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Abstract: Automatic facial expression recognition is a challenging problem in computer vision, and has gained significant 

importance in the applications of human-computer interactions. The vital component of any successful expression recognition 

system is an effective facial representation from face images. In this paper, we have derived an appearance-based feature 

descriptor, the Local Directional Pattern Variance (LDPv), which characterizes both the texture and contrast information of 

facial components. The LDPv descriptor is a collection of Local Directional Pattern (LDP) codes weighted by their 

corresponding variances. The feature dimension is then reduced by extracting the most discriminative elements of the 

representation with Principal Component Analysis (PCA). The recognition performance based on our LDPv descriptor has 

been evaluated using Cohn-Kanade expression database with a Support Vector Machine (SVM) classifier. The discriminative 

strength of LDPv representation is also assessed over a useful range of low resolution images. Experimental results with 

prototypic expressions show that the LDPv descriptor has achieved a higher recognition rate, as compared to other existing 

appearance-based feature descriptors.  
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1. Introduction 

Facial expression is one of the most powerful, natural, 

and immediate means for human beings to 

communicate their emotions and intentions [24, 26]. 

Automatic facial expression recognition has attracted 

much attention from behavioral scientists since the 

work of Darwin in 1872 and has gained significant 

importance in applications of human-computer 

interactions [25]. Although much work has been done 

with automatic facial expression analysis, recognition 

with high accuracy remains difficult due to the 

complexity and variety of facial expressions [34]. A 

survey of existing research on facial expression 

analysis can be found in [11, 22]. 

Extracting an effective facial representation from 

human face images is a vital component of any 

successful facial expression recognition system. The 

derived representation should retain essential 

information possessing high discrimination power and 

stability which minimizes within-class variations of 

expressions whilst maximizes between-class variations 

[24]. Classification performance is heavily influenced 

by the information contained in the expression 

representations. Two types of facial feature extraction 

approaches are commonly found: the geometric 

feature-based system and the appearance-based system 

[27]. Geometric feature vectors represent the shapes 

and locations of facial components by encoding the 

face geometry from the position, distance, angle, and 

other geometric relationships between these 

components. Zhang et al. [33] represented facial 

images using the geometric positions of 34 fiducial 

points as facial features. A widely used facial 

description is the facial action coding system, where 

facial expressions are decomposed into one or more 

Action Units (AUs) [10]. Valstar et al. [31, 32] 

detected AUs by tracking several fiducial points on 

face and urged that geometric approaches have similar 

or better performance than appearance-based 

approaches in facial expression analysis. However, 

geometric feature-based methods require accurate and 

reliable facial component detection which is difficult to 

accommodate in many situations [25]. 

Recent psychological research suggests that the 

whole spatial relationship of the facial features can be 

an additional source of information in the perception of 

facial emotions [20, 30]. Therefore, in appearance-

based methods a single image filter or filter bank is 

applied to the whole face or some specific region of the 

face to extract appearance changes. Among the holistic 

methods, Principal Component Analysis (PCA) has 

been widely applied to facial images to extract features 

for recognition purposes [29]. PCA is also used for 

dimensionality reduction in feature space. Lately, 

Independent Component Analysis (ICA) [5, 7], 

Enhanced ICA (EICA) [30], and Zernike Moments 

(ZM) [18, 23] have been utilized to extract local 
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features and facial changes. Donato et al. [9] 

performed a comprehensive analysis of different 

techniques, including PCA, ICA, Local Feature 

Analysis (LFA), Gabor-wavelet and local Principal 

Components (PCs), to represent face images for facial 

action recognition. The best performance was achieved 

by ICA and Gabor-wavelet. Since then Gabor-wavelet 

representations have been widely adopted in face 

image analysis by other methods. However, 

convoluting a facial image with multiple Gabor filters 

of many scales and orientations makes the Gabor 

representation time and memory intensive. Lajevardi 

and Hussain [17], have utilized log-Gabor filters to 

overcome some limitations of Gabor-wavelet 

representations but the dimensionality of resulting 

feature vector is still high. 

Recently, Local Binary Pattern (LBP) [21] and its 

variants [34] have been introduced as a feature 

descriptor for facial expression representation [24, 25]. 

Originally, LBP was introduced for texture analysis. A 

comprehensive study of LBP in facial expression 

recognition can be found in [25]. Although LBP is 

computationally efficient and shows robustness to 

monotonic illumination change, it is sensitive to non-

monotonic illumination variation and also shows poor 

performance in the presence of random noise [14, 35]. 

A more robust facial descriptor, named as Local 

Directional Pattern (LDP), was devised by Jabid et al. 

[14], where the LDP representation of face 

demonstrated better recognition performance than 

LBP. The LDP feature overcomes the limitations of 

LBP features since LDP is derived from the edge 

responses which are less sensitive to illumination 

changes and noises. 

In this work, we propose the LDP variance (LDPv), 

which characterizes both spatial structure LDP and 

contrast variance of local texture information for more 

accurate facial expression recognition performance. 

Figure 1 shows an overall flow of the expression 

recognition system based on our LDPv descriptor 

coupled with PCA and SVM. We empirically study the 

facial representation based on LDPv for human 

expression recognition. The performance of LDv 

representation is evaluated with two machine learning 

methods: Template matching and Support Vector 

Machines (SVM) with different kernels. Extensive 

results from the standard expression database Cohn-

Kanade facial expression database [15], demonstrate 

that LDPv feature is more robust in extracting facial 

features, and have a superior recognition rate, as 

compared to LBP, Gabor-wavelet features, and other 

appearance-based methods. LDPv descriptor also 

performs stably and robustly over a useful range of low 

resolution face images. 

The rest of the paper is organized as follows: the 

proposed LDPv feature is described in section 2.  The 

dimensionality reduction of LDPv and the machine 

learning techniques used for expression classification 

are explained in sections 3 and 4, respectively. Section 

5 presents the experimental setup used for evaluating 

the effectiveness of our proposed feature 

representation, and section 6 lists the expression 

recognition performances of LDPv compared with 

existing representations. Finally, section 7 concludes 

the paper. 

 

 

Figure 1. Overview of the facial expression recognition system 

based on LDPv representation.   

 

2. LDP Variance (LDPv) Descriptor 

In this section, we first review the LDP code, and then, 

the descriptor based on LDPv is explained. 

 

2.1. LDP 

LDP is a gray-scale texture pattern which characterizes 

the spatial structure of a local image texture. A LDP 

operator computes the edge response values in all eight 

directions at each pixel position and generates a code 

from the relative strength magnitude. Since the edge 

responses are more illumination and noise insensitive 

than intensity values, the resultant LDP feature 

describes the local primitives including different types 

of curves, corners, and junctions, more stably and 

retains more information. Given a central pixel in the 

image, the eight directional edge response values 

{ }, 0,1,...,7
i

m i =  are computed by Kirsch masks 
iM  in 

eight different orientations centered on its position. 

The masks are shown in Figure 2. 

 

 

Figure 2. Kirsch edge masks in all eight directions. 

 

 

a) Eight directional edge 
     response positions. 

 

b) LDP binary bit positions. 
 

Figure 3. Mask response and LDP bit positions. 
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Figure 4. LDP code with k = 3. 

 

The response values are not equally important in all 

directions. The presence of a corner or edge causes 

high response values in some directions. Therefore, we 

are interested in the k most prominent directions to 

generate the LDP. Here, the top k directional bit 

responses 
ib  are set to 1. The remaining (8-k) bits of 

the 8-bit LDP pattern are set to 0. Finally, the LDP 

code is derived using equation 1. Figure 3 shows the 

mask response and LDP bit positions, and Figure 4 

shows an exemplary LDP code with k=3. 
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Where, mk 
is the k-th most significant directional 

response. Since edge responses are more stable than 

intensity values, LDP pattern provides the same pattern 

value even presence of noise and non-monotonic 

illumination changes [14]. After computing the LDP 

code for each pixel ( , )r c , the input image I of size 

M N×  is represented by a LDP histogram H using 

equation 3. The resultant histogram H is the LDP 

descriptor of that image. 
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Where, τ is the LDP code value. For a particular value 

of k, the histogram H has ( )8 8! ! (8 )!kC k k= × −  number 

of bins. In other words, the LDP descriptor is a 8

kC -

element feature vector. 

 

 

Figure 5. An expression image is divided into small regions from 

which LDPv histograms are extracted and concatenated into a 

single LDPv descriptor.   

2.2. LDPv Descriptor 

Generally, texture can be well represented when 

characterized by a spatial structure along with its 

contrast [21]. The LDP feature only contains the 

distribution of local structures. A low contrast structure 

contributes equally with a high contrast one in the LDP 

histogram. However, texture with significant contrast 

should impact more since human eyes are more 

sensitive to high contrast regions. Hence, we account 

for the contrast information within the feature 

descriptor. The variance of a structure is related to the 

texture. Generally, high frequency texture regions have 

higher variances and contribute more to the 

discrimination of texture images [19]. Therefore, the 

variance σ  is introduced as an adaptive weight to 

adjust the contribution of the LDP code in the 

histogram generation. The proposed LDPv   descriptor 

is computed as: 
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Where, m  is the average of all directional responses 

{ }im calculated for a position ( , )r c . When LDP and 

variance σ are treated as the two orthogonal axes in a 
coordinate system, the LDPv can be regarded as the 

integral projection [6] along the σ axis. LDPv 

generated from the whole image loses some location 

information, but for face images, some degree of 

location and spatial relationship well represent the 

image content [1, 2, 12]. Hence, the basic histogram is 

modified to an extended histogram, where the image is 

divided into g number of regions R0, R1, …, Rg-1 shown 

in Figure 5, and the LDPvi  histogram is built for each 

region Ri 
using equation 8. Finally, concatenating all of 

the basic LDPvi distributions with equation 9 yields the 

descriptor vector of size p(=g×n), where n is the size 

of each basic LDPv histogram. 

∑ ∑ ∈=
= =1r 1c

ik

i
R)c,r(,where)),c,r(LDP(w)(LDPv ττ              (8)  

          0 1 1
[ , , , ]

g
LDPv LDPv LDPv LDPv

−= …          (9) 

This extended feature vector represents both texture 

and contrast information with some extent of spatial 

relationship. Two parameters can be adjusted for better 

feature extraction: 

1. The prominent directions to encode in the LDP 

pattern. 

2. The number of regions. The optimal parameters are 

selected from a good trade-off between recognition 

performance with feature representation and feature-

(3)
 

(1)
 

(2)
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(10)

(12)
 

(13)

 

vector length. A detailed discussion of these two 

parameter settings can be found in section 6.2. 

 

3. Feature Dimensionality Reduction Using 

PCA 

A feature vector should contain essential information 

to make the classification task easier. With an 

inadequate number of features, a good classifier may 

even fail. On the other hand, too many features 

increase time and space complexities with no apparent 

advantage in the classification process. Therefore, 

Dimensionality Reduction (DR) techniques are 

proposed as a preprocessing step to address the curse 

of dimensionality [16]. DR techniques try to find a 

suitable low-dimensional representation of original 

data. Mathematically, the DR problem can be viewed 

as: given a p-dimensional random vector Y=(y1, y2, …, 

yp), the objective is to find a representation in the lower 

dimension Z=(z1, z2, …, zq) where, q<p which 

preserves the content of the original data as much as 

possible. DR functions can be broadly clustered into 

two groups: 

1. Functions which transform the existing features to a 

new reduced set of features.  

2. Functions those select a subset of existing features. 

In this paper, we utilize a DR function, PCA, which 

transforms a number of possibly correlated variables 

into a smaller number of uncorrelated variables called 

Principal Components (PCs). PCA falls into the first 

category of DR techniques which successfully 

uncovers the latent structures in the datasets and shows 

optimality in the case of dimension reduction of the 

input feature space. 

The first step is to compute the eigen-vectors or PCs 

from the covariance data matrix Q. Then, each input 

feature is approximated by a linear combination of the 

top-most few eigen-vectors. These weight-coefficients 

form a new representation of the feature-vector. The 

covariance matrix Q and its PCs are computed as 

follows: 

          
( )

1

1 ˆ ˆ
L

T

i i

i

Q YY
L =

= ∑
 

 
                                  

T
E QE = Λ                                  (11) 

Where, Ŷ  is the shifted input feature with the empirical 

mean subtracted from the original feature vector Y, L is 

the total number of feature vectors, E contains the 

orthonormal eigen-vectors and Λ the diagonal matrix 

of eigen-values. The matrix E represents the eigen-

space defined by all the eigen-vectors, and each eigen-

value defines its corresponding axis of variance. 

Usually, some eigen-values are close to zero and can 

be discarded as they do not contain much information. 

The selected q eigen-vectors associated with the 

topmost q eigen-values defines the newly reduced 

subspace. The LDPv feature vectors Y are projected 

onto the new subspace defined by the q eigen-vectors 

found using PCA. Figure 6 illustrates the top 400 

eigen-values from all expression images. It can be seen 

that few dimensions defined by eigen-values contain a 

significant amount of discriminative information. 

Thus, the principal component representation of facial 

expression image can be computed from:  

              
ˆT

i q iZ E Y=
    

Where, Zi is the PCA projection of the original feature 

fector Yi. The matrix Eq 
contains the leading q eigen-

vectors of Q. Therefore, we obtain a q-element feature 

vector from the original p-element LDPv 

representation, where q<p.  
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Figure 6. Top 400 eigen-values associated with their eigen-vectors. 

 

4. Facial Expression Recognition Using 

LDPv 

Different techniques have been proposed to classify 

facial expressions. A comparative analysis of four 

machine learning technique, namely Template 

matching, Linear Discriminant Analysis, Linear 

programming, and SVM, are examined in [25], and 

SVM performed the best. However, template matching 

is commonly adopted for its simplicity. In this section, 

both template matching and SVM are explained for 

expression classification based on LDPv features. 

  

4.1. Template Matching (TM) 

A template for each class of expression images is 

formed to model that particular expression. During the 

training phase, the histograms of expression images in 

a given class are averaged to generate the template 

model M. For recognition, a dissimilarity measure is 

evaluated against each template and the class with the 

smallest dissimilarity value announces the match for 

the test expression. Chi square statistics (x
2
) is usually 

used as the dissimilarity measure as given below: 

        

( )22
( ) ( )

( ) ( )

S M

S Mτ

τ τ
χ

τ τ

−
=

+∑   

Where, S is the test sample and M is the template 

LDPv histogram feature.  
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4.2. Support Vector Machine (SVM) 

SVM is a well founded statistical learning theory that 

has been successfully applied in various classification 

tasks in computer vision. SVM performs an implicit 

mapping of data into a higher dimensional feature 

space, and finds a linear separating hyper-plane with 

maximal margin to separate the data. Given a training 

set of labeled examples {( , ), 1, 2, ..., }i iT s l i L= = where 
q

is ∈ℝ , and { }1,1il ∈ − , a new test data x  is classified 

by: 

1

( ) sign ( , )
L

i i i

i

f x l K x x bα
=

 
= + 

 
∑   

where 
iα  are Lagrange multipliers of dual optimization 

problem,  b is a bias or threshold parameter, and K is a 

kernel function. The training sample 
ix with 0iα > is 

called the support vectors, and the separating hyper-

plane maximizes the margin with respect to these 

support vectors. Given a non-linear mapping function 

Φ  that transforms the input data to the higher 

dimensional feature space, kernels have the form 

)x(,x()x,x(K jiji ΦΦ= . Of the various kernels found 

in the literature, linear, polynomial and Radial Basis 

Function (RBF) kernels are the most frequently used. 

SVM makes binary decisions and multi-class 

classification can be achieved by adopting the one-

against-rest or several two-class (anger-happiness, 

anger-fear, fear-sadness, etc.,) problems. In our work 

we adopt the one-against-rest technique, which trains a 

binary classifier for each expression to discriminate 

one expression from all others, and outputs the class 

with the largest output. We carried out grid-search on 

the hyper-parameters in a cross-validation approach for 

selecting the parameters, as suggested in [13]. The 

parameter setting producing the best cross-validation 

accuracy was picked. 

 

5. Experimental Setup 

Facial expressions can be described at different levels 

[27].  Most facial expression recognition systems 

attempt to recognize a set of prototypic emotional 

expressions including anger, disgust, fear, joy, sadness, 

and surprise [25]. In this work, we also try to recognize 

the basic six prototypic expressions. Including the 

neutral expression, the 6-class prototypic expression 

set is extended to 7-class expression problem. 

The performance of the proposed concept is 

evaluated with the well-known image dataset from the 

Kanade et al. [15] facial expression database. This 

database consists of 100 university students from 18 to 

30 years in age, of which 65% were female, 15% were 

African-American, and 3% were Asian or Latino. 

Subjects were instructed to perform a series of 23 

facial displays, six of which were based on 

descriptions of prototypic emotions (i.e., anger, 

disgust, fear, joy, sadness, and surprise). Image 

sequences from neutral to target display were digitized 

into 640×490 pixel arrays of gray-scale frames. In our 

setup, we selected 408 image sequences, each of which 

are labeled as one of the six basic emotions. These 

sequences come from 96 subjects, with 1-6 emotions 

per subject. For 6-class prototypic expression 

recognition, three peak frames were used from each 

sequence that resulted into 1224 number of expression 

images. In order to build the neutral expression set, the 

first frame from all 408 sequences is taken to make the 

7-class expression dataset 1632 images. Facial images 

of size 150×110 pixels were cropped from the original 

image using the positions of two eyes. Figure 7 shows 

an example of a cropped facial image. No further 

alignment of facial features such as alignment of 

mouth [33] is performed in our algorithm. Since LDP 

is robust in illumination change, no attempt is made to 

remove illumination changes. Following Shan et al. 

[25], we adopted a cross validation test to evaluate the 

recognition results. In our experiment, we carried out a 

7-fold cross-validation scheme where the dataset is 

randomly partitioned into seven groups. Six groups 

were used as training dataset to train the classifiers or 

model their template, while the remaining group was 

used as testing dataset. The above process is repeated 

seven times for each group, and the average 

recognition rate is calculated. 

 

 

Figure 7. The original face and cropped region as an expression 

image.   

 

6. Results and Discussion 

In this section, we first show the generalization 

performance of LDPv descriptor with the optimal 

parameter settings. Here, each 150×110 pixel facial 

image is divided into g=42(=7×6) regions and the 

value of k is set to 3. To support these parameter 

values, we also provide an empirical analysis in 

determining the optimal parameter values. Next, the 

effects and benefits of DR are also demonstrated with 

PCA. Finally, we present the achieved expression 

recognition rate at low resolution images. 
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Table 1. Recognition performance (%) with template matching. 

Feature Descriptor 6-Class Recognition 7-Class Recognition 

LBP [21, 25] 84.5 ± 5.2 79.1 ± 4.6 

LDP [14] 85.7 ± 2.5 81.9 ± 2.8 

LDPv 87.2 ± 4.1 83.6 ± 5.8 

 

6.1. Generalization Performance 

Basic template matching with LDPv achieved a 

recognition rate of 87.2% and 83.6% for the 6-class 

and 7-class expression recognition problems. In Table 

1, the comparative results are provided and contrasted 

with LBP and LDP features. Although, both LBP and 

LDP based descriptors previously performed better 

than the Geometric feature 73.2% with Tree-

Augmented Naïve Bayes (TAN) classifier [8], the 

proposed LDPv shows the best recognition rate. The 

confusion matrix for the 6-class and 7-class expression 

recognition with TM is given in Tables 2 and 3, 

respectively. It is observed that with the inclusion of 

Neutral expression in the 7-class recognition problem, 

the accuracy of other six expressions decreases as more 

facial expression samples are confused as Neutral 

expression. 

We preferred to use SVM with different kernels to 

classify the facial expressions. The comparative 

generalization performances achieved with SVM based 

on different features are shown in Tables 4 and 5. With 

the SVM (RBF kernel) classifier, our proposed LDPv 

representation achieved a recognition rate of 96.7% 

and 93.1% for the 6-class and 7-class recognition 

problems. The improvement in recognition rate with 

LDPv was due its extended capabilities in encoding 

both the spatial structures and contrast of facial 

components.  It is observed that, LDPv representation 

has the same feature dimensionality as LDP or LBP 

representation but performs more stably and robustly.  

Furthermore, to show the discriminative strength of 

different representations, the generalized performances 

of the proposed LDPv feature and four existing 

approaches are listed in Table 6. 
 

Table 2. Confusion matrix of 6-class expression recognition using 
LDPv and TM. 

 Anger 

(%) 

Disgust 

(%) 

Fear 

(%) 

Joy 

(%) 

Sad 

(%) 

Surprise 

(%) 

Anger 81.2 8.7 0.0 0.5 3.4 6.3 

Disgust 10.6 84.1 1.5 1.5 2.3 0.0 

Fear 12.3 3.6 67.2 6.7 5.6 4.6 

Joy 4.2 4.2 1.9 87.5 0.0 2.3 

Sad 25.3 0.5 1.1 0.0 68.3 4.8 

Surprise 8.3 0.0 3.8 0.0 1.3 86.7 

 

 

 

 

 

 

Table 3. Confusion matrix of 7-class expression recognition using 
LDPv and TM. 

 Anger 

(%) 

Disgust 

(%) 

Fear 

(%) 

Joy 

(%) 

Sad 

(%) 

Surprise 

(%) 

Neutral 

(%) 

Anger 70.0 8.7 0.0 0.8 0.8 5.5 14.3 

Disgust 3.8 82.2 1.3 0.6 2.2 0.0 9.8 

Fear 9.7 3.4 66.9 6.3 2.9 4.0 6.9 

Joy 2.4 1.0 1.7 85.1 0.0 2.7 7.1 

Sad 10.0 0.4 1.7 0.0 65.2 3.3 19.5 

Surprise 2.0 0.0 1.4 4.0 0.7 84.8 6.1 

Neutral 12.2 0.0 2.0 0.5 0.5 4.0 80.7 

 

Table 4. 6-Class expression recognition: SVM with different 
kernels. 

 Kernels  

Feature Descriptor Liner  

(%) 

Polynomial 

(%) 

RBF  

(%) 

Gabor feature [4] 89.4 ± 3.0 89.4 ± 3.0 89.8 ± 3.1 

LBP [21, 25] 91.5 ± 3.1 91.5 ± 3.1 92.6 ± 2.9 

LDP [14] 92.8 ± 2.3 92.8 ± 2.3 94.5 ± 1.8 

LDPv  95.2 ± 1.2 95.2 ± 1.2 96.7 ± 0.9 

 

Table 5. 7-Class expression recognition: SVM with different 
kernels. 

 Kernels 

Feature Descriptor Liner (%) Polynomial (%) RBF (%) 

Gabor feature [4] 86.6 ± 4.1 86.6 ± 4.1 86.8 ± 3.6 

LBP [21, 25] 88.1 ± 3.8 88.1 ± 3.8 88.9 ± 3.5 

LDP [14] 89.8 ± 1.9 89.8 ± 1.9 91.3 ± 1.7 

LDPv 92.5 ± 1.8 92.5 ± 1.8 93.1 ± 1.6 

 

Table 6. Recognition rate of different methods for the 6-class 
expression recognition problem. 

Feature Descriptor Recognition Rate (%) 

ICA [30] 60.4 
EICA [30] 65.8 

Zernike Moment (10th order) [18] 73.2 

log-Gabor feature [17] 91.8 

LDPv 96.7 

 

6.2. Optimal LDPv Parameter Value 

Determination 

In order to determine the optimal values of the two 

LDPv parameters, we first fix the number of regions g, 

and find the value of k which gives the best recognition 

performance. Next, with the determined value of k, we 

search for the optimal value of g. For a particular value 

of k, the LDP produces 8

k
C  number of possible codes. 

The number of possible codes decides the number of 

bins in LDPv. Due to commutative property, k=1 gives 

the same number of bins as k=7, i.e., 8 8

1 7
C C= . 

Similarly, 8 8

2 6
C C= and

 
8 8

3 5
C C= . Therefore, the 

parameter k can take any value from {1, 2, 3, 4}. Table 

7 shows the generalized performance for different k 

values with the facial images divided into 42 (7×6) 

regions. The best recognition rate, with respect to the 

dimension of the LDPv feature, is achieved when k=3. 

With k=4, the LDPv descriptor’s dimension 2940 is 

higher than that 2352 with k=3, but the recognition rate 
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does not improve much. This supports the fact that 

larger descriptor does not always contain more 

discriminative information, sometimes even degrades 

the classification task. 
 

Table 7. Recognition performance for different values of k. 

 6-Class Expression 

(%) 

7-Class Expression 

(%) 

Vector Length of 

LDPv Feature 

k = 1 95.0 91.2 336 

k = 2 95.9 91.8 1176 

k = 3 96.7 93.1 2352 

k = 4 96.7 92.5 2940 

 

Now, we would like to determine the optimal 

number of regions on the facial images. The commonly 

used numbers of regions are 3×3, 5×5, 7×7, 7×6, 9×8 

etcetera. In our experiment, we evaluated four cases: 

3×3, 5×5, 7×6, 9×8. Table 8 lists the effects of 

different number of regions on the recognition 

performance. With small number of regions, the 

expression recognition rate is low (below 83%). As we 

increase the number of regions, the recognition 

performance starts to increase as the descriptor feature 

starts to incorporate more local and spatial relationship 

information. But at a certain point, too many regions 

incorporated unnecessary local information that 

degraded performance. From our observation, 

7 6× number of regions gives a good trade-off between 

recognition performance and feature vector length. 

Therefore, we concluded that k=3 and g= 7 6× are the 

optimal parameter values in the proposed LDPv 

descriptor for representing facial expression images. 
 
Table 8. Recognition performance for different number of regions. 

 6-Class Expression 

(%) 

7-Class Expression 

(%) 

Vector Length of 

LDPv Feature 

g = 3 3×  83.1 80.3 504 

g = 5 5×  95.6 90.4 1400 

g = 7 6×  96.7 93.1 2352 

g = 9 8×  96.2 93.1 4032 

 

6.3. Effect of Dimensionality Reduction 

All LDPv facial representations are projected onto the 

sub-space for dimension reduction defined by the 

significant principal components from PCA. The 

dimension of the sub-space determines the new feature 

vector’s dimension. As discussed before, only those 

dimensions which contain the most information are 

desired and unnecessary elements should be discarded. 

In this section, the optimal number of PCs is 

determined and the new feature space is found from 

those PCs. Figure 8 shows the recognition rate for 

different number of PCs varying from 60-260. With 

240 PCs, the projected features achieved a recognition 

performance of 96.7% and 93.1% for 6-class and 7-

class facial expression recognition, respectively. With 

more number of transformed features, the recognition 

rate shows a nearly constant performance. Therefore, 

for our expression recognition system, we opted to 

choose the topmost q=240 element representation 

instead of the original p=2352 dimensional feature 

vector, and this 240-element feature descriptor still 

provides the same recognition rate as the original 

descriptor. 

 

 

Figure 8. Recognition rate of prototypic facial expressions for 

various numbers of PCs in eigen-space.  

 

Table 9. Confusion matrix of 6-class expression using LDPv+PCA 
and SVM (RBF). 

 Anger 

(%) 

Disgust 

(%) 

Fear 

(%) 

Joy 

(%) 

Sad 

(%) 

Surprise 

(%) 

Anger 93.8 2.5 0.5 0.0 2.8 0.5 

Disgust 0.0 97.2 2.8 0.0 0.0 0.0 

Fear 1.0 0.0 96.5 2.0 0.0 0.5 

Joy 0.0 0.5 0.5 98.0 1.0 0.0 

Sad 1.6 0.0 0.0 0.0 97.5 1.0 

Surprise 0.0 0.0 2.0 0.0 0.0 98.0 

 

Table 10. Confusion matrix of 7-class expression using 

LDPv+PCA and SVM (RBF). 

 Anger 

(%) 

Disgust 

(%) 

Fear 

(%) 

Joy 

(%) 

Sad 

(%) 

Surprise 

(%) 

Neutral 

(%) 

Anger 79.4 0.5 0.5 0.0 2.3 0.9 16.5 

Disgust 2.2 92.8 0.7 0.0 0.0 0.0 4.4 

Fear 1.5 0.0 93.1 0.0 0.0 0.5 4.9 

Joy 0.0 0.0 0.4 99.6 0.0 0.0 0.0 

Sad 1.6 0.5 0.0 0.0 92.0 0.0 5.9 

Surprise 0.8 0.0 0.0 0.0 0.0 98.7 0.4 

Neutral 6.0 0.5 0.5 0.0 2.1 0.5 90.3 

  

Tables 9 and 10 list the confusion matrix for 6-class 

and 7-class expression recognition, respectively, using 

LDPv with PCA and SVM classifier. Compared to the 

recognition results for template matching in Tables 2 

and 3, the recognition performance has increased for 

every expression. For the 6-class problem, all 

expressions have a good recognition rate (above 93%). 

In case of 7-class problem, it is observed that Disgust, 

Fear, Joy, Sad, Surprise, and Neutral can be recognized 

with a high accuracy (90-99%). However, the 

recognition rate for Anger expression is slightly below 

80%. 
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6.4. Evaluation at Different Resolution 

In environments like smart meeting, visual 

surveillance, old-home monitoring, only low resolution 

video input is available [28]. Deriving action units 

from these facial images are critical problems. In this 

section, we explore the recognition performance on 

low resolution images with LDPv descriptor. Four 

different resolutions (150×110, 75×55, 48×36, 37×27) 

of face images based on the Cohn-Kanade dataset were 

studied. The low resolution images were formed by 

down-sampling the original images. All face images 

were divided into 7 6×  number of regions for building 

the LDPv descriptor. To compare with the methods 

based on LBP and Gabor features, we conducted 

similar experiments on the 6-class prototypic 

expression recognition using a SVM with RBF kernel. 

Table 11 lists the recognition results with LBP, Gabor 

and the proposed LDPv feature. Both LBP and LDPv 

based features performed better than the Gabor feature, 

but have a lower feature dimension. The proposed 

LDPv based facial descriptor showed improved 

recognition performance, as compared to existing 

appearance-based methods. We also note that a 

dimension reduction with PCA reduces the dimension 

of the LDPv descriptor from O(10^3) to O(10^2) with 

little effect on the recognition performance but requires 

less computational resources.  

When using low resolution images, it is difficult to 

extract geometric feature, therefore, appearance based 

methods appear to be a good alternative. Our analysis 

with LDPv feature demonstrates that the proposed 

descriptor feature performs robustly and stably over a 

range of expressions, even for low resolution facial 

images. The superiority of encoding the directional 

response of facial components over encoding the 

intensity values during face detection and recognition 

is also reported in [14]. 
 

Table 11. Recognition performance (%) in low resolution images. 

 150 110×  75 55×  48 36×  37 27×  

Feature 

    
Gabor  [4] 89.8 ± 3.1 89.2 ± 3.0 86.4 ± 3.3 83.0 ± 4.3 

LBP[21, 25] 92.6 ± 2.9 89.9 ± 3.1 87.3 ± 3.4 84.3 ± 4.1 

LDPv 96.7 ± 0.9 95.6 ± 1.7 93.6 ± 2.0 90.3 ± 2.2 

LDPv+PCA 96.7 ± 1.7 95.2 ± 1.6 93.1 ± 2.2 90.6 ± 2.7 

 

7. Conclusions 

In this paper, we have presented a facial expression 

recognition system based on the proposed LDPv 

representation, which encodes the spatial structure and 

contrast information of facial expressions. Extensive 

experiments illustrate that the LDPv features are 

effective and efficient for expression recognition.   The 

discriminative power of the LDPv descriptor mainly 

lies in the integration of local edge response pattern 

and contrast information that makes it robust and 

insensitive to noise and non-monotonous illumination 

changes. Furthermore, with DR functions, like PCA, 

the newly transformed LDPv features also maintain a 

high recognition rate with lower computational cost. 

Once trained, our system can be used for human-

computer interaction by facial expressions. 

Psychological experiments by Bassili [3] have 

suggested that facial expressions can be recognized 

more accurately from sequence images than from a 

single image. In the future, we plan to explore the 

sequence images and incorporate temporal information 

into the LDPv descriptor. 
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