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Abstract: High Utility Item set Mining (HUIM) from large transaction databases has garnered significant attention as it 

accounts for the revenue of the items purchased in a transaction. Existing tree-based HUIM algorithms discard unpromising 

items and require at most two database scans for their construction. Hence, whenever utility threshold is changed, the trees 

have to be reconstructed from scratch. In this regard, the current study proposes to not only incorporate all the items in the 

tree structure but compactly represent transaction information. The proposed trees namely- Utility Prime Tree (UPT), Prime 

Cantor Function Tree (PCFT), and String based Utility Prime Tree (SUPT) store transaction-level information in a node 

unlike item-based prefix trees. Experiments conducted on both real and synthetic datasets compare the execution time and 

memory of these tree structures with a proposed Utility Count Tree (UCT) and existing IHUP, UP-Growth trees. Due to 

transaction-level encoding, these structures consume significantly less memory when compared to the tree structures in the 

literature. 
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1. Introduction 

Mining frequent itemsets from a large transaction 

database is an indispensable step in obtaining patterns 

that indicate associations among items. Such a task 

addresses the market basket analysis problem of 

identifying frequently purchased items by a customer 

on his visit to a supermarket store [2]. Since its 

inception, Frequent Itemset Mining (FIM) has been 

applied in diverse areas such as text mining [13], 

Bioinformatics [24], Pharmacovigilance [10] and so on 

and has delivered novel insights. Amongst plethora of 

application areas-Recommendation Systems [23], 

intrusion detection systems [6], detection of fraudulent 

transactions [25], Web-click analysis [12] are 

noteworthy. Due to its versatility, FIM is viewed as a 

general and popular data mining task [1]. 
FIM algorithms are designed to consider only the 

frequency of occurrence of an itemset in a transaction 

database. However, the factors such as purchase 

quantities of items and their unit profit are not handled. 

Consequently, the patterns obtained are devoid of the 

revenue information. High Utility Itemset Mining 

(HUIM) provides for a model where the 

aforementioned factors can be accommodated during 

mining. Hence, this area has played a pivotal role since 

the past decade as a more generalised form of FIM. 

Most of the algorithms employed for FIM work on the 

downward closure property of the support or frequency 

of an itemset in order to enumerate the patterns. 

However, the revenue or utility measured as (unit 

profit×purchase quantities) is neither monotone nor 

anti monotone. For e.g., if the database shown in 

Table 2 is considered, the utilities of itemsets {1}, {1, 

2} and {1, 2, 4} are respectively 20, 15 and 21. If the 

user defined threshold of minimum utility to extract 

the high utility patterns were set to 18, then the high 

utility itemset {1, 2, 4} contains both a high utility-1} 

and low utility-{1, 2} subsets. Hence, the utility 

measure for an itemset does not satisfy the downward 

closure property. 

HUIM has evolved from two-phase to single phase 

algorithms. Although there is an absence of downward 

closure property, studies have explored various 

measures to prune the search space and efficiently 

mine High Utility Itemsets (HUIs). Generally, the 

algorithms discard the items that are deemed to be 

unpromising during the initial phase when a data 

structure such as a tree or a list is constructed. If the 

user requests for mining with a lower threshold, 

certain unpromising items may turn out to be 

promising. In such a scenario, the data structures have 

to be reconstructed from scratch. 

In order to alleviate these shortcomings, the current 

work proposes trees that compactly represent the 

transaction database. Most of the existing trees encode 

the transaction information on a per item basis in the 

nodes of the tree. In contrast to this, the proposed tree 

structures compactly encode information in the nodes 

of the tree at the transaction level thus providing a 
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higher abstraction. Also, the memory efficiency of 

these structures namely Utility Prime Tree (UPT), 

Prime Cantor Function Tree (PCFT), and String based 

Utility Prime Tree (SUPT) have been compared with a 

conventional prefix-sharing tree called the Utility 

Count Tree (UCT). The significance and advantages of 

the proposed tree structures are enumerated below: 

 All these trees are complete i.e., these are 

constructed using a single database scan without 

discarding any items. This ensures faster 

construction as multiple database scans (a costly I/O 

operation) in discarding the unpromising items is 

overcome. 

 The trees are compact due to the encoding of 

information with respect to a transaction rather than 

per item basis (except UCT) in the nodes of the 

trees. Also, experimental evaluations prove that they 

are memory efficient. 

The rest of this paper is organized as follows. In 

subsections 2.1 and 2.2 of section 2 formal concepts 

and related work in the area of HUIM have been 

described. The proposed data structures have been 

detailed in section 3. The paper concludes with 

experimental evaluation and conclusion provided in 

sections 4 and 5 respectively. 

2. Background 

2.1. Preliminary 

Given a transaction database D, each transaction Td in 

D is identified by TID, the transaction identifier and 

records a collection of items purchased along with its 

quantity or internal utility. Formally, T⊆ I where I={i1, 

i2, i3,. . . , in} denotes the collection of items. A typical 

transaction database is as shown in Table 2. An ordered 

pair (ix,qx) in each transaction indicates that the item ix 

was purchased in qx quantities in that transaction. Each 

item is also associated with unit profit or external utility 

as shown in Table 1. 

Table 1. Profit table. 

Item 1 2 3 4 5 6 7 

Profit 5 2 1 2 3 5 1 

Table 2. Transaction table. 

TID Transactions 

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)} 

T2 {(3,3)(5,1)(2,4)(4,3)} 

T3 {(3,1)(1,1)(4,1)} 

T4 {(3,6)(5,2)(1,2)(7,5)} 

T5 {(3,2)(5,1)(2,2)(7,2)} 
 

 Definition 1: Utility of an item i in transaction Td, 

denoted by u(i,Td) is measured as the product of 

quantity q(i, Td) and unit profit p(i). 

 Definition 2: Utility of an itemset X in transaction Td, 

denoted by u(X, Td) is defined as 

∑ 𝑢(𝑖, 𝑇𝑑)𝑖∈𝑋 ⋀  𝑋⊆𝑇𝑑
 

 Definition 3: Utility of an itemset X in D denoted 

by u(X), is defined as 

𝑢(𝑋) =  ∑ 𝑢(𝑋, 𝑇𝑑)

𝑋⊆𝑇𝑑 ⋀ 𝑇𝑑∈𝐷

 

For e.g.,: u({2}, T2)= 4×2=8 

u({2,3},T2) = u({2}, T2)+u({3}, T2)=8+3=11 

u({2,3}) = u({2,3}, T1)+u({2,3}, T2)+u({2, 3}, T5)=11 

+11+6=28 

 Definition 4: An itemset X is called a High Utility 

Itemset (HUI) if u(X) ≥ min_util, where min_util is 

the minimum utility provided by the user. 

 Definition 5: Transaction Utility of a transaction Td, 

denoted by TU(Td) is defined as the sum of the 

utilities of all the items in that transaction i.e., 

∑ 𝑢(𝑖, 𝑇𝑑)𝑖⊆𝑇𝑑
 

 Definition 6: Transaction Weighted Utility of an 

itemset X, denoted by TWU(X), is defined as the 

sum of the transaction utility of all the transactions 

in D that contain X, i.e., ∑ 𝑇𝑈(𝑇𝑑)𝑋⊆𝑇𝑑 ⋀ 𝑇𝑑∈𝐷  

 Definition 7: An itemset X is a high-transaction 

weighted utility itemset (HTWUI), if TWU(X) ≥ 

min_util. Also, if an itemset X is not a HTWUI, 

then it cannot be a HUI. 

 Property 1 (TWU Downward Closure Property) If 

an itemset X is a HTWUI, then all its subsets are 

HTWUIs or if an itemset X is not a HTWUI, then 

none of its supersets can be HTWUIs. 

2.2. Related Work 

For an itemset X, u(X) is upper bounded by TWU(X). 

Also, TWU(X) is downward closed. Hence, most of 

the algorithms that generate and test candidates in a 

level-wise manner [15, 16, 21] employ this measure to 

prune the search space. However, repeated database 

scans are required to determine the TWU of candidate 

itemsets at every level. Further, the join operation 

adds to the complexity of enumerating higher order 

itemsets. To minimise database scans, several 

algorithms have been proposed that transform the 

information in the database to a data structure. The 

subsequent mining involves operating on this data 

structure for mining; thus eliminating repeated 

database scans. 

In this regard, the role of HUP-Growth [17], HUC-

Prune [3] based on FP- Growth [9] is significant. 

While these algorithms transform the database into a 

tree with a node for every item of a transaction, the 

former captures the quantity information in one of the 

elements of the node. Due to the absence of a 

mechanism to enumerate itemsets from the HUP-tree 

efficiently, a lot of candidate itemsets have to be 

examined. In contrast, HUC-Tree makes use of 

Property 1in conjunction with pattern-growth to 

enumerate candidate HUIs. Although both the 

algorithms generate significantly lesser number of 

candidates in comparison to the Two-Phase algorithm, 

(1) 
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the tree structure needs to be reconstructed once the 

user defined threshold for minimum utility, i.e., 

min_util is modified. 

UP-Growth [28] and UP-Growth+ [27] are the 

efficient state of the art tree based algorithms. Here, the 

authors proposed several strategies to prune the search 

space during construction and recursive mining of the 

UP-Tree. At the very outset, during the first database 

scan, those 1-items that were not HTWUI are 

discarded. Further, the utilities of each item is 

calculated without considering its descendants. In a 

similar manner, during the mining operation local UP-

trees are constructed after discarding local unpromising 

items and decreasing minimum utilities of descendant 

nodes. The bounds are further strengthened in UP-

Growth+based on path utilities and estimated utilities 

of descendant nodes. 

In order to facilitate efficient incremental and 

interactive mining of HUIs, IHUP algorithm that 

constructs tree without ignoring any items based on 

TWU was proposed [4]. Authors proposed three 

different approaches of tree construction- based on 

lexicographic order of items called IHUPL-Tree, based 

on descending order of Transaction Frequency called 

IHUPTF-Tree and based on descending order of TWU 

called IHUPTWU-tree. After N transactions are read, 

IHUPTF-Tree and IHUPTWU-Tree has to be reordered 

that increases the data structure construction time. 

Apart from the tree based algorithms, several list 

based algorithms are available in the literature such as 

HUI-Miner [20], HUP-Miner [14], d2HUP [18, 19]. 

These algorithms are mostly single-phase and employ 

pruning strategies similar to the tree-based algorithms. 

However, the memory consumed in storing the Utility 

Lists and the costly comparison and join operation is a 

severe performance bottleneck. Further, a recent study 

has indicated that trees can outperform list based and 

projection based algorithms [5]. However, the recursive 

mining operation on trees necessitate the creation of 

large number of conditional pattern trees that consume 

the memory space.  

Not many studies for mining HUIs incorporate all 

the items in the tree structure. Besides, these trees are 

prefix-shared on items in the transaction. To address 

the shortcomings, a prefix-based tree structure called 

Utility Count Tree is proposed. Further, to achieve 

better compaction, the items and their utilities are 

encoded such that each node in the tree represents a 

transaction. In addition to this, the proposed compact 

trees are prefix-sharing with respect to the transaction 

information stored in the node. Also, these trees ensure 

completeness and memory efficiency. 

3. Methodology 

In this section four different tree structures are 

proposed to represent the transaction database namely: 

 Utility Count Tree (UCT) 

 Utility Prime Tree (UPT) 

 Prime Cantor Function Tree (PCFT) 

 String based Utility Prime Tree (SUPT) 

The following subsections are dedicated to each of 

these tree structures where the node structure and brief 

procedure of representing the information in the 

database is described. 

3.1. Utility Count Tree 

A node in the Utility Count Tree has the following 

fields: 

1. Item which denotes the name of the item 

2. Count that indicates the count of the item in the 

given path of the tree 

3. Utility that accumulates the utility of the item in the 

given path of the tree 

4. Parent pointer that points to the parent of the node 

UCT is constructed without discarding any items 

during the initial tree construction unlike HUP-

Growth or HUC-Prune. The database is scanned and a 

node, N is constructed for every item in a transaction 

Tj. The brief procedure for inserting transactions into 

UCT is provided in Algorithm (1). Initially N is set to 

the root node of the tree. The items in the transaction 

are inserted as child nodes of one another. Hence, each 

path of the tree corresponds to a particular transaction. 

If a transaction contains a node that is already present 

in the tree, the procedure updates the count and utility 

instead of creating a new node in the given path. This 

ensures prefix sharing. The UCT for sample database 

in Table 1 is displayed in Figure 1. 

Algorithm 1. Inserting into Utility Count Tree 

Step 0. Input: UCT, Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik 

∈ I, 1≤ k ≤ n and Tj ∈ D) 

 Step 1. N ← the root node of UCT 

Step 2. For each(ix, qx) ∈ Tj 

Step 3. If N has a child C such that C. item = ix then 

Step 4.  C. count ← C. count + 1 

Step 5. C. nodeUtility ← C. nodeUtility + u(ix, Tj) 

Step 6.  Else 

Step 7.  Create a new child node C with: 

Step 8. C. item← ix, C.count← 1 and  

C. utility ← u(ix, Tj) 

Step 9. C.parent ← N 

Step 10. End If 

Step 11.  N ← C 

Step 12.End For 

With a single scan of the database, UCT captures 

relevant information in its tree structure. Although the 

count field indicates the number of transactions a 

given item is participating, reconstructing the database 

from this information is not possible. For example, 

consider the paths <3, 5, 2, 4> and < 3, 5, 2, 7 > for 
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UCT shown in Figure 1. The count field for item 2 has 

the value 2 as it is participating in two transactions, T2 

and T5. However, the utility value is cumulative of 

utilities in these two transactions and does not enable in 

resolving the utility individually across the two 

transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. UCT for database in Table 2. 

3.2. Utility Prime Tree 

Utility Prime Tree captures the transaction level 

information in a single node unlike the UCT. The items 

and utilities are mapped to corresponding prime 

numbers by employing them as indices [22]. The 

assigned prime numbers are then stored compactly in a 

node of the UPT. Every node of the UPT contains the 

following fields: 

 Prime Items- This field stores the product obtained 

after multiplying the prime numbers assigned to 

every item of a transaction 

 TU-This field stores the Transaction Utility of a 

transaction 

 Prime Utility (Tj)- This field stores the product 

obtained after multiplying the prime numbers 

assigned to utility of every item of a transaction 

 Paren- pointer that points to the parent of the node 

A node in the UPT captures compressed transaction 

level information, i.e., prime Items(Tj) and prime 

Utility(Tj) in the first and the third fields respectively. 

e.g., consider the transaction T2: the items <3, 5, 2, 4> 

are assigned their corresponding prime numbers as <5, 

11, 3, 7> and utilities <3, 3, 8, 6> get assigned to <5, 5, 

19, 13>. Now, the node corresponding to T2 has prime 

Items(T2)=1155 and prime Utility(T2)=6175. The 

second field of the node stores the TU of this 

transaction. 

Every node is inserted from the root of the UPT. In 

order to ensure prefix sharing, transactions with 

common items share the same path. This is ensured by 

checking if any node in UPT has its prime Item 

divisible by prime Item(Tj ). For example, transaction 

T2 is inserted as child of T1 because prime Item (T1)= 

30030 is divisible by prime Item(T2)=1155. Hence, 

transactions that are sub-transactions of one another 

(with respect to the items participating) share a 

common parent. 

The database reconstruction involves factorising the 

prime Item and prime Utility of every node to retrieve 

the transaction level information. For example, if the 

node corresponding to T2 is considered from the tree, 

upon factorising prime Item and prime Utility we get, 

<3, 5, 7, 11> and <5, 5, 13, 19>. These factors 

correspond to <2, 3, 4, 5> th and <3, 3, 6, 8> th prime 

numbers. However, this incorrectly maps the utilities 

of items 2 and 5 to 3 and 8 instead of 8 and 3. 

Although the items and utilities are intact, it is not 

possible to resolve the utilities of every item correctly. 

Hence, utility values are encoded to ((prime(ix))
u(ix, Tj )) 

th prime number and multiplied to get primeUtility. 

The procedure is highlighted in Algorithm (2). For T2, 

primeUtility(T2)=5(3).11(3).3(8).7(6) instead of previously 

obtained value of 6175. During database 

reconstruction, it is easier to map the utilities which 

are present as exponents of the corresponding prime 

encoded items. Figure 2 shows transactions encoded 

using this procedure. 

 

Figure 2. UPT for database in Table 2. 

Algorithm 2. Inserting into Utility Prime Tree 

Step 0. Input:Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈ I, 

1≤ k ≤ n and Tj ∈ D) 

Step 1.For transaction Tj∈ D 

Step 2.     Calculate TU(Tj) 

Step 3.     Replace item ix with ixth prime number, prime(ix) 

Step 4.Replace u(ix, Tj) with prime(ix)
u(ix, Tj) 

Step 5.     primeItems(Tj ) ← product of prime encoded items 

Step 6. primeUtility(Tj) ← product of prime encoded item 

utilities 

Step 7. End For 

Step 8.procedure INSERT_TRANSACTION_UPT(root, Tj) 

Step 9.  Create a new child node S with: 

Step 10. S.primeItems ←primeItems(Tj ) 

Step 11.   S.TU ← TU(Tj) 

Step 12. S.primeUtility← primeUtility(Tj) 

Step 13. I froot has child C such that ( 

3 5 13 
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(C.primeItems % primeItems(Tj) = 0 OR (primeItems(Tj) % 

C.primeItems) = 0) 

Step 14. S.parent← C 

Step 15. Else 

Step 16. S.parent ← root 

Step 17. End If 

Step 18. End procedure 
 

UPT compactly stores the database information by 

capturing the information at the transaction level 

instead of creating node for every item in a transaction. 

However, as the number of items and transactions 

increase, the space required to store the product, prime 

Utility (Tj) overwhelms the allocated node space. 

Hence, factorising and subsequent resolution of utilities 

of items is not facilitated. 

3.3. Prime Cantor Function Tree 

In order to resolve the utility corresponding to the items 

in a transaction Tj and satisfy the completeness 

constraint, Cantor Function (CF) that reversibly maps 

the pair of non-negative integers (ix, u(ix,Tj)) onto 

another non-negative integer is explored [11]. For an 

ordered pair (a, b) CF is defined as: 

𝐶𝐹(𝑎, 𝑏) =  
(𝑎 + 𝑏)(𝑎 + 𝑏 + 1)

2
+ 𝑏 

Inverse of CF(a, b) is calculated as follows: 
 

Let CF(a, b)=z 

 Step 1: 𝑤 = ⌊
√8𝑧+1−1

2
⌋ 

 Step 2: 𝑡 =
𝑤2+𝑤

2
 

 Step 3: b=z‒t 

 Step 4: a=w‒b 
 

The details of the different fields in the node of PCFT 

are provided below: 

 PrimeCF- This field stores the product obtained after 

multiplying the prime numbers assigned to CF(ix, 

u(ix,Tj)) for every item ix of a transaction 

 TU- This field stores the Transaction Utility of a 

transaction 

 Parent pointer that points to the parent of the node 

Brief procedure to construct PCFT is provided in 

Algorithm (3). Figure 3 displays the PCFT of Table 1. 

Although the tree is complete and ensures database 

reconstruction, the main drawback is absence of path 

sharing as evident from Figure 3. For example, while T2 

and T3 appear as child of T1 in UPT as items(T2) ⊂ 

items(T1) and items(T3) ⊂ items(T1) as shown in the 

Figure 2, due to the uniqueness in mapping of (ix, u(ix, 

Tj)) through CF prior to prime encoding, the sharing is 

absent in PCFT. With PCFT, if items are purchased in 

similar quantities across two transactions Ti and Tj such 

that either items(Ti) ⊂ items(Tj) or items(Tj) ⊂ items(Ti) 

sharing can be ensured. 

Utility values are used along with items in the 

Cantor Function prior to assigning them with the 

corresponding prime numbers. If an item is present in 

two different transactions, CF maps the item-utility 

pair to a unique number and hence the same item may 

get assigned to different prime numbers if the utility 

values are different. This limits the prefix sharing in 

the PCFT owing to the inherent feature of the CF. The 

major implementation drawback is due to the large 

value obtained to store primeCF(Tj) for every 

transaction. This is bound to increase overwhelmingly 

with growing number of items in the database. 
 

Algorithm 3. Inserting into Prime Cantor Function Tree 

Step 0. Input: Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈ 

I, 1≤ k ≤ n and Tj ∈ D) 

Step 1. For transaction Tj∈ D 

Step 2.     Calculate TU(Tj) 

Step 3.     Calculate CF(ix, u(ix,Tj)) 

Step 4.Replace (ix, u(ix,Tj)) in Tjwith CF(ix, u(ix,Tj))th prime 

number 

Step 5.     prime CF(Tj) ←product of prime encoded items and 

their utilities after applying CF 

Step 6. End For 

Step 7. procedure INSERT_TRANSACTION_PCFT(root, Tj) 

Step 8.Create a new child node S with: 

Step 9.     S.primeCF ←prime CF(Tj ) 

Step 10. S.TU ← TU(Tj) 

Step 11.S.primeUtility← primeUtility(Tj) 

Step 12.I froot has child C such that  

((C. prime CF % prime CF(Tj )) = 0 OR  

(prime CF(Tj ) % C. prime CF) = 0) 

Step 13.        S.parent← C 

Step 14. Else 

Step 15. S.parent ← root 

Step 16. End If 

Step 17. End procedure 

3.4. String based Utility Prime Tree 

This tree is similar to UPT. In order to overcome the 

problem of storing large number that arises from 

computing primeItem(Tj), the prime numbers assigned 

to items and utilities are concatenated by a delimiter. 

As this information is stored in textual format, 

substring comparison is performed while inserting 

transactions into the tree structure to identify the 

transactions containing common set of items. This 

ensures prefix-sharing. Also, it is possible to 

reconstruct the entire database due to the string 

representation of the primeItems and primeUtility. The 

procedure and SUPT for sample database is displayed 

in Algorithm (4) and Figure 4 respectively. 
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Figure 3. PCFT for database in Table 2. 

 

 

 

 

 

 

 

 

 

 

Figure 4. SUPT for database in Table 2.

Algorithm 4. Inserting into String based Utility Prime Tree 

Step 0. Input: Tj={(i1, q1), (i2, q2), (i3, q3),. . . , (ip,qp) }, (ik ∈ 

I, 1≤ k ≤ n and Tj ∈ D) 

Step 1. For transaction Tj∈ D 

Step 2.     Calculate TU(Tj) 

Step 3.     Replace item ix with ixth prime number, prime(ix) 

Step 4.Replace u(ix, Tj) with u(ix, Tj)th prime number 

Step 5.     primeItems(Tj ) ← prime encoded items concatenated 

as string 

Step 6.primeUtility(Tj) ← prime encoded item utilities 

concatenated as string 

Step 7.End For 

Step 8.procedure INSERT_TRANSACTION_SUPT(root, Tj) 

Step 9.  Create a new child node S with: 

Step 10.S.primeItems ←primeItems(Tj ) 

Step 11. S.TU ← TU(Tj) 

Step 12.S.primeUtility← prime Utility(Tj) 

Step 13.I froot has child C such that  

((C. prime Itemsis a substring of prime Items(Tj)) OR (prime 

Items(Tj) is a substring of C. prime Items)) 

Step 14.     S. parent← C 

Step 15.Else 

Step 16.     S. parent ← root 

Step 17.End If 

Step 18. End procedure 

4. Experimental Evaluation 

The source code implementation in Java provided by 

SPMF Data Mining Library was extended to implement 

the proposed tree structures [8]. Experiments were 

conducted on both real and synthetic datasets to 

compare the execution time and memory consumed. 

The characteristics of the datasets used is provided in 

Table 3 [7]. |D| denotes the number of transactions, |I| 

denotes the number of items, T denotes average 

transaction length. Density calculated as T/|I| indicates 

how sparse or dense the dataset is. The dataset 

Foodmart contains real utility values. For the remaining 

datasets, the internal utility values have been 

generated using a uniform distribution in [1, 10], and 

the profit values follow a Gaussian distribution. 

 Datasets are chosen such that different ranges of |D|, 

|I|, T and density are taken up for evaluation. The 

proposed trees are compared to the two popular tree 

structures in the literature namely, IHUP and UP-

Growth trees. For the experiments, a system with 8GB 

RAM, Windows 7 OS with Intel Core i5 processor at 

3.00 GHz was used. 

Table 3. Characteristics of datasets. 

Dataset IHUP UP-Growth 

Chess 76.47 91.56 

Mushroom 64.26 91.38 

Foodmart 72.10 92.91 

Retail 64.76 99.82 

Connect 50.83 99.48 

4.1. Performance Analysis on Real Datasets 

Figure 5 depicts the execution time of the algorithms. 

Across all the datasets, UCT executed faster than the 

remaining algorithms. The percentage improvement 

obtained due to UCT in comparison to IHUP and UP-

Growth trees is recorded in Table 4. Among the 

prime-based trees, UPT performed better, especially 

when the dense datasets were considered. As shown in 

the figure, it executed faster than UP-Growth by 66%, 

36% and 65% on Chess, Mushroom and Connect 

datasets respectively. Also, PCFT performed 48.8% 

faster than UP-Growth on Connect dataset. However, 

its performance was poor on large and sparse datasets 

such as, Food mart and Retail. Owing to the longer 

execution time, PCFT was executed on only 100 and 

500 transactions of these two datasets. The larger 

values obtained after applying CF to (ix, u(ix, Tj)) pair 

increased the prime encoding time that subsequently 
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affected the overall execution time. Although SUPT 

took longer time for construction, it performed 

significantly faster on Food mart, one of the sparse 

datasets where PCFT failed. The low value of T for this 

dataset ensured the presence of common set of items 

across different transactions leading to lesser string 

comparisons during the tree construction. 

Table 4. Percentage improvement in execution time of UCT in 

comparison to IHUP and UP-Growth. 

Dataset |D| |I| T Density (%) 

Chess 3196 75 37 49.33 

Mushroom 8124 119 23 19.32 

Food mart 4141 1559 4.4 0.28 

Retail 88162 16470 10.3 0.06 

Connect 67557 129 43 33.33 

 
Figure 5. Execution time of the algorithms for real datasets. 

Figure 6 denotes the memory consumed by the 

proposed structures in comparison with IHUP and UP-

Growth trees. The get Object Size (Object) method of 

Instrumentation interface implemented and provided in 

size of package was used to calculate the amount of 

memory consumed [26]. Due to PCFT’s longer 

execution time only 100 and 500 transactions of 

Foodmart and Retail was considered. The prime-based 

tree structures clearly consumed significantly lesser 

space in comparison to the remaining trees. The 

transaction level encoding of database information 

ascertains the lower memory consumption. Factor-wise 

reduction in the space consumed by Prime Trees is 

tabulated in Table 5. 

 

Figure 6. Memory consumed by the tree structures for real datasets. 

On an average across Chess dataset, UPT, PCFT, 

and SUPT consume 19.5, 19.5 and 22.1 times lesser 

memory than IHUP and UP-Growth trees. Across 

Mushroom, in the same order the reduction in memory 

was 5.2, 5.2 and 5.8 times. Due to partial database 

considered when running PCFT implementation of 

Foodmart, UPT and SUPT consumed 5.9 and 6.5 

times lesser space. This reduction for the two trees 

was about 12.6 and 13.3 in the case of Retail, another 

sparse dataset. A reduction of about 8.6 and 9.7 times 

was observed when Connect dataset was considered. 

Although PCFT has only two fields, the prefix sharing 

is easier across SUPT than in PCFT. Hence SUPT 

turned out to be memory efficient among the proposed 

trees. 

Table 5. Space reduction (ratio) of prime-based trees. 

Dataset 

UPT PCFT SUPT 

IHUP 
UP-

Growth 
IHUP 

UP- 

Growth 
IHUP 

UP-

Growth 

Chess 19.97 19.16 19.97 19.16 22.57 21.66 

Mushroom 5.21 5.20 5.21 5.20 5.89 5.89 

Foodmart 5.95 5.91 255.40 253.54 6.56 6.51 

Retail 12.64 12.64 2226.0 2226.04 13.31 13.31 

Connect 8.61 8.61 57.01 57.01 9.75 9.75 

4.2. Performance Analysis on Synthetic 

Datasets 

In order to further evaluate the performance of the 

proposed structures, synthetic datasets were generated 

using the SPMF tool. First set of datasets were mostly 

dense and their characteristics are provided in Table 6 

where the parameter Tmax denotes the maximum 

transaction length. 

Table 6. Characteristics of synthetic datasets. 

Dataset |𝑫| |𝑰| Tmax Density(%) 

d01 5000 100 10 5.54 

d02 5000 100 50 25.53 

d03 5000 500 10 1.09 

d04 5000 500 50 5.04 

d05 10000 100 10 5.43 

d06 10000 100 50 25.61 

d07 10000 500 10 1.10 

d08 10000 500 50 5.10 

The execution time of different algorithms is 

compared in Figure 7. As in the case of real datasets, 

UCT clearly outperformed all the algorithms. Table 7 

records the percentage improvement obtained in 

execution time when UCT was compared with IHUP 

and UP-Growthtrees. On an average an improvement 

of 82.82% on IHUP and 52.49% on UP-Growth was 

observed. 
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Figure 7. Execution Time of algorithms on synthetic dense datasets. 

Among the prime-based trees, UPT and SUPT 

showed promising results. Further, on very dense 

datasets like d02 and d06, PCFT executed faster than 

SUPT, although not considerably. However, as the 

datasets became relatively sparse its performance 

degraded, especially in the case of d03 and d07 where 

SUPT and UPT performed significantly better. This 

indicates that PCFT is more sensitive to sparseness. In 

the case of UPT and SUPT the increase in execution 

time with the increase in density for a constant database 

size was significant in contrast to PCFT. Especially in 

the case of d03 and d04 where the change in density 

was around4 units, execution time of PCFT was almost 

the same while there was sharp increase in execution 

time of both UPT and SUPT. This indicates that UPT 

and SUPT are more sensitive to density changes for 

agiven size of the database than PCFT. 

Table 7. Percentage improvement in execution time of UCT on 

synthetic dense datasets. 

Dataset IHUP UP-Growth 

d01 83.24 44.24 

d02 89.83 78.16 

d03 81.96 45.45 

d04 85.59 66.09 

d05 80.34 32.74 

d06 84.42 58.65 

d07 74.08 44.48 

d08 83.14 64.53 

 

Further, the memory consumed by the various 

structures was compared as shown in Figure 8. SUPT 

turned out to be the memory efficient one. For a given 

database size, although the memory taken up by tree 

structures seemed to be mostly independent of the 

changing density, SUPT showed slight variations when 

compared to other prime-based trees. This difference 

was evident with growing database size. Table 8 

records the factor-wise memory consumption of Prime 

Trees in comparison to IHUP and UP-Growth trees. 

Comparison on real and synthetic dense datasets 

indicated that UCT is more time efficient whereas 

SUPT is more memory efficient. 

 

Figure 8. Memory consumption by the trees on synthetic dense 

datasets. 

Table 8. Reduction in memory consumption across synthetic dense 
datasets. 

Dataset 
UPT PCFT SUPT 

IHUP UP-Growth IHUP UP-Growth IHUP UP-Growth 

d01 5.89 5.89 5.90 5.90 5.92 5.92 

d02 37.50 37.50 37.78 37.78 40.82 40.82 

d03 7.08 7.08 7.01 7.01 7.24 7.25 

d04 39.95 39.96 40.44 40.44 43.72 43.72 

d05 5.56 5.56 0.562 0.562 5.55 5.55 

d06 37.77 37.78 37.06 37.06 40.11 40.12 

d07 6.95 6.95 6.77 6.77 6.89 6.90 

d08 39.94 39.95 40.35 40.35 44.99 44.99 

 

In order to further explore the characteristics, 

experiments were conducted to compare these two 

structures on sparse datasets. The characteristics of the 

datasets is described in Table 9. Figures 9 and 10 

depict the execution time and space consumed 

respectively. UCT performed graciously even with 

sparsest of the datasets. However, SUPT clearly 

outperformed UCT in terms of memory requirements. 

Table 9. Characteristics of synthetic sparse datasets. 

Dataset |𝑫| |𝑰| Tmax Density(%) 

s01 10000 10000 10 0.055 

s02 10000 10000 50 0.257 

s03 10000 50000 10 0.017 

s04 10000 50000 50 0.051 

s05 100000 10000 10 0.055 

s06 100000 10000 50 0.255 

s07 100000 50000 10 0.011 

s08 100000 50000 50 0.051 

4.3. Inferences 

In the previous section, the proposed tree structures 

were compared with IHUP and UP Growth which are 

item-based prefix trees. As IHUP involves reordering 

the tree after N transactions and UP-Growth involves 

two database scans for complete tree construction, 

such overheads were eliminated in UCT leading to 

faster execution. In terms of memory requirements, 

the prime trees were more efficient due to the 

transaction level encoding of information. Among 

these, SUPT was more efficient across real and 

synthetic dataset sowing to better prefix-sharing. As 
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the datasets became sparser, PCFT performed poorly in 

terms of execution time. However, for database of 

shorter transactions, PCFT can be selected as it 

displayed faster execution. Overall, UCT and SUPT are 

promising choices for tree constructions. 
 

 
Figure 9. Execution time of UCT and SUPT on synthetic sparse 

datasets. 

 
Figure 10. Space consumed by UCT and SUPT on synthetic sparse 

datasets. 

5. Conclusions 

With ever increasing database sizes the need for 

accommodating the essential utility information from is 

of prime importance. In this regard, the current work 

proposes tree structures that are constructed via a single 

database scan without neglecting any items. Especially 

the proposed prime-based tree structures namely, 

Utility Prime Tree, Prime Cantor Function Tree and 

String based Prime Utility Tree have been promising 

ways of storing the database information in a compact 

manner in the memory. Apart from this, the proposed 

Utility Count Tree is not only time efficient on real 

datasets but also on large sparse and dense databases. 

This work can be extended further to mine high utility 

itemsets from very large databases in a distributed 

environment. 
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