124 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

The Design of Self-Organizing Evolved
Polynomial Neural Networks Based on Learnable
Evolution Model 3

Saeed Farzi
Faculty of Computer Engineering, Islamic Azad University of Kermanshah, Iran

Abstract: Nowadays, the development of advanced techniques of system modelling has received much attention. Polynomial
Neural Network (PNN) is a GMDH-type algorithm (Group Method of Data Handling), which is one of the useful methods for
modelling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of
polynomial which are determined by trial and error. In this paper, we discuss a new design methodology for polynomial neural
networks PNN in the framework of Learnable Evolution Model (LEM3). LEM3 is a new approach to evolutionary
computation, which employs machine learning to guide evolutionary processes. LEM3 is obtained better performance in
shorter time in comparing with other well-known methods. Also, LEM3 appears to be particularly suitable for solving complex
optimization problems in which the fitness evaluation function is time consuming. In this paper, we use LEM3 to search
between all possible values for the number of input variables and the ovder of polynomial. Evolved PNN performance is
obtained by two nonlinear systems. The experimental part of the study involves two representative time series such as Box-

Jenkins gas furnace process and the Dow Jones stock index.

Keywords: GMDH, PNN, LEM3, polynomial.

Received March 28, 2009, accepted January 3, 2010

1. Introduction

The development of advanced techniques of system
modelling has received much attention. Group Method
of Data Handling (GMDH) [9, 10], originated by
Ivakhnenko [11], is a useful data analysis technique for
the identification of nonlinear complex systems.
GMDH is self organizing and can automatically select
essential input variables without using prior
information on the relationship among input-output
variables [22].

Polynomial Neural Networks (PNN) [18, 23] is a
GMDH-type algorithm, which is one of the useful
approximation techniques. PNN has architecture
similar to feed forward neural networks, whose
neurons are replaced by polynomial nodes. The output
of the each node in a PNN structure is obtained by
using several types of high-order polynomials such as
linear, quadratic, and modified quadratic of the input
variables.

These polynomials are called as Partial Descriptions
(PDs). PNNs have fewer nodes than Artificial Neural
Networks (ANNs), but the nodes are more flexible.
The PNN shows better performance than the previous
fuzzy modelling methods. Although the PNN is
structured by a systematic design producer, it has some
drawbacks to be solved. If there are sufficiently large
number of input variables and data points, PNN
algorithm has a tendency to produce overly complex
networks. On the other hand, if a small number of

input variables are available, PNN does not maintain
good performance. Moreover, PNN performance
depends strongly on the number of input variables
available to the model, and the type or order in each
PD.

These parameters must be chosen in advance before
the architecture of PNN is constructed. In most cases,
they are determined by the trial and error method,
which has a heavy computational load and low
efficiency. Moreover, the PNN algorithm is a heuristic
method so the trial-and-error method does not
guarantee that the obtained PNN will be the best one
for nonlinear system modelling. Therefore, these
drawbacks must be solved with more consideration.

This paper presents a new design methodology of
PNN using Learnable Evolution Model 3 (LEM3) to
alleviate the above-mentioned drawbacks of the PNN.
LEM3 has been used as search method for
optimization problem [5]. LEM3 is a new approach to
evolutionary computation, which employs machine
learning to guide the process of generating new
populations [16].

LEM3 integrates two modes of operation, a
darwinian evolution mode, which is based on
traditional evolutionary computation methods [16, 29],
and machine learning mode, which generates new
individuals through a process of theory formation and
instantiation. Specifically, machine learning mode
generates hypotheses that characterize differences
between groups of high performing and low

The Design of Self-Organizing Evolved Polynomial Neural Networks Based on Learnable Evolution Model 3 125

performing individuals, and then instantiates these
hypotheses to generate new individuals.

In this paper, we use LEM3 to determine the
number of input variables to be optimally chosen
among many input variables for each PD and to
determine the appropriate type of polynomials for each
PD. Using LEM3; we can alleviate several
disadvantages of the conventional PNN algorithm.

This paper is organized as follows. The PNN
algorithm and its problem description are described in
section 2. An overview of the LEM methodology is
described in section 3. Design evolved PNN is in
section 4. Experimental study is covered in section 5,
and section 6 concludes the paper.

2. The PNN Algorithm and Its Problem
Description

The PNN algorithm is based on the GMDH method
and utilization a class of polynomials such as linear,
quadratic, and modified quadratic. The design
framework of the PNN is based on the following steps
[17,18]:

e Step 1: Determine system’s input variables. We
define the input variables such as x;; x;...xy; related
to output variables y;, where N and i are the numbers
of the entire input variables and input-output data
set, respectively. The input data are normalized, if
required.

o Step 2: Form training and testing data. The input-
output data set is separated into training (n,;) data set
and testing (n.) data set. Then, n=n,+n, The
training data set is used to construct the PNN model,
and the testing data set is used to evolutes the
constructed PNN model.

e Step 3: Choose a structure of the PNN. The
structure of the PNN is strongly depending on the
number of input variables and the order of PD in
each layer. Two types of PNN structures, namely,
the basic PNN structure and the modified PNN
structure, are available. Two cases are specified for
each type of PNN structure. Table 1 summarizes the
various PNN structure:

a. Basic PNN: Structure-the number of input
variables of PDs is the same in every layer.
Case 1. The polynomial order of the PDs is the
same in each PD is the same in each layer of the
network.
Case 2: The polynomial order of PDs in 2™ or
higher layer is different from those PDs in the 1%
layer.

b. Modified PNN: Structure-the number of input
variables of PDs varies from layer to layer.
Case I: The polynomial order of the PDs is same
in every Layer.

Case 2: The polynomial order of the PDs in the
2™ layer or higher is different from those PDs in
the 1% layer.

Table 1. A taxonomy of various PNN structures.

No. of Input Order of
Layer Var Polynomial PNN
p=q Basic
First P PNN
Layer P Casel P=Q
Case2 P£Q
Second p# q modified
i PNN
:?aF:ef:h a Q Casel P=Q
' Case2 P£Q
p.q=234 PQ=123

o Step 4: Determine the number of input variables
and the order of the polynomial forming a PD. The
number of input variables and the type of the
polynomial in the PDs are determined arbitrarily.
The polynomials are different according to the
number of input variables and the polynomial order.
Several types of polynomials are shown in the Table
2. The total number of PDs located at the current
layer is determined by the number of the selected
input variables (r) from the nodes of the preceding
layer become the input variables to the current layer.
The total number of PDs in the current layer is equal
to the combination \C,, that is — " where N is

(N =)’

the number of nodes in the preceding layer.

o Step 5: Estimate the coefficients of the PD. The
vector of the coefficients of the PDs, as shown in
Table 2, is determined by using the standard Mean
Squared Error (MSE) obtained by minimizing the
following index.

Table 2. Regression polynomial structure.

Order No. of Input:1 No. of Input:2 No. of Input:3
1 Linear 'Bilinear Trilinear
. BiQuadratic-1° triQuadratic-1
2 Quadratic BiQuadratic-2° triQuadratic-2
. Bicubic-1* tricubic-1
3 Cubic Bicubic-2 tricubic-2
1g 2 N (1)
E =— -Z,),k=12,...———
k n, Z(J’, 1) AN —1)!

"Bilinear pd =c¢+c x;+¢,x,

BiQuadratic-1 pd= cotc x;+Herxptesx, Hesxy HesX X,
*Biquadratic-2 pd = cyte x X+ C3X Xy
4Bicubic—l pd= C0+C1X1+C2X2+C3X3+C4X12+C5X22+C6X32+C7X1X2+

CX X3 FCoXaXaFC X1+ 1o HC12X3 HC 13X Ko 014X X2 015X, XaHC o6
X1X3 TC7X " X31C18XoX3

126 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

Where, z; denotes the output of the k-th node with
respect to the i-th data and n, is the number of
training data subset.

This step is completed repeatedly for all the
nodes in the current layer and, in the sequel, all
layers of the PNN starting from the input to the
output layer.

o Step 6: Select PDs with the good predictive
capability. The predictive capability of each PD is
evaluated by the performance index using the
testing data set. Then, we choose w PDs among C,
PDs in due order from the best predictive capability
(the lowest value of the performance index). Here,
w is the pre-defined number of PDs that must be
preserved to the next layer. The outputs of the
chosen PDs serve as inputs to the next layer. There
are two cases as to the number of the preserved PDs

in each layer. If ﬂ(A’,Vl v then the number of the

chosen PDs retained for the next layer is equal

to— M| M __ . then the number of the chosen
rli(N =r)! F(N=-r)!

PDs retained for the next layer is equal to w.

o Step 7: Check the stopping criterion. The PNN
algorithm terminates when the number of layers
predetermined by the designer is reached.

o Step 8: Determine new input variables for the nest
layer. If the stopping criterion is not satisfied, the
next layer is constructed by repeating Step 4
through Step 8.

Figure 1 shows PNN architecture. In Figure 4 input
variables (x;... x4), 3 layers, and a PD processing
example are considered, where , Z™'; means the output
of the iy, node in the j-14 layer, which is employed as
the new input of the j, layer. Black nodes have
influence on the best node (output node), and these
networks represent the ultimate PNN model.
Meanwhile, solid line nodes have no influence over the
output node. In addition, the dotted line nodes are
excluded in choosing PDs with the best predictive
performance in the corresponding layer owing to poor
performance.

Therefore, the solid line nodes and dotted line nodes
should not be present in the final PNN model. As a
result, if the final layer has been constructed, the node
with the best predictive capability is selected as the
output node. All remaining nodes except the output
node in the final layer are discarded. Furthermore, all
the nodes in the previous layers that do not have
influence on the output node are also removed by
tracing the data flow path of each layer.

The PNN is a flexible neural architecture, whose
structure is developed by modeling. In particular, the
number of the layers and the number of nodes in each
layer of the PNN are not fixed in advance (it usually
happens in the case of multilayer perceptron) but

generated in a dynamic way. Each node exhibits a high
level of flexibility and realizes a polynomial type
mapping between input and output variables. PNN
provides a systematic design procedure, but its
performance depends strongly on a few factors stated
in section 1. In this paper, we propose a new design
procedure using LEM3 for systemic design of PNN
with optimum performance.

e . selecied inpuis: {j-1)ih bver | | erder
E il iy Typel —* I,
f'Hq — FTr: j ik laver
r_ii'r::'",rr:#-"'rﬂt":’Ir‘:ﬂ-"|‘1lhd"rn".

Figure 1. Overall architecture of the conventional PNN.

3. An Overview of the LEM Methodology

The LEM is fundamentally different from the
darwinian-type model that underlies most of the
current methods of evolutionary computation [6, 9, 15,
16]. The central engine of evolution in LEM is
machine Learning mode, which creates new
individuals by processes of generalization and
instantiation rather than mutation and/or recombination
as in the Darwinian-type evolutionary computation
methods [2, 12].

Machine learning mode consists of two processes: a
hypothesis characterizing differences hypothesis
generation, which determines between high fitness "H-
group" and low fitness "L-group" individuals in one or
more past populations, and hypothesis instantiation,
which generates new individuals by instantiating the
hypothesis in various ways.

Machine learning mode thus produces new
individuals not through semi-random darwinian-type
operations, but rather through a deliberate reasoning
process involving generation and instantiation of
hypotheses about populations of individuals. Thus, in
LEM, new individuals are genetically engineered, in
the sense that they are determined according to
descriptions learned from the analysis of the current
and possibly past generations. LEM may alternate
between machine learning mode and darwinian

The Design of Self-Organizing Evolved Polynomial Neural Networks Based on Learnable Evolution Model 3 127

evolution mode (executing one of the conventional
evolutionary computation methods as in LEM?2
implementation) [3], or may rely entirely on machine
learning mode. The main parameters of LEM are those
that control the way the H-group and the L-group are
selected and the number of new individuals that ought
to be instantiated from each rule found. Other
parameters control the persistence of executing each
mode, the start-over operation, and termination
conditions.

Selecting H- and L-groups can be done according to
a fitness-based method, a population-based method, or
a combination of the two. The fitness-based method
partitions the population using two fitness thresholds,
High Fitness Threshold (HFT) and Low Fitness
Threshold (LFT), which specify portions of the total
fitness value range in the population that are used to
determine the H- and L-groups. The population based
method partitions the population using parameters; the
High Population Threshold (HPT) and the Low
Population Threshold (LPT) that specify the portions
of the population to be used as H-group and L-group
group, respectively.

The H-group and L-group are then passed as
positive and negative training examples to the AQ
attributional learning program. AQ learning was
selected because it has many features particularly
useful for LEM, such as internal disjunction and
conjunction in the representation language, the ability
to generate rules at different levels of generalization,
and others [5].

AQ determines rule sets that differentiate between
the H-group and L-group. The search mechanism
conducted in machine learning mode can be interpreted
as a progressive partitioning of the search space. An H-
group description hypothesizes a region or regions that
likely contain the optimal individual. Each subsequent
H-group description hypothesizes a new, typically
more specialized, partition of the search space. Due to
this effect, the LEM evolution process may converge
to the optimum (local or global) much more rapidly
than Darwinian-type evolutionary algorithms. Since
partitioning is guided by inductive inference, this
process may miss the area with the global optimum. In
such cases, LEM executes a start-over operation or
temporarily switches to the Darwinian evolution mode

[5].

e The LEM3 Algorithm
The LEM3 algorithm that is the most recent
implementation of the general LEM methodology
will be presented here. The LEM3 algorithm
contains several components also found in
traditional evolutionary algorithms, including
generation of an initial population, generation of a
new population, and evaluation of individuals.
Other LEM components were designed in order to
guide evolution through machine learning, including

selection of the H- and L-groups (positive and
negative examples for learning), the AQ21 rule
learning program, and the instantiation of learned
rules into new individuals. Figure 2 shows a
flowchart of LEM3 algorithm [5]. In the evaluate
individuals phase the program has to determine the
value of the fitness function for each individual. It
may be the case that this is a very time-consuming
operation, especially when fitness is not defined as a
mathematical formula, but rather by a different
approach, such as through the application of a
simulation. The LEM3 has a number of predefined
fitness function and possibility of definition of the
fitness function by wuser. Preparation of
representation space for AQ21 learning program
consists of discretization of individuals before
passing them to the AQ21 learning module [5].

Start with random
population

Evaluate individuals

| Prepare representation space for AQ21 |..—
Select H & L zroups

| Evaluate new individuals |

I

| Generate a new population |
'y

-Mutate individuals
-Adjust discretization
and paramsters
-Startover

| Instantiate learned hvpothesis |

!

No-progress
condition

Figure 2. A flowchart of LEM3 algorithm.

4. Design PNN Using LEM3

The PNN algorithm must determine the optimal
number of input variables and the order of the
polynomial (design parameters of PDs) forming a PD
in each node. In this paper, a new design method for
PNN uses LEM3 to make these determinations. All of
initial populations are randomized so that minimum
heuristic knowledge is used. The appropriate inputs
and order are evolved accordingly and are tuned
gradually throughout the LEM3 iterations.

In the evolutionary design procedure, key issues are
the encodings of the order of the polynomial, and the
optimum input variables as a chromosome and the
defining of a criterion to compute the fitness of each
chromosome. The detailed representation of the coding
strategy and the choice of a fitness function are given.

128 The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

4.1. Design of PDs

The most important consideration is the representation
strategy, that is, how to encode the key factors of the
PNN into the chromosome. Binary coding is applied
for the available design specification.

The order and the inputs of each node are coded as a
finite-length string. Our chromosome is made of two
sub-chromosomes. The first one consists of 2 bits for
the order of the polynomial (PD); the second one
consists of the n bits, which are equal to the number of
entire input candidates in the current layer. These
inputs candidates are the node outputs of the previous
layer. The representation of the binary chromosomes is
illustrated in Figure 3.

Input Variables: n
I\

0o 1 o 1 1 0o 0o

Order of GPD

Figure 3. Structure of binary chromosome.

The 1% sub-chromosome is made of 2 bits, and
represents several types of the orders of PD. The
relationship between bits in the 1% sub-chromosome
and the orders of PD is shown in Table 3. Thus, each
node can exploit different orders of a polynomial.

The 2™ sub-chromosome has n bits, which
concatenate the bits of Os and 1s coding. The input
candidate is represented by 1 bit if it is chosen as an
input variable to the PD and by 0 bit if it is not chosen.
For example, chromosome 010110 presents a evolved
PD with order=2 (quadratic) and x2, x3 are two input
variables.

Figure 4 shows this node. In addition, the output of
this node can be expressed as equation 2. Moreover, it
is shown in Figure 4:

. 2 2
V=/2x3)=cotepxatexstesx, +eps Tesxoxs (2)

Order

x4 -—~L._'., 0
x3 —E

—

a2 |
&'}" of _//

Figure 4. The evolved PD.

-
1B

i
-

=0

Table 3. The order and the code.

The Order GPDThe Code

(3 [S) () [
—
(=

4.2. Fitness Function

The important consideration following the
representation is choice of fitness function. The
genotype representation encodes the problem into a
string, whereas the fitness function measures the
system performance. For predication and estimation of
our system, we define a fitness function as:

1
fitness _ function = —— (3)
EPI

Where EPI’ is mean squared errors calculated by
testing data set.

1 L2
EPI = ——— X (y; - $;) 4)
Ntesl i€ test

4.3. Design the Evolved PNN

The design procedure of the evolved PNN is made of
two main algorithms. First, algorithml is to learn
nodes and make a layer of learned nodes. It uses LEM3
to find the best design parameters for each node and
then it estimates the coefficients of the PDs by using
the standard MSE (section 2 and Step 5).

Finally, it selects w nodes with good predicative
capability. (w is determined by user) and it builds a
layer from the best nodes (w). Second, algorithm?2 is
used to build the evolved PNN. It uses algorithml to
build a new layer and then it adds new layer to the
network. While the stopping criterion is not satisfied,
algorithm 2 adds new layer to the network. We explain
algorithm 1 and algorithm 2 in details as follows:

o Algorithm 1
Algorithm 1 uses LEM3 to learn and select w PDs for
current layer:
Step 1: Determine the number of members of initial
population (N,,,,).
Step 2: Determine the number of generation (Ng).
Step 3: Run LEM3.
Step 4: Select w chromosomes as current layer PDs.

o Algorithm 2
The evolved PNN is made by algorithm 2. Algorithm 2 is
organized in six steps:
Step 1: Determine the number of members of initial
population (Np,).
Step 2: Determine the number of generationes (Ngep).
Step 3: Form train set and test set (split data into the two
parts (test set and train set).
Step 4: Determine the number of PDs for new layer(w).
Step 5: Run algorithm 1 with N,,, and Ng.,that are
determined in stepl and step2 (w PDs have been learned
by algorithm 1 and new layer is made of these PDs).
Step 6: If the best EPI of new layer is less than the best
EPI of pervious layer (if
(newlayer.best PD.EPI<previouselayer best PD.EPI),
the new layer will be added to the network and their

>Note that EPI (Extended Performance Index) is mean squared
errors calculated by testing data set and PI (Performance Index) is
mean squared errors calculated by training data set

The Design of Self-Organizing Evolved Polynomial Neural Networks Based on Learnable Evolution Model 3 129

outputs are selected as inputs to next layer, and you will
go to the step 4.

Otherwise, the algorithm will be finished and output
of the best PD of pervious layer is selected as output of
network.

5. Experimental Studies

In this section we illustrate the performance of the
network and elaborate on its development by
experimenting with data coming from the gas furnace
process [17] and time series Dow Jones stock index.
These two are representative examples of well-
documented data sets used in the realm of nonlinear
modelling [1, 17, 18, 19].

5.1. Gas Furnace Process

The delayed terms of methane gas flow rate u(t) and
carbon dioxide density y(t) such as u(t-1), u(t-2), u(t-
3), y(t-1), y(t-2), y(t-1) are used as input variables to
the evolved PNN. The actual system output y(t) is used
as the output variable for this model. This model is
shown in Figure 5. The total data set (296 input-output
pairs) is split into two parts. The first part (150 pairs) is
used as the training set, and the remaining part of the
data is used as the testing set. Using the training data
set, the coefficients of the polynomial are estimated by
using the standard LSE. The performance index is
defined as MSE.

U=m

UEa m

uEh m ¥

WA |

N |

P

Figure 5. Gas furnace process.

The performance of the evolved PNN for the gas
furnace process is obtained. First, the design
parameters of the evolved PNN are examined. Next,
the evolved PNN will be compared with a conventional
PNN and other well-known models.

The number of members of initial population (N,)
and the number of generations (Ng,) are two important
factors, which affect the evolved PNN performance.
The Performance Index (PI) and Extended
Performance Index (EPI) are used in the computer
simulation will be the same as given by equitation 1,
and equitation 4, respectively. The design parameters
of the evolved PNN are shown in Tables 4 and 5.

Table 4. The number of members of initial population and PI and
EPI and time.

Npop 10 20 30 40 50

Ngen 5 5 5 5 5

w 50 50 50 50 50

EPI 1301 125 1091 1228 1278

PI .0299 | .0145 .0130 .0282 .0272

No. of 5 3 3 5 5
Layers

Time 5 1.8 3.36 2.05 2.67
Table 4 shows the evolved PNN with 30

chromosomes (N,,) whereas the values of PI and EPI
are better than others. In addition, Table 5 shows the
the evolved PNN with N,,,=30 and N,,=30 whereas
the values of PI and EPI is better than others
(PI=0.0125, EPI=0.1011). Figure 6 depicts structure of
the best evolved PNN.

Table 5 .The number of generations and PI and EPI, time.

i
o b
&

Npop 30 30 30 30 30 30
Ngen 5 10 30 50 80 100
W 50 50 50 50 50 50
EPI 1091 | 1090 | .1011 | .1087 | .1170 | .1201
PI 0130 | 0128 | .0125 | 0.0131 | 0131 | .0221
No. of 3 3 3 3 3 2
Layers
Time 336 | 340 | 355 | 383 | 395 | 401
» L) »
[-]
2> [=]
. {1 - -
el [B []
-3} a2] [a3 wit)
Heal [= -
P B »
w5} g] »]
= (> =
{1 [-} -
» [3]

Figure 6. The evolved PNN.

Figure 7 depicts performance index of the evolved
PNN with three layers.

0.03
- 0.02 *___“_
a. am
0
layerl layer 2 layer 3
the evoled - . _—
PNN 0027 0.MmM76 (L0125

Figure 7. The evolved PNN- performance index.

130

Figure 8 depicts extended performance index of the
evolved PNN with three layers.

015
i D.‘ .__-___-"—-u.-.__
[
s 0.05
o
layer 1 layer2 layer3
| ——The evoled
PNN 0.1287 0.1137 0.1011

Figure 8. The evolved PNN-extended performance index.

Table 6. The evolved PNN- conventional PNN.

Method EPI PI No.of | e (min)
Layers
Conventional
PNN 3.8E-19 9.8E-21 2 80
Evolved
PNN 5.2E-20 9.3E-21 3 3.25

Where Y(?) equals the value of the Dow Jones index
of today. Y(#-1) equals the value of the Dow Jones
index of yesterday. Y(z+1) equals the value of the Dow

The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

Jones index of tomorrow. The evolved PNN and The
conventional PNN model this system Table 6 shows
the evolved PNN with EPI=5.2E-20 time=3.25 (min) is
better than the best PNN with EPI=3.8E-19
time=80(min).

Table 7 provides a comparison of our model with
other techniques. The comparison is based on the same
performance index for the training and the testing data
set. Our model outperforms other models both in terms
of their accuracy and higher generalization capabilities.
The structure of the optimal model is selected and
proper inputs and order for each node are harmonized
gradually throughout the LEM3 operations without
requiring specific prior knowledge of the target system
or its components. It should be noted that some good
values of conventional PNN in Table 7 are obtained
based on 4™ or 5" layer. The PNN has a tendency to
produce overly complex networks as it tries to stretch
for the last bit of accuracy. Although the network size
is a simple, the evolved PNN has a comparable
performance.

Table 7. Comparison of identification error with previous models.

Mean Squared Error
Model PI* Pl EPI
Box and Jenkins' model [2] 710
Tong' s model [27] 0.469
Sugeno’s model [25] 0.355
Sugeno ‘s model [26] 0.190
Xu and Zailu's model [30] 0.328
Pedrycz s model [24] 0.320
Chen's model [7] 0.268
Oh and Pedryczs’ model [20] 0.123 0.020 0.271
Kim et al.’s model [13] 0.034 0.244
Lin et al. s model [14] 0.071 0.261
Typel Basic Casel 0.057 0.017 0.148
. Basic Case2 0.057 0.017 0.147
Conventional PNN [21] Modified Casel ~ 0.046 0015 0.103
Modified Case2 0.045 0.016 0.111
Type2 Basic Casel 0.029 0.012 0.085
Basic Case2 0.027 0.021 0.085
Modified Casel 0.035 0.017 0.095
Modified Case2 0.039 0.017 0.101
Our Model [[0.0125 | 0.1011
PI*-- performance index over the entire data set.

5.2. The Dow Jones Series

This time series comprises 2050 Daily closing values
of the Dow Jones industrial index
(www.finance.yahoo.com) from Jan 1, 1900 to Jan 1,
1960. The dataset is split into the two parts. The first
part is used as the training set (from Jan 1, 1900 to Jan
1, 1950) and the remaining part of the dataset is used
as the testing set (from Jan 1, 1950 to Jan 1, 1960). It is
time series system, which predicates the Dow Jones
values by values of four days ago. This system is
shown in Figure 9.

Figure 10 shows the output of the evolved PNN
follows the actual output very well. Figure 11 shows
the error for testing and training data daily.

¥it-3] m

Yit-2) m ¥ite1)

Yit-1) @

vy @

Figure 9. The forecasting system.

The Design of Self-Organizing Evolved Polynomial Neural Networks Based on Learnable Evolution Model 3 131

1900-13950
Our hModel - actual ountput{Dos lones){Training Dataset)

I
i

M
¥ |
;} ”||L o]
e el
i ol S
poEm s
et

!)
L.
s “_;;.:-‘.,f»\mﬂf j,

T g g e e T e

- 8 B BB EEEE

DJo------- Our Model
a) Actual output on training data.

1550-1960

Dur Model -Actual cutput{Dowr lonesi{testing dataset)

- ya
= &l WA—%
b 1

£ * £

T T G

LS S

"""" A R

Dj — — Owur hModel

b) Actual output on testing data.

Figure 10. The evolved PNN output.

Error{l1900-1950}{Training Dataset)

Error{l1950-1950}(testing Dataset)

E B B 8

£ e

4

a) Error on training data.

b) Error on testing data.

Figure 11. Error of the evolved PNN.

6. Conclusions

In this study, we have introduced a new design
methodology of polynomial neural network, which
calls evolved PNN. The experimental method was
superior to the conventional PNN model in term of
modelling performance and time complexity. The
architecture of the model was not fully predetermined,
but can be generated during the identification process.
We use LEM3 to search between all possible values
for the number of input variables and the order of
polynomial.

References

(1]
(2]
(3]

(3]

Bishop M., Neural Networks for Pattern
Recognition, Oxford University Press, 1995.

Box P. and Jenkins M., Time Series Analysis:
Forecasting and Control, Holden-Day, 1976.
Cervone G., “LEM2: Theory and Implementation
of the Learnable Evolution Model,” Reports of
the Machine Learning and Inference Laboratory,
MLI, George Mason University, Virginia, pp. 99-
6, 1999.

Cervone G., Kaufman K., and Michalski S.,
“Recent Results from the Experimental
Evaluation of the Learnable Evolution Model,” in
Proceeding of the Genetic and Evolutionary
Computation Conference, GECCO-2002, Poland,
pp- 1-2, 2002.

Cervone G., Kaufman K., and Michalski S.,
“Experimental Validations of the Learnable
Evolution Model,” in Proceedings of 2000

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Congress on Evolutionary Computation, USA,
pp- 1064-1071, 2000.

Cervone G., Panait, A., and Michalski S., “The
Development of the AQ20 Learning System and
Initial Experiments,” in Proceedings of 10"
International ~ Symposium on Intelligent
Information Systems, Poland, pp. 1-3, 2001.
Chen Q., Xi G., and Zhang J., “A clustering
Algorithm for Fuzzy Model Identification,
Fuzzy,” Journal of Sets System, vol. 98, no. 5, pp.
319-329, 1998.

Farlow J., Self-Organizing Methods in
Modelling: Gmdh Type Algorithms Book
Description, CRC Press, 1984.

Goldberg D., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley Longman Publishing Co., 1989.
Ivahnenko G., “The Group Method of Data
Handling: A Rival of Method of Stochastic
Approximation,” Journal of Soviet Automatic
Control, vol. 13, no. 3, pp. 43-55, 1968.
Ivahnenko G., “Polynomial Theory of Complex
Systems,” in Proceeding of IEEE Transaction
System, Man Cybern, SMC-1, South Korea, pp.
364-378, 1971.

Kaufman K. and Michalski S., “The AQIS8
System for Machine Learning and Data Mining
System: An Implementation and User's Guide,”
Reports of the Machine Learning and Inference
Laboratory, MLI 00-3, George Mason
University, USA, pp. 1-3, 2000.

Kim T., Park K., Ji H., and Park M., “A new
Approach to Fuzzy Modelling,” [EEFE

132

[16]

[19]

(21]

[22]

[26]

The International Arab Journal of Information Technology, Vol. 9, No. 2, March 2012

Transaction Fuzzy System, vol. 5, no. 3, pp. 328-
337, 1997.

Lin Y. and Cunningham A., “A new Approach to
Fuzzy-Neural Modelling,” [EEE Transaction on
Fuzzy System, vol. 3, no. 2, pp. 190-197, 1995.
Michalski S., “Learnable Evolution Model
Evolutionary Processes Guided by Machine
Learning,” Journal of Machine Learning, vol. 38,
no. 2, pp. 9-40, 2000.

Michalski S., “Learning and Evolution: An
Introduction to Non-Darwinian Evolutionary
Computation,” in Proceedings of 12"
International Symposium on Methodologies for
Intelligent Systems, USA, pp. 21-30, 2000.

Oh K., Ahn C., and Pedrycz W., “A Study on the
Self-Organizing Polynomial Neural Net Works,”
in Proceedings of Joint 9" IFSA World
Congress, Australia, pp. 1690-1695, 2001.

Oh K., Kim W., and Park J., “A Study on the
Optimal Design of Polynomial Neural Networks
Structure,” The Transaction of the Korean
Institute of Electrical Engineers, vol. 49, no. 3,
pp- 365-396, 2001.

Oh K., Kim W., and Park J., “A Study on the
Optimal Design of Polynomial Neural Networks
Structure,” The Transaction of the Korean
Institute of Electrical Engineers, vol. 49, no. 3,
pp- 145-156, 2000.

Oh K. and Pedrycz W., “Identification of Fuzzy
Systems by Means of an Auto-Tuning Algorithm
and its Application to Nonlinear Systems,”
Journal of Fuzzy Sets System, vol. 115, no. 2, pp.
205-230, 2000.

Oh K. and Pedrycz W., “The Design Self-
Organizing Polynomial Neural Networks,”
Journal of Information Sciences, vol. 14, no.l1,
pp- 237-258, 1998.

Park J., Oh K., and Pedrycz W., “Polynomial
Neural Networks Architecture: Analysis and
Design,” Journal of Computers and Electrical
Engineering, vol. 29, no. 6, pp. 703-725, 2003.
Park J., Oh K., and Pedrycz W., “The Hybrid
Multi-layer Inference Architecture and Algorithm
of FPNN Based on FNN and PNN,” in
Proceeding of Joint 9" IFSA World Congress,
Heidelberg, pp. 1361-1366, 2001.

Pedrycz W., “An Identification Algorithm in
Fuzzy Relational System,” Journal of Fuzzy Sets
System, vol. 13, no. 2, pp. 153-167, 1984.

Sugeno M. and Yasukawa T., “A Fuzzy-Logic-
Based Approach to Qualitative Modelling,” /EEE
Transaction on Fuzzy System, vol. 1, no. 1, pp. 7-
31, 1993.

Sugeno M. and Yasukawa T., “Linguistic
Modelling Based on Numerical Data, in:
IFSA’91, Brussels,” in Proceedings of Computer,
Management and Systems Science, China, pp.
264-267, 1991.

[27]

(28]

[30]

[31]

p

intelligence from Isfehan University, Iran in 2006. His

current
intelligence.

Tong M., “The Evaluation of Fuzzy Models
Derived from Experimental Data,” Journal of
Fuzzy Sets System, vol. 4, no. 1, pp. 1-12, 1998.
Wetter M., Wright J.,, “Comparison of a
Generalized Pattern Search and a Genetic
Algorithm Optimization Method,” in
Proceedings of 8" International ~IBPSA
Conference, Netherlands, pp. 11-14, 2003.

Wnek J. and Michalski R., “Learning Hybrid
Descriptions,” in Proceedings of the on
Intelligent Information Systems, Poland, pp. 13-
95, 1995.

Wojtusiak J., “The LEM3 Implementation of
Learnable Evolution Model User's Guide,” in
Proceedings of Reports of the Machine Learning
and Inference Laboratory, MLI 04-5, George
Mason University, USA, pp. 4-7, 2004.

Xu W. and Zailu Y., “Fuzzy Model Identification
Self-learning for Dynamic System,” [EEE
Transaction System Man Cybern. SMC-17, vol.
4, no.1, pp. 683-689, 1987.

Saeed Farzi is a faculty member at
the Department of Computer
Engineering, Islamic Azad
University-beranch of Kermanshah,
Iran. He received his BS in computer
engineering from Razi University,
Iran in 2004, and his MS in artificial
include artificial

research interests

