The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012 133

Communication Overhead in Non-Contiguous
Processor Allocation Policies for 3D Mesh-
Connected Multicomputers

Raed Almomani and Ismail Ababneh
Department of Computer Science, Al al-Bayt University, Jordan

Abstract: Various contiguous and non-contiguous processor allocation policies have been proposed for two-dimensional
mesh-connected multicomputers. Contiguous allocation suffers from high processor fragmentation because it requires that a
parallel job be allocated a single contiguous processor subset of the exact shape and size requested. In non-contiguous
allocation, a job may be allocated multiple dispersed processor subsets. This can reduce processor fragmentation, however it
may increase the communication overhead because inter-processor distances can be longer and messages from different jobs
can contend for communication resources. The extra communication overhead depends on how allocation requests are
partitioned and assigned processors. In this paper, we investigate non-contiguous allocation for three-dimensional meshes. A
greedy policy where partitioning is based on the processors available is proposed and compared, using simulation, to
contiguous first-fit allocation, and to non-contiguous schemes adapted from previous two-dimensional schemes. In the detailed
flit-level simulator, developed for this research, several common communication patterns are considered. The results show
that non-contiguous allocation is expected to improve system performance in three-dimensional mesh-connected
multicomputers substantially.

Keywords: Three-dimensional mesh multicomputers, non-contiguous processor allocation, processor fragmentation, external
message contention.

Received April 23, 2009, accepted March 9, 2010

1. Introduction allocated to a job because they are not contiguous or
they do not include a submesh that has the same shape
as that requested, although their number is sufficient
to satisfy the job's allocation request.

The use of wormhole routing has lead researchers
to investigate non-contiguousallocation in 2D mesh-
connected multicomputers with the goal of reducing
external processor fragmentation [2, 7, 11, 24]. An
advantage of wormhole routing over earlier flow
control schemes, mainly store-and-forward, is that
message latency is not as sensitive to the distance
between the source and destination. A message is
subdivided into small parts, called flits, and the next
hop on the path to the destination is determined when
the header of the message is received. The remaining
message parts follow the header over the same path to
the destination in pipelined fashion.

In non-contiguous allocation, an allocation request
can be split into parts that can be allocated non-
adjacent available submeshes. Non-contiguous
allocation suffers from two problems. First, messages
exchanged between the processors of different
submeshes allocated to the same job can compete with
the messages of other jobs for communication
resources. Second, the distances between the
processors allocated to a job can be longer than when
allocation is contiguous, which can increase the
probability of contention and lengthen communication

Three-dimensional mesh and torus interconnection
networks have been used in recent research and
commercial distributed memory parallel computers.
Examples of such multicomputers are the Cray T3D
[21], the Cray XT3 [15] and the IBM BlueGene/L [18].
Also, two-dimensional meshes have been used in
several multicomputers, such as the Caltech Mosaic [6]
and the Intel Paragon [19]. An important advantage of
the 3D mesh over the 2D mesh is its lower diameter
and higher bisection width. It can achieve reductions in
communication delays given the same number of
processors.

Typically, processor allocation proposed in the
literature for mesh-connected multicomputers is
contiguous and space-shared. A job is allocated a
distinct contiguous subset of processors for the duration
of its execution, and the subset normally has the same
general shape as the multicomputer itself. Numerous
contiguous processor allocation policies have been
proposed in the literature for two-Dimensional (2D)
meshes [3, 9, 12, 14, 16, 17, 22, 23, 27]. Also, a few
contiguous allocation policies have been proposed for
three-Dimensional (3D) meshes and tori [1, 8, 13, 25].
However, contiguous allocation suffers from high
external processor fragmentation. There is external
processor fragmentation when free processors are not

134 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

latency. However, the results of previous studies [2, 11,
24] indicate that non-contiguous allocation in 2D mesh-
connected multicomputers can have better system
performance than contiguous allocation, even when the
communication load is very high. This suggests that the
reduction in processor fragmentation that results from
lifting the allocation contiguity condition in 2D meshes
can outweigh the extra communication overhead
associated with non-contiguous allocation.

Even though non-contiguous allocation in 2D
meshes has been studied in detail, there exists little
research on non-contiguous allocation for 3D meshes
and tori. In [4], communication is not considered in
detail. Instead, a simple equation, proposed in [11] for
computing the communication overhead associated
with non-contiguous allocation in 2D meshes, is used
without modification to compute the execution time of
a job when it is allocated non-contiguous submeshes in
a 3D mesh-connected system. The specific locations of
the submeshes allocated to jobs, contention among
messages travelling between submeshes allocated to the
same job, and contention with the messages of other
jobs are not considered directly.

In this paper, we study non-contiguous allocation for
3D meshes more accurately. We simulate
communication at the flit level for several non-
contiguous allocation policies and communication
patterns in the 3D mesh. Results obtained for 2D
meshes may not be directly applicable to 3D meshes
because of obvious topology differences. For example,
the diameter of the 3D mesh is smaller than that of the
2D mesh, and an internal node in a 3D mesh has six
neighbours, instead of four in the 2D mesh.

Related research is surveyed and discussed in the
next section. This is followed by a presentation of the
non-contiguous schemes in section 3. The system
model is specified in section 4, and the performance
evaluation of the allocation schemes is presented and
discussed in section 5. The paper is concluded in
section 6.

2. Previous Related Research

As wormhole-routed mesh and torus interconnection
networks have been used in many recent highly-parallel
multicomputers, processor allocation for such
multicomputers has attracted the interest of many
researchers over the past two decades.

2.1. Contiguous Allocation Schemes for Mesh-
Connected Multicomputers

Most contiguous processor allocation schemes
investigated in the literature have been for 2D meshes
[3,9, 12, 14, 16, 17, 22, 23, 27]. In addition, a few
contiguous allocation schemes have been proposed for
3D meshes and tori. In these schemes, it is assumed that

a job requests upon arrival the allocation of a submesh
of a specified width, depth and height.

2.1.1. Maximal Free List Scheme for 3D Tori

In this scheme [25], all maximal free submeshes are
detected and placed in a free list. A free submesh is
maximal if it is not a proper subset of any free
submesh; that is, it can not be expanded in any of the
three dimensions (x, y and z) to form a larger free
submesh. For allocation, several heuristics that select a
large enough maximal free submesh from the free list
were considered.

A submesh is large enough for a request if it has
enough free processors in each of the dimensions of
the request. In the first-fit heuristic, the first free
submesh that can accommodate the request is selected
as allocation submesh. In the best-fit heuristic, a
submesh that is closest in size to the request is
selected for allocation. The size of a submesh is the
number of processors it contains.

In worst-fit, the selected allocation submesh is one
with the largest size. In addition to these allocation
schemes, a k-look ahead scheduling heuristic proposed
in [9] was adopted. In this heuristic, the waiting
requests are examined so that allocation to the current
request would leave free submeshes for a maximum
number of the k largest waiting requests. Also,
changing the orientation of requests, proposed in [17]
for 2D meshes, is supported so as to reduce processor
fragmentation. As example, an a X b X ¢ request can
be changed to a request for an a x ¢ x b submesh.

2.1.2. Scan Search Scheme for 3D Tori

This scheme [13] was proposed with the goal of
reducing the allocation time as compared with the
best-fit variant proposed in [25]. It is a contiguous
recognition-complete first-fit allocation scheme for 3D
tori. Using simulations, it is shown in [13] that the
measured allocation time of this scan search scheme is
smaller than that of the earlier scheme. In addition, in
order to study the impact of scheduling, a non-FCFS
job scheduling policy is considered along with FCFS.
In the non-FCFS policy, the jobs in the waiting queue
are considered for allocation in their arrival sequence
if the job at the head of the queue can not be
accommodated. However, looking inside the queue is
halted if the queue head has spent some preset time
period waiting. The allocation time complexity of the
scan search scheme is O(WD’H?). This is superior to
the time complexity of the previous scheme proposed
in [25], which is O(W'D’H").

2.1.3. Folding Contiguous Allocation for 3D
Meshes

In [1], a folding processor allocation scheme was
proposed for 3D meshes. In this scheme, a job is
allocated the submesh it has requested if such

Communication Overhead in Non-Contiguous Processor Allocation Policies. .. 135

submesh is available. Otherwise, the largest request
side is decremented by one and allocation is re-
attempted. This process is repeated until -either
allocation succeeds or the number of processors
requested reaches a load-dependent fraction of the size
of the request. This folding fraction increases
dynamically with the processor demand of the jobs
currently in the system. In addition to folding, the job
scheduling policies FCFS and out-of-order scheduling
were considered. In out-of-order job scheduling,
multiple waiting jobs may be considered for allocation
in their arrival order. Simulation results show that
allocation request folding and out-of-order job
scheduling both improve system utilization and mean
job turnaround times.

2.2. Non-Contiguous Allocation Schemes for 2D
Meshes

Several non-contiguousallocation policies that differ in
the degree of contiguity they maintain were proposed
for 2D meshes, and they were evaluated using
simulation.

2.2.1. Random Allocation

A request for n processors is satisfied with » randomly
selected free processors [24]. There is no processor
fragmentation in this policy however, the
communication overhead can be high because
contiguity among allocated processors is not sought.

2.2.2. Paging

This scheme [24] is denoted as Pagingidex-scheme(772),
where m is a nonnegative integer. It divides the
processors of the multicomputer into square pages of
side lengths equal to 2", and the page is the allocation
unit. Pages are numbered according to several indexing
schemes (row-major, shuffled row-major, snake-like,
and shuffled snake-like indexing). However, the
indexing scheme had little influence on performance. A
request for »n processors is satisfied with the first free
[n/2"] pages. There is some degree of contiguity
because of the indexing schemes used. Contiguity can
also be enhanced by increasing m. However, this
produces internal fragmentation for m > 1, and this
internal fragmentation increases with m.

2.2.3. Multiple Buddy Strategy

In this scheme, the number, #, of processors requested
is converted to a base-4 number of the following form:

n=dpx 25 x 28+ +dgx20x2° (1)

The allocation policy of (MBS) attempts to satisfy
every term i in the request with d; free 2'x2' processor
blocks. If a needed block is not available, the algorithm
tries locating a free larger block that it repeatedly
breaks down into four buddies until a block of the

needed size is obtained. The buddies of a 2’x2 block
are 2/ x 2 processor blocks. If the attempts to satisfy
a term i fail, the algorithm breaks the term itself into
four smaller requests for 2"/ 2" blocks and repeats
the process described above. Allocation always
succeeds when the number of free processors is
sufficient because the request or parts of it can be
decomposed into requests for /x/ processor blocks
[24].

2.2.4. Adaptive Non-Contiguous Allocation

This policy attempts first to allocate a contiguous
processor submesh of the requested shape and size. If
this fails, the request is decomposed into two equal
subframes and the allocation algorithm attempts to
allocate submeshes for these subframes. If this fails
again, the request is split into smaller subframes, and
allocation is attempted for the new subframes. The
size of a subframe in a step is half its size in the
previous step. This process terminates if allocation
succeeds for all subframes in the same step, or if it has
repeated a specified number of times, denoted by A.
Additionally, allocation attempts are halted if a side
length of the subframes reaches one [11].

This policy can disperse the allocated submeshes
more than it is necessary. Moreover, its recognition
capability is incomplete. Allocation can fail although a
sufficient number of processors are available. For
example, assume that an allocation request for an §x3
submesh arrives while the state of processors is as
shown in Figure 1 and 4 = 1. The request is
subdivided into two 4 x 3 requests, and allocation fails
although a 6 x 3 and a 2 x 3 submeshes are available.

.: Allocated Node

O: Free Node

C

147 2H] GCH @H] 64| 64

1,37 @23

O—0O—0—0-—0—0

12T @27 G2 @2 2] (6,2)

Y Y 7y 7y £y I
(1,1)</ an” G @) 67 (6,1)\")

Figure 1. A 6x6 2D mes.

2.3. Non-Contiguous Allocation Schemes for
3D Meshes

There exists little published research on non-
contiguous allocation for 3D meshes and tori. In [4],
several non-contiguous allocation schemes for the 3D
mesh were evaluated using simulation. However,
communication was not considered in detail. Instead, a
simple equation, proposed in [11] for computing the

136 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

execution times of jobs when they are allocated non-
contiguous submeshes in 2D meshes, was used, as is, to
compute the execution times of jobs when they are
allocated non-contiguous submeshes in 3D mesh.
Communication was not simulated at the flit level. That
is, the specific locations of the submeshes allocated to
jobs and contention for communication resources were
not considered directly. Also, it is not obvious that
approximate mathematical models based on flit-level
simulation results for 2D meshes are directly applicable
to 3D meshes.

3. Three-Dimensional Non-Contiguous
Allocation Policies

The target system in this paper is a three-dimensional
mesh-connected multicomputer M(W, D, H), where W
is the width of the mesh, D is its depth, and H is its
height. A processor (node) in M(W, D, H) is
represented by the coordinates (x, y, z), where 1 < x <
W,1<y<D,and 1<z<H. An internal node is directly
connected via bidirectional links to six neighbours: (x-
1,y,z2), (x+1,y, z), (x, y-1, 2), (x, y*+1, 2), (x, y, z+1) and
(x, y, z-1). The eight mesh corner nodes have three
neighbours each, other edge nodes have four
neighbours, and the remaining peripheral nodes have
five neighbours. The size of the 3D mesh, N, is the
number of processors it contains, where N = WDH. A
job is assumed to request the allocation of an a x b % ¢
submesh when it arrives, where 1 <a< W,1<b<D
and 1 < ¢ < H A w x dx h submesh S(w, d,) is
represented by (x1, y1, z1, x2, y2, z2), where (x1, yl1,
z1) is the lower left corner of S, (x2, y2, z2) is its upper
right corner, w=x2-x1+1, d y2-y1+1 and h=z2—z1+1.
The size of the submesh is wdh processors. The non-
contiguous allocation policies considered in this paper
are as follows.

3.1. Greedy Available Allocation

When a parallel job is selected for allocation and the
number of free processors is sufficient, a free submesh,
S(w, d, h), that is suitable for the request (i.e., w>a, d >
b, and & > c¢) is searched for. If one is found, the
submesh S(a, b, ¢) located in the left-lower corner of
S(w, d, h) is allocated to the job and allocation is done.
Otherwise, the largest free submesh, Si(w, d, /), that can
fit inside S(a, b, ¢) is allocated, and it is subtracted from
S(a, b, ¢). The subtraction operation used is one that
produces the largest possible non-overlapping
submeshes successively. For example, the submeshes
produced by the subtraction of a 2x2x3 submesh from
a 3x4x3 submesh are 3x2x3 and [x2x3. The
subtraction results are added at the tail of a request-list.
The fragments in the request-list are processed until
they are all accommodated; that is, until the current job
is allocated the number of processors it has requested.
The allocation steps are shown in Algorithm 1. This

allocation policy maintains some contiguity by giving
preference to allocating large free submeshes.

Algorithm 1: Greedy Available Allocation Algorithm
Greedy Available Allocation (a, b, c){

Step 1. If (number _of free_processors < job_size)
return failure
else insert requestR(a,b,c) for a x b x ¢ submesh
in request-list
Step 2. While there are elements R(aa,bb,cc) in
request-list do
if (a free S(x,y,z) is suitable for R(aa,bb,cc)){
allocate its lower-left S(aa,bb,cc) corner
submesh to the job and remove R(aa,bb,cc)
from the request-list

}

else {
find all free submeshes that fit in R(aa,bb, cc)
allocate largest such submesh L(x,y,z) and
remove R(aa,bb,cc) from the request-list
subtract L(x,y,z) form R(aa,bb,cc) and add
resulting fragments in the decreasing order of
their size to the tail of request-list

}

3.2. Paging Strategy

The 3D mesh is divided into pages that are subcubes
with equal side lengths of 2", where m is an integer
greater than or equal to zero. A page is the allocation
unit, and its size, Psize, is equal to 2°" The pages are
ordered according to the row-major indexing scheme,
as illustrated in Figure 2. If the number of free pages
is greater than or equal to the current request, the free
pages are scanned starting with the first page until the
requested number of pages is allocated. A paging
policy is denoted as paging(m). For example, paging
(2) means that the pages are 4 x4 x4 processor blocks.
The number of pages requested by a job of size
job_size is computed using the equation:

Prequest = /—job_size/Psize / 2)
13 14 15 16
o I w o]
s 41 e] 7] s
1 2 3 4

Figure 2. Row-major indexing for a 4x2x2 three-dimensional
mesh.

Communication Overhead in Non-Contiguous Processor Allocation Policies. .. 137

The paging allocation algorithm is as follows:

1. The mesh is initially divided into 3D pages of side
lengths equal to 2", and the pages are numbered
using the row-major indexing scheme, as shown in
Figure 2.

2. When the number of free pages is greater than or
equal to the requested number of pages, Prequest,
allocation succeeds. The first Prequest free pages are
allocated to the job being served.

3.3. Random Allocation Strategy

As in the scheme Random proposed previously for 2D
meshes [24], a request for n processors is satisfied with
n randomly selected free processors.

4. System Model

We use simulation to evaluate and compare the greedy
available, paging(0), random and contiguous First-Fit
allocation policies. We have selected paging(0) as
representative of the paging policies because it has no
internal processor fragmentation. Moreover, it
performed well in [4, 24].

As in previous works, we adopt the simulation
performance methodology because it can take into
account the dynamic nature of the interactions between
applications, operating systems and architectures [10].

The interconnection network assumed uses all-port
routers and wormhole switching. The all-port router
model specifies that up to six (the maximum number of
neighbours) messages can be relayed simultaneously
when they require distinct outgoing channels [26]. In
wormhole switching, message flits move in a pipeline
fashion. If a header flit encounters a busy channel, it is
blocked until that channel becomes free. We assume
that a flit takes one time unit to move between two
neighbouring routers. Neighbouring routers are
interconnected by bidirectional channels, and message
routing is dimension-ordered and deterministic.

An application is assumed to be composed of a
computation phase followed by a communication
phase. The computation to communication ratio, R, of
jobs is assumed to be uniformly distributed over [1, 9]
when the jobs do not interfere with each other. That is,
the interference-free efficiencies of jobs are distributed
over the interval [50%, 90%]. To determine the
interference-free communication time for a job of a
given size, its simulated communication time for the
communication pattern assumed (e.g., one-to-all) is
determined by executing the job alone on the simulated
target system.

The interference-free communication times for all
possible job sizes are pre-determined and stored in a
file. There is a separate file for each communication
pattern. During the simulation of the allocation
algorithms, the interference-free communication time
for the current job is read from the appropriate file

based on the job size, and a value for R is generated.
Then, the job’s computation time is determined by
multiplying these values. After delaying for this
computation time, the job enters the communication
phase. In this phase, a job sends messages according
to the communication pattern being simulated. Note
that the new communication time can be longer than
the stored communication time because of possible
contention with other jobs, for example.

We expect the performance of non-contiguous
allocation to depend on the contention that results
from external message interference. This interference
occurs when the messages of two or more jobs need to
use the same communication channel at the same time.
In addition, non-contiguous allocation can generate
internal message interference. This interference
occurs when messages travelling between submeshes
allocated to the same job contend for communication
resources.

In this paper, three communication patterns are
considered. They are the one-to-all, ring and random
communication patterns. In one-to-all, a randomly-
selected processor allocated to a job sends a message
to all other processors allocated to the same job. In the
ring communication pattern, the processors allocated
to a job are considered to form a torus linear array and
each processor sends a message to its successor; the
successor of the last processor is the first one. In the
random communication pattern, each processor
allocated to a job sends a message to another
processor allocated to the same job and selected
randomly.

The main performance parameters measured in the
simulation experiments are the mean turnaround times
of jobs and the allocation -effectiveness. The
turnaround time of a job is the time that it spends in
the system, from arrival to departure. The allocation
effectiveness, 4., measures the ability of an allocation
algorithm to avoid processor fragmentation [20]. At
the simulation time ¢, 4.(¢) is defined by the equation:

A1) = P/min(N, P,) (3)

In this equation, P, is the number of allocated
processors, N is the number of processors in the target
multicomputer, and P, is the total processor demand
of the jobs in the system, running or waiting. For
example, for N=1000, P~1200 and P,=750, the
allocation effectiveness is 75% and processor
fragmentation is 25% (100% minus 75%). However,
for P,=400 and P,=400 the allocation effectiveness is
100% and there is no processor fragmentation. The
mean allocation effectiveness is computed over the
entire simulation time, and the average turnaround
time is computed for completed jobs.

The size of the system assumed in this paper is
1000 processors. It is organized as a 10x10x]0 cube
of processors. For communication, it is assumed that
the length of messages is 250 flits, and the start up

138 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

latency is 30 time units. Other values were considered
in [5], but their results lead to the same conclusions.
Therefore, these results are not shown here so as to
conserve space. The side lengths of allocation requests
are integers that are uniformly distributed over the
range [1, 10], and they are generated independently.
Jobs arrive from a Poisson source at a rate of 4 jobs per
time unit.

This rate is varied from low values representing
light loads to high values that produce turnaround times
that are past the knees of the job turnaround time
performance curves. In the simulation experiments, the
system load is defined as 4*, where p is the mean job
service time. Every simulation run executes 1000
parallel jobs, and the runs are repeated enough times so
that the mean turnaround times obtained have relative
errors that do not exceed 10% with 90% confidence.

5. Results and Comparison

Figures 3 and 4 show the allocation effectiveness and
turnaround times for the contiguous First-Fit allocation
policy and the non-contiguous allocation policies when
the communication pattern is one-to-all. The results for
the ring communication pattern are displayed in Figures
5 and 6, and those for the random communication
pattern are displayed in Figures 7 and 8. In these
Figures, the scheduling policy is FCFS, where only the
job at the head of the queue is considered for allocation.
We limit ourselves to this policy because it is typically
assumed in related studies (e.g., [3, 12, 13, 24]), and
our primary goal is to compare allocation policies.

It can be noticed in the Figures that the non-
contiguous policies are substantially better than First-
Fit. This is because contiguous allocation suffers from
high external processor fragmentation. The allocation
effectiveness of First-Fit is high when the load is very
low because it is then highly likely that a suitable
contiguous submesh is available for allocation to a job
when it arrives to the system. However, this
effectiveness drops rapidly as the load increases. This
outcome is compatible with the results of previous
works, where contiguous First-Fit allocation achieves
only low system utilization for 3D mesh-connected
multicomputers [1, 13]. Overall, the additional
communication overhead associated with non-
contiguous allocation is less significant than the
performance advantage that results from the reduction
in processor fragmentation that is produced when the
allocation contiguity condition is lifted.

The performance differences among the non-
contiguous policies are small, however greedy available
is overall slightly better than the remaining policies
under the heaviest loads. It ranks first or second for the
three common communication patterns investigated.
The mean turnaround times of paging(0) for the one-to-
all and random communication patterns are longer than
those of Greedy Available by about 23% and 8% under

the heaviest loads considered. The performance of
paging(0) is good for the ring communication pattern
because paging(0) allocates neighbours located on the
same X-axis when they are free. Random performs
worse than Greedy Available by about 13.5% under
the heaviest load in Figure 6, where the ring
communication pattern is assumed. This is because
random allocation is not compatible with the near
neighbour property of the ring pattern.

It can be seen in Figure 4 that Random performs
well under heavy loads when the communication
pattern is one-to-all.

1_

g nog

£ 09 \\

o 094 - -

& 0o —*—Pw'm\ *\‘:\i
E Dg b L - IE- 1

5 DSE) — —— = Rardain

= 036 1 ————Firsl-Hl

= 024 — —

0 025 05075 1 12515 175
Systern Load

Figure 3. Mean allocation effectiveness of the policies for the one-
to-all communication pattern.

The reason is that this communication pattern can
make use of multiple communication links
simultaneously as the processors allocated to a job are
dispersed randomly across the system. In contrast, a
node needs to use only a single outgoing link for the
ring communication pattern. In this case, Random
performs poorly because the distance between
communicating neighbours is expected to be relatively
large, which increases both the message transit time
and the probability of communication.

200000

—4+—— Faylrg

700000 1 ; -
gOOnnn Lo T Awslae / /’

i
FE — —&— — Rardom / /#"
500000 1 bl
E ——— Flrsl-Fll :‘:(‘J A}“‘
B 400000 / -
[E 300000 =
g 200000
< 100000
I:I T T T T T T T

o025 05 075 1 125 15 175
System Load

Figure 4. Average turn around time of the policies for the one-to-
all on communication pattern.

Communication Overhead in Non-Contiguous Processor Allocation Policies. ..

1 -
098 m"}

Allocation Effectivensss

0.3a
0.54

052 +
0.2
.25 1
.86 -
0.24 -
0.z

+P&¥K&
L 8 1

— —h— —Eanlem

—+—— Fist+Fit

1 2 3 4 5 &
System Load

Figure 5. Mean allocation effectiveness of the policies for the ring
communication pattern.

Averaze Tamarcund Time

Allocaton Effectivensss

4500
4000
3500 s A
3000 / e
i o

2500 —%
2000 ﬁéﬁ-ﬁ- "
1500 RS
1000 — —— —Fanlom

500 ——+— P+ Foif

I:I T T T T T T

1 2 3 4 5 L
System Load

Figure 6. Average turnaround time of the policies.

— i — Al

Pt Fit

0 1 2 3 4 3 &

System Load

Figure 7. Mean allocation effectiveness of the policies for the
random communication pattern.

Average Tarmarcund Time

35000

30000 -
25000 -
20000 -

—+—Paug
---z---Eaubm
— —a— — Awmihlk

15000

‘.ﬁi‘f"—d/ax

10000

5000

0

System Load

Figure 8. Average turnaround time of the policies for the random
communication pattern.

139

6. Conclusions

In this research, we have studied non-contiguous
allocation in 3D-mesh multicomputers using detailed
flit-level simulation. Three non-contiguous allocation
strategies were considered: greedy available, random
and paging(0). The performance of these strategies
was compared to the performance of contiguous First-
Fit allocation for common communication patterns.

The aim of simulating communication in detail is to
evaluate the effect of contention in the interconnection
network on the performance of non-contiguous
allocation. Simulation results show that non-
contiguous allocation can greatly improve
performance despite the additional contention in the
interconnection network that can result from the
interference among messages. This is because non-
contiguous allocation is capable of superior utilization
(i.e., lower processor fragmentation and superior
allocation effectiveness) when it is compared with
contiguous allocation, represented in this study by
First-Fit. The performance differences among the non-
contiguous policies investigated are small; however,
greedy available is promising. It ranks first or second
for the common communication patterns considered in
this paper.

References
[1] Ababneh 1. and Bani S., “Non-Contiguous
Processor Allocation for 3D Mesh

Multicomputers,” Journal of AMSE Advances in
Modeling and Analysis, vol. 8, no. 2, pp. 51-63,
2003.

[2] Ababneh I, “Availability-Based =~ Non-
Contiguous Processor Allocation Policies for 2D
Mesh-Connected Multicomputers,” Journal of
Systems and Software, vol. 81, no. 7, pp. 1081-
1092, 2008.

[3] Ababneh I., “Job Scheduling and Contiguous
Processor Allocation for Three-Dimensional
Mesh Multicomputers,” Journal of AMSE
Advances in Modelling and Analysis, vol. 6, no.
4, pp. 43-58,2001.

[4] Ababneh 1., “On Submesh Allocation for 2D
Mesh Multicomputers Using the Free-List
Approach: Global Placement Schemes,” Journal
of Performance Evaluation, vol. 66, no. 2, pp.
105-120, 2009.

[5] Almomani R., Communication Overhead in
Non-Contiguous Allocation for 3D Meshes,
Unpublished MS Thesis, AL Albayt University,
2002.

[6] Athas W. and Seitz C., “Multicomputers
Message-Passing Concurrent Computers,” in
Proceedings of IEEE Computer, California, pp.
9-24, 1988.

140

(7]

[10]

[12]

[14]

[15]

[16]

[18]

The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

Bani S., OuldKhaoua M., Ababneh, I., and
Mackenzie L., “Comparative Evaluation of
Contiguous Allocation Strategies on 3D Mesh
Multicomputers,” Journal of Systems and
Software, vol. 82, no. 2, pp. 307-318, 2009.

Bani S., Ould-Khaoua M., and Ababneh I,
“Greedy-Available Non-Contiguous Processor
Allocation Strategy and Job Scheduling for 2D
Mesh Connected Multicomputers,” Computer
Journal of International and their Applications,
vol. 15, no. 4, pp. 283-296, 2008.

Bhattacharya S. and Tsai T., “Look Ahead
Processor Allocation in Mesh-Connected
Massively Parallel Multicomputer,” in
Proceedings of International Parallel Processing
Symposium, Cancun, pp. 868-875, 1994.

Chang Y. and Mohapatra P., “Performance
Improvement of Allocation Schemes for Mesh-
Connected Computers,” Journal of Parallel and
Distributed Computing, vol. 52, no. 1, pp. 40-68,
1998.

Chhabra A. and Singh G., “Knowledge-Based
Modeling Approach for Performance
Measurement of Parallel Systems,” The
International Arab Journal of Information
Technology, vol. 6, no. 1, pp. 77-84, 2009.

Chiu M. and Chen K., “An Efficient Submesh
Allocation Scheme for Two-Dimensional Meshes
with Little Overhead,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 5,
pp- 471-486, 1999.

Choo H., Yoo S., and Youn Y., “Processor
Scheduling and Allocation for 3D Torus
Multicomputer Systems,” [EEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 5,
pp- 475-484, 2000.

Chuang J. and Tzeng F., “Allocating Precise
SubMeshes in Mesh Connected Systems,” [EEE
Transactions on Parallel and Distributed Systems,
vol. 5, no. 2, pp. 211-217, 1994,

Cray, Cray XT3 Datasheet, available at:
http://www.craysupercomputers.com/downloads/
CrayXT3/CrayXT3 Datasheet.pdf, last visited
2004.

Das D. and Pradhan D., “Submesh Allocation in
Mesh Multicomputers Using Busy-List: A Best-
Fit Approach with Complete Recognition
Capability,” Journal of Parallel and Distributed
Computing, vol. 36, no. 2, pp. 106-118, 1996.
Ding J. and Bhuyan N., “An Adaptive Submesh
Allocation Strategy for 2D Mesh Connected
Systems,” in Proceedings of International
Conference. Parallel Processing II, Seoul, pp.
193-200, 1993.

Gara A., Blumrich M., Chen D., Chiu G., Coteus
P., Giampapa M., Haring R., Heidelberger P.,

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Hoenicke D., Kopcsay G., Liebsch T., Ohmacht
M., Steinmacher B., Takken T., and Vranas P.,
“Overview of the Blue Gene/L System
Architecture,” IBM Journal of Research and
Development, vol. 49, no. 2, pp. 195-212, 2005.
Intel Crop, Paragon XP/S Product Overview,
available at: http://books.google.com/books/
about/Paragon XP S product overview.html?id
=qgkGNkgAACAAJ, last visited 1991.

Ismail I. and Davis J., “Program-Based Static
Allocation Policies for Highly Parallel
Computers,” in Proceedings of International
Phoenix Conference on Computers and
Communications, Scottsdale, pp. 61-68, 1995.
Kessler R. and Schwarzmeier J., “CRAY T3D: A
New Dimension for Cray Research,” in
Proceeding of COMPCON, pp. 176-182, 1993.
Kim G. and Yoon H., “On SubMesh Allocation
for Mesh Multicomputers: A Best-Fit Allocation
and a Virtual SubMesh Allocation for Faulty
Meshes,” Computer Journal of IEEE
Transactions on Parallel and Distributed
Systems, vol. 9, no. 2, pp. 175-185, 1998.

Liu T., Huang K., Lombardi F., and Bhuyan N.,
“A SubMesh Allocation Scheme for Mesh-
Connected Multiprocessor ~ Systems,” in
Proceedings of International Conference
Parallel Processing I, California, pp. 159-163,
1995.

Lo V., Windisch K., Liu W., and Nitzberg B.,
“Non-Contiguous Processor Allocation
Algorithms for Mesh-Connected
Multicomputers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 8, no. 7, pp. 712-
726, 1997.

Qiao W. and Ni L., “Efficient Processor
Allocation for 3D Tori,” IEEE International
Parallel Processing Symposium, pp. 466-471,
available at: http://citeseer.nj.nec.com/
giao94efficient.html, last visited 1995.

Tsai J. and McKinley P., “An Extended
Dominating Node Approach to Broadcast and
Global Combine in Multiport Wormhole-Routed
Mesh Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 8, no. 1,
pp. 41-58, 1997.

Zhu Y., “Efficient Processor Allocation
Strategies for Mesh-Connected Parallel
Computers,” Journal of Parallel and Distributed
Computing, vol. 16, no. 4, pp. 328-337, 1992.

Communication Overhead in Non-Contiguous Processor Allocation Policies. .. 141

Raed Almomani received his BS
and MSc degrees in computer science
from Al al-Bayt University in 1999
and 2002, respectively. From 2003 to
2009, he was an instructor in the
Department of Computer Science at
Al al-Bayt University. Presently, he
is pursuing a PhD degree at Wayne State University,
USA. His main research interests are distributed
systems, image processing and computer vision.

ol

Ismail Ababneh received his
Engineer degree from the National
Superior School of Electronics and
Electro-Mechanics of Caen, France
in 1979. He received the MS degree
in software engineering from Boston
University in 1984, and the PhD
degree in computer engineering from lowa State
University in 1995. From 1984 to 1989, he was a
software engineer with DAS, Boston, Massachusetts.
He is an associate professor in the Department of
Computer Science at Al al-Bayt University, Jordan, and
a member of Tau Beta Pi and Eta Kappa Nu. Presently,
he is a visiting associate professor in the Department of
Computer Science at Jordan University of Science and
Technology. His main research interests are processor
allocation in multicomputers, and routing algorithms
for mobile ad hoc networks.

