space required to store the product, prime

Utility (Tj) overwhelms the allocated node space.

Hence, factorising and subsequent resolution of utilities

of items is not facilitated.

3.3. Prime Cantor Function Tree

In order to resolve the utility corresponding to the items

in a transaction Tj and satisfy the completeness

constraint, Cantor Function (CF) that reversibly maps

the pair of non-negative integers (ix, u(ix,Tj)) onto

another non-negative integer is explored [11]. For an

ordered pair (a, b) CF is defined as:

𝐶𝐹(𝑎, 𝑏) =
(𝑎 + 𝑏)(𝑎 + 𝑏 + 1)

2
+ 𝑏

Inverse of CF(a, b) is calculated as follows:

Let CF(a, b)=z

 Step 1: 𝑤 = ⌊
√8𝑧+1−1

2
⌋

 Step 2: 𝑡 =
𝑤2+𝑤

2

 Step 3: b=z‒t

 Step 4: a=w‒b

The details of the different fields in the node of PCFT

are provided below:

 PrimeCF- This field stores the product obtained after

multiplying the prime numbers assigned to CF(ix,

u(ix,Tj)) for every item ix of a transaction

 TU- This field stores the Transaction Utility of a

transaction

 Parent pointer that points to the parent of the node

Brief procedure to construct PCFT is provided in

Algorithm (3). Figure 3 displays the PCFT of Table 1.

Although the tree is complete and ensures database

reconstruction, the main drawback is absence of path

sharing as evident from Figure 3. For example, while T2

and T3 appear as child of T1 in UPT as items(T2) ⊂

items(T1) and items(T3) ⊂ items(T1) as shown in the

Figure 2, due to the uniqueness in mapping of (ix, u(ix,

Tj)) through CF prior to prime encoding, the sharing is

absent in PCFT. With PCFT, if items are purchased in

similar quantities across two transactions Ti and Tj such

that either items(Ti) ⊂ items(Tj) or items(Tj) ⊂ items(Ti)

sharing can be ensured.

Utility values are used along with items in the

Cantor Function prior to assigning them with the

corresponding prime numbers. If an item is present in

two different transactions, CF maps the item-utility

pair to a unique number and hence the same item may

get assigned to different prime numbers if the utility

values are different. This limits the prefix sharing in

the PCFT owing to the inherent feature of the CF. The

major implementation drawback is due to the large

value obtained to store primeCF(Tj) for every

transaction. This is bound to increase overwhelmingly

with growing number of items in the database.

Algorithm 3. Inserting into Prime Cantor Function Tree

Step 0. Input: Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈

I, 1≤ k ≤ n and Tj ∈ D)

Step 1. For transaction Tj∈ D

Step 2. Calculate TU(Tj)

Step 3. Calculate CF(ix, u(ix,Tj))

Step 4.Replace (ix, u(ix,Tj)) in Tjwith CF(ix, u(ix,Tj))th prime

number

Step 5. prime CF(Tj) ←product of prime encoded items and

their utilities after applying CF

Step 6. End For

Step 7. procedure INSERT_TRANSACTION_PCFT(root, Tj)

Step 8.Create a new child node S with:

Step 9. S.primeCF ←prime CF(Tj)

Step 10. S.TU ← TU(Tj)

Step 11.S.primeUtility← primeUtility(Tj)

Step 12.I froot has child C such that

((C. prime CF % prime CF(Tj)) = 0 OR

(prime CF(Tj) % C. prime CF) = 0)

Step 13. S.parent← C

Step 14. Else

Step 15. S.parent ← root

Step 16. End If

Step 17. End procedure

3.4. String based Utility Prime Tree

This tree is similar to UPT. In order to overcome the

problem of storing large number that arises from

computing primeItem(Tj), the prime numbers assigned

to items and utilities are concatenated by a delimiter.

As this information is stored in textual format,

substring comparison is performed while inserting

transactions into the tree structure to identify the

transactions containing common set of items. This

ensures prefix-sharing. Also, it is possible to

reconstruct the entire database due to the string

representation of the primeItems and primeUtility. The

procedure and SUPT for sample database is displayed

in Algorithm (4) and Figure 4 respectively.

Compact Tree Structures for Mining High Utility Itemsets 155

Figure 3. PCFT for database in Table 2.

Figure 4. SUPT for database in Table 2.

Algorithm 4. Inserting into String based Utility Prime Tree

Step 0. Input: Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈

I, 1≤ k ≤ n and Tj ∈ D)

Step 1. For transaction Tj∈ D

Step 2. Calculate TU(Tj)

Step 3. Replace item ix with ixth prime number, prime(ix)

Step 4.Replace u(ix, Tj) with u(ix, Tj)th prime number

Step 5. primeItems(Tj) ← prime encoded items concatenated

as string

Step 6.primeUtility(Tj) ← prime encoded item utilities

concatenated as string

Step 7.End For

Step 8.procedure INSERT_TRANSACTION_SUPT(root, Tj)

Step 9. Create a new child node S with:

Step 10.S.primeItems ←primeItems(Tj)

Step 11. S.TU ← TU(Tj)

Step 12.S.primeUtility← prime Utility(Tj)

Step 13.I froot has child C such that

((C. prime Itemsis a substring of prime Items(Tj)) OR (prime

Items(Tj) is a substring of C. prime Items))

Step 14. S. parent← C

Step 15.Else

Step 16. S. parent ← root

Step 17.End If

Step 18. End procedure

4. Experimental Evaluation

The source code implementation in Java provided by

SPMF Data Mining Library was extended to implement

the proposed tree structures [8]. Experiments were

conducted on both real and synthetic datasets to

compare the execution time and memory consumed.

The characteristics of the datasets used is provided in

Table 3 [7]. |D| denotes the number of transactions, |I|

denotes the number of items, T denotes average

transaction length. Density calculated as T/|I| indicates

how sparse or dense the dataset is. The dataset

Foodmart contains real utility values. For the remaining

datasets, the internal utility values have been

generated using a uniform distribution in [1, 10], and

the profit values follow a Gaussian distribution.

 Datasets are chosen such that different ranges of |D|,

|I|, T and density are taken up for evaluation. The

proposed trees are compared to the two popular tree

structures in the literature namely, IHUP and UP-

Growth trees. For the experiments, a system with 8GB

RAM, Windows 7 OS with Intel Core i5 processor at

3.00 GHz was used.

Table 3. Characteristics of datasets.

Dataset IHUP UP-Growth

Chess 76.47 91.56

Mushroom 64.26 91.38

Foodmart 72.10 92.91

Retail 64.76 99.82

Connect 50.83 99.48

4.1. Performance Analysis on Real Datasets

Figure 5 depicts the execution time of the algorithms.

Across all the datasets, UCT executed faster than the

remaining algorithms. The percentage improvement

obtained due to UCT in comparison to IHUP and UP-

Growth trees is recorded in Table 4. Among the

prime-based trees, UPT performed better, especially

when the dense datasets were considered. As shown in

the figure, it executed faster than UP-Growth by 66%,

36% and 65% on Chess, Mushroom and Connect

datasets respectively. Also, PCFT performed 48.8%

faster than UP-Growth on Connect dataset. However,

its performance was poor on large and sparse datasets

such as, Food mart and Retail. Owing to the longer

execution time, PCFT was executed on only 100 and

500 transactions of these two datasets. The larger

values obtained after applying CF to (ix, u(ix, Tj)) pair

increased the prime encoding time that subsequently

2.38E13 30 2.91E9 20 259873 8 1.38E10 27 2.01E8 11

5x11x3x1
7

11 3x5x7x
3

5x11x2x3x7x
13

30 2x5x11x29x13
x11

5x11x2x1

7

27 13x13x29x

11

5x11x3x
7

20 5x5x9x13
5x2x7x
8

8 2x11x13

156 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

affected the overall execution time. Although SUPT

took longer time for construction, it performed

significantly faster on Food mart, one of the sparse

datasets where PCFT failed. The low value of T for this

dataset ensured the presence of common set of items

across different transactions leading to lesser string

comparisons during the tree construction.

Table 4. Percentage improvement in execution time of UCT in

comparison to IHUP and UP-Growth.

Dataset |D| |I| T Density (%)

Chess 3196 75 37 49.33

Mushroom 8124 119 23 19.32

Food mart 4141 1559 4.4 0.28

Retail 88162 16470 10.3 0.06

Connect 67557 129 43 33.33

Figure 5. Execution time of the algorithms for real datasets.

Figure 6 denotes the memory consumed by the

proposed structures in comparison with IHUP and UP-

Growth trees. The get Object Size (Object) method of

Instrumentation interface implemented and provided in

size of package was used to calculate the amount of

memory consumed [26]. Due to PCFT’s longer

execution time only 100 and 500 transactions of

Foodmart and Retail was considered. The prime-based

tree structures clearly consumed significantly lesser

space in comparison to the remaining trees. The

transaction level encoding of database information

ascertains the lower memory consumption. Factor-wise

reduction in the space consumed by Prime Trees is

tabulated in Table 5.

Figure 6. Memory consumed by the tree structures for real datasets.

On an average across Chess dataset, UPT, PCFT,

and SUPT consume 19.5, 19.5 and 22.1 times lesser

memory than IHUP and UP-Growth trees. Across

Mushroom, in the same order the reduction in memory

was 5.2, 5.2 and 5.8 times. Due to partial database

considered when running PCFT implementation of

Foodmart, UPT and SUPT consumed 5.9 and 6.5

times lesser space. This reduction for the two trees

was about 12.6 and 13.3 in the case of Retail, another

sparse dataset. A reduction of about 8.6 and 9.7 times

was observed when Connect dataset was considered.

Although PCFT has only two fields, the prefix sharing

is easier across SUPT than in PCFT. Hence SUPT

turned out to be memory efficient among the proposed

trees.

Table 5. Space reduction (ratio) of prime-based trees.

Dataset

UPT PCFT SUPT

IHUP
UP-

Growth
IHUP

UP-

Growth
IHUP

UP-

Growth

Chess 19.97 19.16 19.97 19.16 22.57 21.66

Mushroom 5.21 5.20 5.21 5.20 5.89 5.89

Foodmart 5.95 5.91 255.40 253.54 6.56 6.51

Retail 12.64 12.64 2226.0 2226.04 13.31 13.31

Connect 8.61 8.61 57.01 57.01 9.75 9.75

4.2. Performance Analysis on Synthetic

Datasets

In order to further evaluate the performance of the

proposed structures, synthetic datasets were generated

using the SPMF tool. First set of datasets were mostly

dense and their characteristics are provided in Table 6

where the parameter Tmax denotes the maximum

transaction length.

Table 6. Characteristics of synthetic datasets.

Dataset |𝑫| |𝑰| Tmax Density(%)

d01 5000 100 10 5.54

d02 5000 100 50 25.53

d03 5000 500 10 1.09

d04 5000 500 50 5.04

d05 10000 100 10 5.43

d06 10000 100 50 25.61

d07 10000 500 10 1.10

d08 10000 500 50 5.10

The execution time of different algorithms is

compared in Figure 7. As in the case of real datasets,

UCT clearly outperformed all the algorithms. Table 7

records the percentage improvement obtained in

execution time when UCT was compared with IHUP

and UP-Growthtrees. On an average an improvement

of 82.82% on IHUP and 52.49% on UP-Growth was

observed.

Compact Tree Structures for Mining High Utility Itemsets 157

Figure 7. Execution Time of algorithms on synthetic dense datasets.

Among the prime-based trees, UPT and SUPT

showed promising results. Further, on very dense

datasets like d02 and d06, PCFT executed faster than

SUPT, although not considerably. However, as the

datasets became relatively sparse its performance

degraded, especially in the case of d03 and d07 where

SUPT and UPT performed significantly better. This

indicates that PCFT is more sensitive to sparseness. In

the case of UPT and SUPT the increase in execution

time with the increase in density for a constant database

size was significant in contrast to PCFT. Especially in

the case of d03 and d04 where the change in density

was around4 units, execution time of PCFT was almost

the same while there was sharp increase in execution

time of both UPT and SUPT. This indicates that UPT

and SUPT are more sensitive to density changes for

agiven size of the database than PCFT.

Table 7. Percentage improvement in execution time of UCT on

synthetic dense datasets.

Dataset IHUP UP-Growth

d01 83.24 44.24

d02 89.83 78.16

d03 81.96 45.45

d04 85.59 66.09

d05 80.34 32.74

d06 84.42 58.65

d07 74.08 44.48

d08 83.14 64.53

Further, the memory consumed by the various

structures was compared as shown in Figure 8. SUPT

turned out to be the memory efficient one. For a given

database size, although the memory taken up by tree

structures seemed to be mostly independent of the

changing density, SUPT showed slight variations when

compared to other prime-based trees. This difference

was evident with growing database size. Table 8

records the factor-wise memory consumption of Prime

Trees in comparison to IHUP and UP-Growth trees.

Comparison on real and synthetic dense datasets

indicated that UCT is more time efficient whereas

SUPT is more memory efficient.

Figure 8. Memory consumption by the trees on synthetic dense

datasets.

Table 8. Reduction in memory consumption across synthetic dense
datasets.

Dataset
UPT PCFT SUPT

IHUP UP-Growth IHUP UP-Growth IHUP UP-Growth

d01 5.89 5.89 5.90 5.90 5.92 5.92

d02 37.50 37.50 37.78 37.78 40.82 40.82

d03 7.08 7.08 7.01 7.01 7.24 7.25

d04 39.95 39.96 40.44 40.44 43.72 43.72

d05 5.56 5.56 0.562 0.562 5.55 5.55

d06 37.77 37.78 37.06 37.06 40.11 40.12

d07 6.95 6.95 6.77 6.77 6.89 6.90

d08 39.94 39.95 40.35 40.35 44.99 44.99

In order to further explore the characteristics,

experiments were conducted to compare these two

structures on sparse datasets. The characteristics of the

datasets is described in Table 9. Figures 9 and 10

depict the execution time and space consumed

respectively. UCT performed graciously even with

sparsest of the datasets. However, SUPT clearly

outperformed UCT in terms of memory requirements.

Table 9. Characteristics of synthetic sparse datasets.

Dataset |𝑫| |𝑰| Tmax Density(%)

s01 10000 10000 10 0.055

s02 10000 10000 50 0.257

s03 10000 50000 10 0.017

s04 10000 50000 50 0.051

s05 100000 10000 10 0.055

s06 100000 10000 50 0.255

s07 100000 50000 10 0.011

s08 100000 50000 50 0.051

4.3. Inferences

In the previous section, the proposed tree structures

were compared with IHUP and UP Growth which are

item-based prefix trees. As IHUP involves reordering

the tree after N transactions and UP-Growth involves

two database scans for complete tree construction,

such overheads were eliminated in UCT leading to

faster execution. In terms of memory requirements,

the prime trees were more efficient due to the

transaction level encoding of information. Among

these, SUPT was more efficient across real and

synthetic dataset sowing to better prefix-sharing. As

158 The International Arab Journal of Information Technology, Vol. 19, No. 2, March 2022

the datasets became sparser, PCFT performed poorly in

terms of execution time. However, for database of

shorter transactions, PCFT can be selected as it

displayed faster execution. Overall, UCT and SUPT are

promising choices for tree constructions.

Figure 9. Execution time of UCT and SUPT on synthetic sparse

datasets.

Figure 10. Space consumed by UCT and SUPT on synthetic sparse

datasets.

5. Conclusions

With ever increasing database sizes the need for

accommodating the essential utility information from is

of prime importance. In this regard, the current work

proposes tree structures that are constructed via a single

database scan without neglecting any items. Especially

the proposed prime-based tree structures namely,

Utility Prime Tree, Prime Cantor Function Tree and

String based Prime Utility Tree have been promising

ways of storing the database information in a compact

manner in the memory. Apart from this, the proposed

Utility Count Tree is not only time efficient on real

datasets but also on large sparse and dense databases.

This work can be extended further to mine high utility

itemsets from very large databases in a distributed

environment.

References

[1] Aggarwal C., Frequent Pattern Mining, Springer

International Publishing, 2014.

[2] Agrawal R. and Srikant R., “Fast Algorithms for

Mining Association Rules,” in Proceedings of the

20th VLDB Conference, Santiago, pp. 487-499,

1994.

[3] Ahmed C., Tanbeer S., and Jeong B., and Lee

Y., “HUC-Prune: An Efficient Candidate

Pruning Technique to Mine High Utility

Patterns,” Applied Intelligence, vol. 34, no. 2,

pp. 181-198, 2011.

[4] Ahmed C., Tanbeer S., Jeong B., and Lee Y.,

“Efficient Tree Structures for High Utility

Pattern Mining in Incremental Databases,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 21, no. 12, pp. 1708-1721,

2009.

[5] Dawar S., Bera D., and Goyal V., “High-Utility

Itemset Mining for Subadditive Monotone

Utility Functions,” CoRR abs/1812.07208, 2018.

[6] Duan Y., Fu X., Luo B., Wang Z., Shi J., and Du

X., “Detective: Automatically Identify and

Analyze Malware Processes in Forensic

Scenarios Via Dlls,” in Proceedings of IEEE

International Conference on Communications,

London, pp. 5691-5696, 2015.

[7] Fournier-Viger P., SPMF An Open-Source Data

Mining Library, Datasets, https://www.philippe-

fournier-

viger.com/spmf/index.php?link=datasets.php,

Last Visited, 2019.

[8] Fournier-Viger P., SPMF An Open-Source Data

Mining Library, Developer's Guide,

https://www.philippe-fournier-

viger.com/spmf/index.php?link=developers.php,

Last Visited, 2019.

[9] Han J., Pei J., Yin Y., and Mao R., “Mining

Frequent Patterns without Candidate Generation:

A Frequent-Pattern Tree Approach,” Data

Mining and Knowledge Discovery, vol. 8, no. 1,

pp. 53-87, 2004.

[10] Harpaz R., Chase H., and Friedman C., “Mining

Multi-Item Drug Adverse Effect Associations in

Spontaneous Reporting Systems,” BMC

Bioinformatics, vol. 11, no. 9, pp. 1-8, 2010.

[11] Hopcroft J., Motwani R., and Ullman J.,

Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 2006.

[12] Ivancsy R. and Vajk I., “Frequent Pattern

Mining in Web Log Data,” Acta Polytechnica

Hungarica, vol. 3, no. 1, pp. 77-90, 2006.

[13] Krishna S. and Bhavani S., “An Efficient

Approach for Text Clustering Based on Frequent

Itemsets,” European Journal of Scientific

Research, vol. 42, no. 3, pp. 385-396, 2010.

[14] Krishnamoorthy S., “Pruning Strategies for

Mining High Utility Itemsets,” Expert Systems

with Applications, vol. 42, no. 5, pp. 2371-2381,

2015.

[15] Lan G., Hong T., and Tseng V., “An Efficient

Gradual Pruning Technique for Utility Mining,”

International Journal of Innovative Computing

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=developers.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=developers.php

Compact Tree Structures for Mining High Utility Itemsets 159

Information and Control, vol. 8, no. 7B, pp. 5165-

5178, 2012.

[16] Li Y., Yeh J., and Chang C., “Isolated Items

Discarding Strategy for Discovering Highutility

Itemsets,” Data and Knowledge Engineering, vol.

64, no. 1, pp. 198-217, 2008.

[17] Lin C., Hong T., and Lu W., “An Effective Tree

Structure for Mining High Utility Itemsets,”

Expert Systems with Applications, vol. 38, no. 6,

pp. 7419-7424, 2011.

[18] Liu J., Wang K., and Fung B., “Direct Discovery

of High Utility Itemsets without Candidate

Generation,” in Proceedings of IEEE 12th

International Conference on Data Mining,

Brussels, pp. 984-989, 2012.

[19] Liu J., Wang K., and Fung B., “Mining High

Utility Patterns in one Phase Without Generating

Candidates,” IEEE Transactions on Knowledge

and Data Engineering, vol. 28, no. 5, pp. 1245-

1257, 2016.

[20] Liu M. and Qu J., “Mining High Utility Itemsets

without Candidate Generation,” in Proceedings of

the 21st ACM International Conference on

Information and Knowledge Management, Maui,

Hawaii, pp. 55-64, 2012.

[21] Liu Y., Liao W., and Choudhary A., “A Two-

Phase Algorithm for Fast Discovery of High

Utility Itemsets,” in Proceedings of Pacific-Asia

Conference on Knowledge Discovery and Data

Mining, Hanoi, pp. 689-695, 2005.

[22] Maiya G. and D'Souza R., “An Efficient Reduced

Pattern Count Tree Method for Discovering Most

Accurate Set of Frequent Itemsets,” IJCSNS

International Journal of Computer Science and

Network Security, vol. 8, no. 8, pp. 121-126,

2008.

[23] Mobasher B., Cooley R., and Srivastava J.,

“Automatic Personalization Based on Web Usage

Mining,” Communications of the ACM, vol. 43,

no. 8, pp. 142-151, 2000.

[24] Naulaerts S., Meysman P., Bittremieux W., Vu

T., VandenBerghe W., Goethals B., and Laukens

K., “A Primer to Frequent Itemset Mining for

Bioinformatics,” Briefings in Bioinformatics, vol.

16, no. 2, pp. 216-231, 2013.

[25] Poongodi K. and Kumar D., “Support Vector

Machine with Information Gain Based

Classification for Credit Card Fraud Detection

System,” The International Arab Journal

Information Technology, vol. 18, no. 2, pp. 199-

207, 2021.

[26] Slashdot Media: java. size of.

https://sourceforge.net/projects/sizeof/_les/, Last

Visited, 2019.

[27] Tseng V., Shie B., Wu C., and Yu P., “Efficient

Algorithms for Mining High Utility Itemsets from

Transactional Databases,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no.

1, pp. 54-67, 2016.

[28] Tseng V., Wu C., Shie B., and Yu P., “Up-

Growth: An Efficient Algorithm for High Utility

Itemset Mining,” in Proceedings of the 16th ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining,

Washington, pp. 253-262, 2010.

Anup Bhat was born in Manipal,

Udupi, Karnataka, India in 1991. He

received his BE degree in

information and communication

technology (2013) and MTech

degree in computer science and

engineering (2017) from Manipal

Institute of Technology, Manipal Academy of Higher

Education, Manipal, India in 2013 and 2017,

respectively. He is currently pursuing PhD in the same

institute. His research interests include Data Mining

and Machine Learning.

 Harish Venkatarama received his

PhD degree from National Institute

of Technology Karnataka in 2011

from the Department of Computer

Science and Engineering. He is

currently serving as Professor in the

Department of Computer Science

and Engineering, Manipal Institute of Technology,

Manipal Academy of Higher Education, Manipal,

India. His work has been published in journals of

international repute. He also has two book chapters to

his credit. His research interests include Algorithms,

Machine Learning and Data Mining.

Geetha Maiya received her PhD

degree from the Department of

Mathematical and Computational

Sciences, National Institute of

Technology Karnataka in 2010.She

is currently a Professor with the

Department of Computer Science

and Engineering, Manipal Institute of Technology,

Manipal Academy of Higher Education, Manipal,

India. She has presented several articles in national

and international conferences. Her work has also been

published in several international journals. Her current

research interests include Algorithms, Data Mining,

Text mining in healthcare, and financial sectors.

https://sourceforge.net/projects/sizeof/_les/

