
The International Arab Journal of Information Technology, Vol. 8, No. 3, July 2011 265

Investigation of Golay Code (24, 12, 8) Structure

in Improving Search Techniques

Eyas El-Qawasmeh
1
,

Maytham Safar

2
, and Talal Kanan

3

1
College of Computer and Information Sciences, King Saud University, Saudi Arabia

2
Department of Computer Science, Jordan University of Science and Technology, Jordan

3
Department of Computer Engineering, Kuwait University, Kuwait

Abstract: This paper presents a new technique for hash searching that is designed for approximate matching problem of

multi-attribute objects. The suggested technique can be used for improving the search operation when the multi-attribute

objects are partially distorted or when the searching criterion is not specified properly. The suggested approach is based upon

reversing the conventional scheme of Golay code (24, 12, 8), which maps 24-bit vectors into 12-bit message words. In this

technique, a multi-dimensional space is used to represent objects, where each object is given by a 24-bit vector. The closeness

of the objects is determined by partitioning a 24-dimensional cube. In addition, the possibility of 1-bit distortions is considered

through bit modifications of the 24-bit vectors. Thus, we proposed a hash table of 4096 entries that is fault-tolerant in the

sense that the index is the same for any two different 24-bit vectors that share the same sphere. This allows organizing a direct

retrieval of a neighborhood of 24-bit vectors with two or possibly more mismatches. The simulation experiments measured the

retrieval capabilities of the proposed system and the expected hash distribution.

Keywords: Golay code, information retrieval, distortion, and hashing.

Received December 25, 2008; accepted August 3, 2009

1. Introduction

Hashing is a technique that is used in information

retrieval since it requires a linear time of complexity in

most cases. One of the most important characteristics

of the hash searching techniques is the hash function.

Several hash functions are being used widely in order

to achieve the required performance, storage reduction

and simplicity. Most of the functions are simple

mathematical ones; such as the modulus. In this paper

we suggest a new function to be used in the Hash

searching techniques. The function is based on the

decode operation of the famous Golay code (24, 12, 8)

error detection and correction technique, which also

known as extended Golay code. We aim at studying

the performance characteristics along with the search

capabilities of the proposed design.

Hash searching techniques are widely used in

information retrieval, especially when the searched key

is known exactly as it is stored. However, there are

situations where only partial information of the object

is available. Therefore, approximate matching

algorithms should be implemented.

Approximate matching applies to databases that

store objects with several real-valued attributes. The

approximate matching is also referred to as the nearest

neighbor problem. The dissimilarity or distance

measures may solve the problem of finding those

objects in the databases that are most similar to a given

query [10]. For example, the name "Mohammed" has

different spelling variations when it is written in

English such as "Mohammad", and "Mohamad".

Approximate matching is defined as: Given a

collection of N objects (each of which is described by

k real-valued attributes) and a dissimilarity measure D,

find the m objects closest to a query (possibly not in

the collection set) with specified attribute values [2, 6].

Among the solutions that try to handle the

approximate matching problem are Soundex

Technique, and NYSIIS technique [9]. Both of them

are designed for approximate matching in names only.

Soundex uses the phonetic approach in order to locate

all similar sounding names. In the Soundex method,

many variations are completely merged, while some

remain distinct [9]. NYSIIS uses the same coding

concept in a different style.

This paper proposed a new technique for hash

searching, in which we define a new hash function that

is based on the decode operation of Golay code (24,

12, 8). The proposed technique suggests to use

attribute vectors to represent any type of data,

including but not limited to, personal records, vehicle

information, and relational database systems. The

attribute vectors are created by answering a set of

Yes/No questions and setting/resetting the sequence of

bits accordingly. The proposed technique also tolerates

bit distortion that may occur in the attribute vectors

during the search operation.

The organization of the paper will be as follows.

Section 2 presents the proposed scheme. Section 3

presents the partitioning of a 24 binary cube. Section 4

266 The International Arab Journal of Information Technology, Vol. 8, No. 3, July 2011

is the Golay construction. Section 5 is the distribution

analysis. Section 6 is the proposed design. Section 7 is

the retrieval capabilities. Section 8 is the average

number of probes. Section 9 is a discussion, and finally

section 10 is the conclusion.

2. Proposed scheme

Our work suggests reversing the conventional

application of error-correction codes. In error correction

codes, a sequence of bits that we need to transfer is

converted to a longer sequence of bits called codeword

by adding some extra bits. This codeword is transmitted

over a channel. The receiver site will be able to retrieve

the original sequence even if the original sequence

(message) has some bits of error (1-4) bits depending on

the used error codes. We consider the decoding

procedure as the primary operation, and we expect that a

neighborhood of codewords may be mapped into a

smaller collection of datawords. Hash indices, which

enable searching for binary vectors, are to be

constructed from these datawords. The techniques

proposed in this paper will use Golay code for error

correction and detection.

Golay code has two variations. The first one is Golay

(23, 12, 7). In this code, if we want to send a 12-bit

message, then we add additional 11-bits to it. The total

will come to 23-bits. Now, we send it. The receiver side

will be able to convert the 23-bits message to its original

12-bits message, even if there is a 3-bit distortion. This

is applicable to all possibilities of the 23-bits and

because of this; it is called prefect Golay code (23, 12,

7). However, there is another variation called Golay

code (24, 12, 8). This code can detect up to 4-bits, but it

can correct 3-bits distortion. If there is 4-bits distortion,

then it might correct these 4-bits, but there is no

guarantee that it will be able to fix it. This code is code

not perfect code.A searching technique tolerating 1-bit

mismatch can be implemented by brute-force, which

can be achieved by probing each hash index that consist

of all 1-bit distortions of a given word. Without using

brute-force, dealing with 1-bit distortions of a certain

24-bit key will involve inspecting 8 hash buckets (one

bucket is determined by the hash value of this key and

the remaining 24 buckets are determined by the hash

values of all 1-bit distortions of the word). The proposed

scheme that employs error-correction codes for fault-

tolerant retrieval is useful in such a way that it

eliminates the performance degradation of the brute-

force procedure.

Our contribution is that suggested method will

benefit from the characteristics of a non-perfect code. A

perfect code is one in which there are equal radius

spheres surrounding the codewords; the spheres must

also be disjoint and completely fill the space [1, 9]. In

the Golay code (23, 12, 7), this is equivalent to the

property that every word with a length of 12 bits has a

distance of at most 7 from one and only one codeword.

The Golay code (23, 12, 7) is perfect and the codewords

represent all 2
23

 = 8388608 23-bit combinations. Golay

code (24, 12, 8) is a non-perfect code since there exists

a subset of codewords in the space where each

codeword can be decoded to more than one dataword.

3. Partitioning of a 24 Binary Cube

Consider a 24-dimensional cube that contains exactly

2
24

 different points, where each point in this cube can

be represented by a 24-bit binary vector. The task is to

partition this 24-dimensional cube into spheres. A

desirable partition will be a partition that satisfies the

following characteristics:

1. All of the spheres are of equal radius.

2. All of the points in this 24-dimensional cube are

included by a partition such that each point belongs

to only one partitioning sphere.

The 24-dimensional cube cannot be partitioned in such

a way where both of the properties can be satisfied. To

be more specific the whole cube can be partitioned into

2
12

 = 4096 spheres, which are referred to as partition

spheres, and they are of equal radius but they do not

include all the points. Golay (24, 12, 8) is not a perfect

code, but still we can benefit from its characteristics

tolerating some bit distortions to achieve good results.

The purpose here is to divide the cube into smaller

spheres so that the search operation can be performed

using only a subset rather than the whole cube

meanwhile tolerating bit mismatches. Each partition

sphere can be identified by its center, which is a 24-bit

codeword that can be converted to a unique 12-bit

dataword. Any two different partition spheres among

the 2
12

 spheres will have two different 12-bit data

messages associated with them. These centers are to be

treated as the hash indices, the datawords that do not

belong to certain spheres will have the opportunity to

fit in one of multiple spheres with the same

probability. The reason for this is due to the non-

perfect property in Golay code (24, 12, 8). Converting

from a 24-bit codeword into a 12-bit data message is

called decoding, while converting from a 12-bit data

message to the corresponding 24-bit codeword is

called encoding.

The results of partitioning the 24-dimensional cube

are 2
12

 different partitioned spheres. A 24-bit vector

represents each point within the partitioned sphere and

one of these points is the center of the sphere. Upon

examination of any partitioned sphere, one will realize

that all of the codewords in a given sphere are at a

Hamming distance ≤ 4 from its center.

4. The Golay Code Construction

Extended Golay Code is also known as Golay code

(24, 12, 8), where we have codewords of length 24 bits

describing the original 12-bit message. The minimum

Investigation of Golay Code (24,12,8) Structure In Improving Search Techniques 267

Hamming distance between any two codewords is 8.

The 24 Golay code is an extension of the 23 Golay

code. Golay code (24, 12, 8) guarantees retrieving the

original data if the error occurred is three bits or less

[4, 8]. If errors occurred in four bits there is no

guarantee to recover the original data, however, it is

possible, due to the fact that the decoding may result in

having the original words relate to a group or another

with, perhaps, the same probability. This will benefit

the approximate matching and similarity measures to

study a new approach to the matching problem of

multi-attribute objects. In addition, we will study the

possibility of near matching by changing one bit at a

time of all the 24 bits and see the effect of this. This

technique can be used to improve Information

Retrieval when the multi-attribute objects are partially

distorted or when the searching criterion is not

specified properly.

Reversing the technique of Golay (24, 12, 8) means

that we will pick up 24 bits and decode them to form a

12-bit data word. In the case of at most three erroneous

bits existence, this will give us good results. The 24

bits can represent the attributes of objects, documents,

records, and/or any piece of information. This leads to

having 2
24

 = 16,777,216 numbers targeting only 2
12

 =

4096 numbers. In this paper, we tend to address

searching the best match where the key is almost

correct in information retrieval systems.

5. Distribution Analysis

The number of points in the 24-dimensional cube is

2
24

. Any 24-bit codeword can be represented by one

point in this cube, which has a value between 0 and

2
24

-1 (0 to 16,777,215). The representation of every

codeword contains a number of 1’s that ranges from 0

to 24; this is called the weight of the codeword. A

piece of script was written to manipulate and collect

the data, which simply calculates the distinct number

of words against the possible codeword weight. The

result of running this script can be seen in Figure 1.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Weight of 24-bit codewords

S
iz
e
 o
f
H
a
s
h
in
g
 I
n
te
rv
a
ls

Figure 1. Number of distinct words per codeword weight.

The distribution shown in Figure 1 is not scattered

uniformly. Evident from the distribution is that the

weight determines the scattering pattern. For example,

vectors with a weight of 5 spread over 759 different

locations, where vectors with a weight of 11 spread

over 3335 different locations. Figure 1 also shows that

the number of hash indices is small (closed to zero, but

not zero) at both ends of the distribution (see values for

weights 0, 1, 2, 3, 21, 22, 23 and 24).

In fact all 24-bit vectors with weight 3 or less

contribute to the hash index of 0, correspondingly,

when the weight is 21 or more. In other words, when

the number of 0’s is less than 4, the decoded 24-bit

vector will map to hash index 4095. This constitutes

the worst case, which is considered to be the bucket

size with a maximum number of entries in it.

The existence of 24-bit vectors with a minimal

number of 1’s (or correspondingly 0’s) is rare in the

cube. For instance, the number of 24-bit vectors in the

24-dimensional cube with a weight of 2 is

exactly
276

2

24
=







 .

These points constitute much less than 1% of the

24-dimensional cube points and are indexed to only

one partition sphere. In contrast, cases such as 24-bit

vectors with a weight of 12 occur more commonly. In

this case, the number of 24-bit vectors is exactly

2704156
12

24
=







 .

These vectors represent more than 16% of the whole

space and are indexed to 4094 different locations in the

hash table. After that, we modified the script to

perform 1-bit distortion on the codewords before

decoding. The experimental results showed that the

number of hash indices increases after including the

distortion.

6. Proposed Design

The proposed design generates a 24-bit vector for a

multi-attribute object, which represents the

characteristics of the object. We will use the object

properties to create the vector; each property will be

represented by one bit, or more. Also, we can represent

two properties or more by one bit. When an object

shows a specific property, the binary 1 will be placed

in the corresponding bit; otherwise the default 0 will

be placed in that bit. The set of property bits requires

exactly 24 bits, but the order of the bits is not

important. For an object requiring more than 24 bits,

we suggest selecting the most distinguishable

properties or the set of properties that can be broken

into two sets, each one consisting of 24 bits.

We have implemented a simulation program for

misspelled names using the proposed technique. The

program, simply, creates a 24-bit vector for each name

upon storing, decodes the vector and stores the name in

all the decoded hash indices. Upon searching, a

268 The International Arab Journal of Information Technology, Vol. 8, No. 3, July 2011

misspelled name is also associated to a 24-bit vector,

the vector is decoded and all the hash indices are

probed. Constructing the 24-bit vectors is achieved by

answering a set of 24 (Yes/No) questions, each answer

is assigned to a bit position to be either 0 or 1. The set

of questions depend on the nature of the data to be

stored and the properties of the items. Even, choosing

the name properties might differ slightly from one

culture to another depending on the nature of the

language.

A system using the proposed technique consists of

two basic operations; the store, and the search. The

implementation should begin by defining the

properties and their corresponding bits. The next step

is transferring object attributes to the corresponding

24-bit vector. Another script was written to generate

all distinct hash indices for the object and all of its 1-

bit distortions, the number of distinct hash indices as

for the whole space is shown in Table 1.

Table 1. Number of hash indices percentage.

No of Hash Indices Percentage

1 7.35 %

6 12.08 %

7 31.15 %

11 5.37 %

12 19.43 %

13 24.71 %

Table 1 is generated by decoding all the possible

numbers ranging from 0 to 2
24

 -1, along with each

numbers’ 1-bit distortions. The distinct number of

datawords were collected and kept. In our context, this

means that each codeword will be stored in 1, 6, 7, 11,

12, or 13 hash indices. On average 9.1 hash indices,

calculated as follows: 1 * 0.0735 + 6 * 0.1208 + 7 *

0.3115 + 11 * 0.0537 + 12 * 0.1943 + 13 * 0.2471 =

9.1134 ≅ 9.1. From now on, we will use the numbers

9.1 or 9 to indicate the redundancy of average storing

each and every codeword.

The hash indices are used to store the objects. The

hash table will be organized using the chaining

approach. In this approach, each hash index contains a

pointer to a linked list that is allocated outside of the

hash table. This linked list will be used to store all the

object information that has been hashed to its

corresponding index.

For the search operation the user needs to find all

hash indices for the 24-bit search query and all

possible 1-bit distortions. Upon determining the hash

indices of the object, the corresponding linked list can

be traversed through the hash index pointer [5]. Thus,

the store operation has the following steps:

1. Find the 24-bit representation of the multi-attribute

object.

2. Decode the 24-bit vector and store the object in the

linked list associated with this index.

3. Consider all possible 1-bit distortions of the object

and decode each 24-bit vector after the distortion.

4. Find all distinct hash indices generated from steps

2 and 3.

5. Store the object in the corresponding linked list of

the indices.

6. Likewise, the search operation consists of the

following steps:

7. Find the 24-bit vector of the search query.

8. Decode the 24-bit vector.

9. Find all possible 1-bit distortions.

10. Decode each possible distortion.

11. Find all distinct hash indices of the 25 decoded

values (1 original and 24 with 1-bit distortion).

12. For all distinct hash indices, traverse the

corresponding linked list.

13. Determine if an exact match exists and return it,

otherwise return the whole traversed linked lists.

Table 1 shows that 31.15% of decoding processes,

applied to the vectors and their 1-bit distortions,

generated seven hash indices; Central 1, Peripheral 2,

Peripheral 3, Peripheral 4, Peripheral 5, Peripheral 6,

and Peripheral 7. The utilization of this searching

scheme begins with filling the hash table. The hash

table presents an array of 2
12

 = 4096 pointers to the

buckets with the 24-bit keys. Both kinds of binary

vectors, the 12-bit indices to the array and the 24-bit

keys, are represented as unsigned long integers by 32-

bit words. For example, a 24-bit vector

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1) with 1

in positions 5, 3, 2, and 0 is represented as an unsigned

long integer: 45 = 2
5
 + 2

3
 + 2

2
 + 2

0
. By decoding this

24-bit key, we achieve 6 unsigned long integers as 12-

bit hash indices; namely 2336: (1, 0, 0, 1, 0, 0, 1, 0, 0,

0, 0, 0), 1176: (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0), 514: (0,

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0), 64: (0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0), 5: (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1), and 0: (0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0). These 6 numbers are used as

addresses for the 6 buckets where the object

information related to key 45 is to be inserted.

7. Retrieval Capabilities

The basic searching scheme considers the 24-bit vector

and all its possible 1-bit distortions during the creation

and the search routines. The matching retrieval

capabilities of the basic scheme were computed.

Before we take a look at the results of the retrieval

capabilities, we need to mention that the shared hash

indices that were calculated represent the Recall.

Recall is one of the measurement tools widely used in

information retrieval and search techniques. It can be

defined as the number of the retrieved correct matches

to the total number of matches. Figure 2 plots the

matching retrieval capabilities of the basic searching

scheme. We ought to mention here, that we were not

able to achieve a full run to the previous algorithm, due

Investigation of Golay Code (24,12,8) Structure In Improving Search Techniques 269

to the fact that this run having step 1 in the main loop

takes many years to be completed. So, we managed to

make several runs and generalize the results. The largest

run we were able to achieve was using step 600. The

counter was incremented, after each iteration, by a

random number ranging from 450 to 750.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Hamming Distance

R
e
c
a
ll

Figure 2. Matching retrieval capabilities of the basic searching

scheme.

As clearly appears in Figure 2, the technique offers

100% recall at Hamming distances 1 and 2 and less

recall at higher Hamming distances. However, we found

that the cost for this is that we will have 8.02 replication

in storage. Although the replication is a disadvantage,

but the gain is that the search operation becomes faster.

The gained speed is due to the fact that only 9.1 (on

average) linked lists are searched instead of the whole

set of objects.

8. Average Number of Probes

It should be noticed that the number of hash indices

generated from decoding a 24-bit vector that has a

deviation of less than 3 will always be decoded to one

and only one hash index, while any 24-bit vector with

a deviation of 3 will always be decoded to more than

one hash index. This was verified by decoding all 24-

bit vectors in the 24-dimensional cube.

We have implemented a simulation experiment to

evaluate the searching time for the searching scheme,

which provides an acceptable compromise between the

redundancy and the retrieval characteristics. The object

is stored in six, seven, eleven, twelve or thirteen

different buckets using the pointers of the hash indices.

A search operation utilizes these hash indices in order

to traverse those buckets.

The experiment to find the number of probes starts

by simulating the creation of a file of 4096 entries. The

entries are built such that their average number of 1’s

equals an exact value ranging from 1 to 23. The search

is performed using the same selected value. The results

of this experiment are plotted in Figure 3. For

example, selecting a value such as 4 means that the

majority of the 24-bit vector entries have four attribute

bits set to 1. The number of 1’s in the remaining 24-bit

vector entries will be close to four, such that many of

them will have three or five 1’s, and less will have two

or six 1’s and so forth. Larger numbers of entries can

be chosen, but the normalization process, in terms of

4096, shows that the results are scaled and so,

normalized large entries behave like a file of 4096

entries. As an example, let us select a weight like 7, we

found that the number of probes is almost 210, which

means that for a system with an average number of 1’s

equal to 7, the number of probes need to be accessed is

equal to 210. The number 210 is a result of the

summation of all probes. It is obvious that scanning

210 entries involves less efforts than scanning

4096/9.1 ≅ 450 entries.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(Probability of "1") by 24

N
u
m
b
e
r
o
f
P
ro
b
e
s

Figure 3. Number of probes for all hash indices without any

restrictions.

The previous average search of the basic searching

scheme may be enhanced with some adjustments. One

method of improvement is to create two hash tables

instead of one. The first table will be designed for the

central hash index, regardless of whether there is one

hash index or more than one hash index for the 24-bit

vector and all its 1-bit distortions. The second table

will use the remaining hash indices. The central index

will be the hash of the 24-bit vector without any

distortion. Each table will contain exactly 4096 indices

and they will be treated in the same way as the single-

table was treated. The creation of two tables reduces

the average search time.

Another way to improve the average search is to

unconditionally allow all 24-bit vectors, but to treat

hash indices 0 and 4095 separately. These two indices,

which increase rapidly for systems with a small

number of 1’s (correspondingly high number of 1’s)

can take advantage of the computed addresses of the

table-of-errors.

An attempt to improve the average search can also be

achieved by using mixed re-coding. This involves using

opposite re-coding, where 1 indicates the absence of the

attribute. This trick for re-coding is only recommended

for the two attributes with the lowest probabilities. In

summary, we can say that the suggested technique is

270 The International Arab Journal of Information Technology, Vol. 8, No. 3, July 2011

suitable for systems with average weights ranging

from 6 - 18. For systems outside this range, the user

has several choices. The options include splitting the

hash table, treating rare weight vectors specially,

handling hash indices 0 and 4095 separately, and

performing bitwise XOR on some specific bits.

Combining more than one of these improvements will

also enhance the performance.

9. Discussion

The search scheme provides an acceptable trade-off

between the time-space redundancy and the retrieval

characteristics. Each key is stored in 9.1 different

buckets of the hash table on average and

correspondingly, searching requires traversing these 9

buckets. The presented scheme expands the

capabilities of ordinary hashing by introducing “fault-

tolerance”. On the positive side, speed is gained by

using this technique. On the negative side, additional

memory is required. Searching with this scheme for a

given binary vector yields the whole neighborhood of

this vector at a Hamming distance of 2. A certain

portion of binary vectors at a greater distance would

also be retrieved.

Evaluation of the performance of this searching

scheme entails different choices for searching,

depending upon various statistical characteristics of the

binary attribute vectors. Additional concerns regarding

the uniformity of hash transformation should be

considered. The user should consider the influences of

patterns which may shrink the scattering interval. The

distribution analysis explained how vectors of a

specific weight scatter over the hash table. Thus, this

technique is mostly suitable for systems where the

number of attributes is in the range from 5 to 19. If the

number of attributes of objects in a system is

predominately around 4, the performance of the search

will degrade. When the predominant number of

attributes is 3 or less, the performance of the system

will degrade to a sequential look-up.

The performance of a hashing scheme is determined

primarily by the average size of the buckets. For

ordinary hashing, a set of 4096 random uniformly

distributed keys would be accommodated in the hash

table in buckets of a small average size. In using fault-

tolerant hashing, the insertion of 4096 keys in the 4096

positions of the hash table results in 9 times the

redundancy. Ideally, we would get 4096 buckets with a

size of 9, or more accurately with a size 9.1. However,

the average bucket size exceeds this redundancy

coefficient, because hash values do not get a complete

scattering over their available range. Thus, the

shrinking of the scattering interval for low weight

vectors (correspondingly high weight) increases the

average bucket size. A preliminary performance

evaluation was presented previously. The searching

operation may be enhanced with some adjustments to

the basic searching scheme. The first modification is

performing the creation and the search for vectors only

in the range of 4-20. This will improve the

performance as a result of the experiments that we

conducted. Vectors outside this range can be treated

separately, since they are not common. This treatment

can use the common approach and the non-common

approach is treating the rare cases separately.

A simulation program was written to observe this

behavior; it reads a name and computes the hashes of

this name. Following this, another name (which will

most likely be misspelled) will be read, and the

calculated hash indices of it will be compared with the

previous name. The program finds the common indices

between the hashing of both names, as well as how

many bucket access attempts will be required for

retrieval.

10. Conclusions

This work contributes to establishing an approximate

equivalence of information items. For this purpose, we

have developed a technique of fault-tolerant hashing

based on reversing the conventional usage of error-

correction codes. In this technique, an error-correcting

decoding procedure is applied to a certain

neighborhood of binary attribute vectors. This

application leads to the creation of a relatively smaller

set of reference indices. The developed construction

employed the Golay code (24, 12, 8). This code

provides a non-perfect partitioning of a 24-dimensional

binary cube and yields 13, 12, 11, 7, 6 indices or 1

index for a neighborhood of size 1 in Hamming's

metrics. These indices are fault-tolerant in the sense

that they allow the identification of information objects

with certain mismatched attributes. The suggested

approach can be generalized using error-correction

codes other than the Golay code. This overcomes the

24-bit restriction on the size of the binary attribute

vectors, but would result in a less regular structure of

the reference indices.

In Information Retrieval, the suggested procedure is

considered to be a special kind of hash coding

transformation. With this transformation, information

objects with mismatched attributes can be mapped to

the same location and treated as "approximately

equivalent". Hash coding is used primarily for

searching, but it also has a variety of other

applications. With unique capabilities for identification

of approximately equivalent objects, the effectiveness

of hash coding applications can be expanded.

Besides a direct application to information retrieval,

the developed technique is beneficial for many

complex computational procedures that incorporate

Approximate Matching operations. Typical procedures

of this kind include recovering close matches from

vector-quantization tables and finding similarities in a

population of binary strings for genetic algorithms.

Investigation of Golay Code (24,12,8) Structure In Improving Search Techniques 271

Near-matching capabilities for binary vectors can be

adapted to treat approximate matching of multi-

dimensional objects with numerical components by

encoding the values of these components in Golay

code.

References

[1] Christos F., “Access Methods for Text,”

Computer Journal of ACM Computing Surveys,

vol. 17, no. 1, pp. 49-74, 1985.

[2] Simon B. and Eyas Q., “Reversing the Error-

Correction Scheme for Fault-Tolerant Hash

Indexing,” Computer Journal, England, vol. 43,

no. 1, pp. 54-64, 2000.

[3] Florence M. and Neil S., The Theory of Error-

Correcting Codes, Elsevier Science, 1977.

[4] Henrik L., “Error and Traffic Control for High-

Speed Networks,” Dissertation, Royal Institute

of Technology (KTH), 2005.

[5] James R., “Equivalence Classes in the Real

World,” Pi Mu Epsilon Journal, vol. 9, no. 2, pp.

579-583, 1993.

[6] Jerome F., Jon B., and Raphael F., “An

Algorithm for Finding Best Matches in

Logarithmic Expected Time,” Computer Journal

ACM Transactions on Mathematical Software,

vol. 3, no. 3, pp. 209-226, 1997.

[7] Joseph P. and Antonio Z., “Automatic Spelling

Correction in Scientific and Scholarly Text,”

Computer Journal Communications of the ACM,

vol. 27, no. 4, pp. 358-368, 1984.

[8] Shu L. and Daniel C., Error Control Coding:

Fundamentals and Applications, Prentice Hall,

1983.

[9] Tuvi E., Alexander V., and Er V., “Perfect

Binary Codes: Constructions, Properties, and

Enumeration,” Computer Journal IEEE

Transactions on Information Theory, vol. 40, no.

3, pp. 654-763, 1994.

[10] Vladimir B., “Hashing of Databases Based on

Indirect Observations of Hamming Distance,”

Computer Journal IEEE Transactions on

Information Theory, vol. 42, no. 2, pp. 664-671,

1996.

Eyas El-Qawasmeh received his

BSc degree in Computer Science in

1985 from Yarmouk University,

Jordan. He then joined the Yarmouk

University as teaching assistant at

the Computer Science Department.

In 1992, he joined the George

Washington University, Washington, DC, USA where

he obtained his MS and PhD degrees in Software and

systems in 1994 and 1997, respectively. In 2001, he

joined George Washington University, USA as visiting

researcher through a Fulbright Commission grant. In

2001, he won Hijjawi Research Prize for Computer

Science. His areas of interest include multimedia

databases, information retrieval, and object-oriented.

He has authored/co-authored over 70 research

publications in peer reviewed reputed journals, and

conference proceedings. In addition, he was a keynote

speaker in many International events. He is the

program chair and proceedings chair for many

international conferences. In addition, he is the guest

editor and a member of the editorial board of many

journals. El-Qawasmeh is currently an associate

professor at King Saud University, Saudi Arabia.

Maytham Safar is currently an

associate professor at the Computer

Engineering Department at Kuwait

University. He received his PhD

degree in computer science from

the University of Southern

California in 2000. He has one

book, three book chapters, and over

sixty five conference/journal articles. Current research

interests include social networks, sensor networks,

location based services, image retrieval, and

geographic information systems. He is a senior

member of IEEE since 2008, and the first Kuwaiti to

become an ACM senior member in 2009. He is also a

member of IEEE Standards Association, IEEE

Computer Society, IEEE Geoscience & Remote

Sensing Society, IADIS, @WAS, and INSNA. He was

granted over eleven research grants from research

administration at Kuwait University, and Kuwait

Foundation for the Advancement of Sciences (KFAS).

Talal Kanan achieved his BSc

degree in computer science in 1999

from Yarmouk University, Jordan.

He then joined several private

companies specialized in software

solutions; namely in the research &

development departments. In 2004,

he joined the Jordan University of Science and

Technology, Jordan, where he obtained his MS degree

in computer science in 2007. His areas of interest

include information retrieval, hashing and indexing,

relational databases and object-oriented programming.

He is currently heading the Enterprise Services unit

and the Research and Development unit in one of the

leading private software houses in the Middle East.

