
The International Arab Journal of Information Technology, Vol. 8, No. 2, A ril 2011

An Ontology-based Semantic Extraction

Approach for B2C eCommerce

Ali Ghobadi
1
 and Maseud Rahgozar

2

1
Database Research Group, University of Tehran, Iran

2
Control and Intelligent Processing Center of Excellence, University of Tehran, Iran

Abstract: Although varieties of investigations have been done on human semantic interactions with Web resources, no

advanced and considerable progresses have been achieved. It could be said that comparative shopping systems are the last

generations of B2C eCommerce systems that connect to multiple online stores and collect the information requested by the

user. In some cases, the information is extracted from the online store sites through keyword search and other means of textual

analysis. These processes make use of assumptions about the proximity of certain pieces of information. These heuristic

approaches are error-prone and are not always guaranteed to work. In this paper, we propose an ontology-based approach to

extract the products’ information and the vendors’ price from their public Web sites’ pages. Although most vendors on the

Web present their products’ information in HTML documents that are not semantic formats. However, our approach is based

on understanding semantics of HTML documents and extracting the information automatically.

Keywords: Semantic correspondence, ontology, and schema.

Received , 2008; accepted May 17, 2009

1. Introduction

Electronic Data Interchange (EDI) between companies

and Automatic Teller Machines (ATM) for banking

were the first introductions of the electronic commerce

(eCommerce). Introduction of the Web Browsers

opened up a new age by combining open internet and

easy user interface approaches [11].

Business-to-Consumer (B2C) eCommerce is the

predominant commercial experience of Web users. A

typical scenario involves a user’s visiting one or

several online shops, browsing their offers, selecting

and ordering products. Ideally, a user would collect

information about price, terms, and conditions (such as

availability) of all or at least all major, online shops

and then proceed to select the best offer. But manual

browsing is too time-consuming to be conducted on

this scale. Typically a user will visit one or a very few

online stores before making a decision.

However, the evolution of B2C eCommerce has

been formed through various generations. Last models

of B2C eCommerce are comparative shopping

catalogs. Models such as pricescan.com [17] and

nextag.com [16] that visit several shops, extract

product and price information, and compile a market

overview. The comparative result obtained is then

displayed in a tabular format in the user's browser.

Their functionality is provided by wrappers, programs

that extract information from an online store. One

wrapper per store must be developed. This approach

suffers from several drawbacks. First, it’s necessary

for these models to get access grant from vendors

before to access their databases for retrieving any

information. Since some vendors may not give access

grant to their databases, their product information will

not appear in the information provided by these

models. Second, in some cases, the information is

extracted from the online store site through keyword

search and other means of textual analysis. This

process makes use of assumptions about the proximity

of certain pieces of information (for example, the price

is indicated by the word price followed by the symbol

$ followed by a positive number). This heuristic

approach is error-prone; it is not always guaranteed to

work. Because of these difficulties only limited

information is extracted. In addition, programming

wrappers is time-consuming, and changes in the online

store outfit require costly reprogramming.

We have proposed an ontology-based approach to

resolve these problems. In this approach, products and

price information are understood and extracted from

Web pages of vendors’ sites to build virtual catalog

directly.

Most vendors issue their products information in

HTML formats. Though HTML is used as the

language for markup, even documents that

conceptually follow a common schema are marked up

for visual rendering purposes only, and in different

ways due to diverse authorship and goals of the people

writing these documents. This makes it more difficult

to automate the processing of HTML documents in

terms of semantic retrieval and integration. This

problem is a little easier when data on the HTML

pages is represented in HTML tables. Data in HTML

tables is mostly structured, but we usually do not know

the structure in advance. Thus, we cannot directly

query for data of interest. In addition, Web pages are

often cluttered with some other contents like

advertisements, navigation-panels, copyright notices

etc., surrounding the main content of the Web page.

Therefore, extracting structured data from Web sites is

not a trivial task. Suppose the HTML pages of Figures

1 and 2 retrieved from two comparison shopping sites.

These pages show the information about a digital

camera named Canon Powershot SD600 and its sellers.

A segment of these pages contains the product

information (i.e., attributes and values) and another

segment (represented in HTML table) contains

information of sellers and their price about this article.

Figure 1. A digital camera and its sellers’ information from www.pricescan.com [17].

Figure 2. Same digital camera and sellers’ information from www.nextag.com [16].

The goal of the information extraction is to find out

a semantic correspondence between one or more

source schemas and a target schema. For example,

suppose that we are interested in viewing and querying

digital cameras' information through the target schema

represented in Figure 3.

Figure 3. Target schema of digital cameras information.

In the simplest form, semantic correspondence is a

set of mapping elements, each of which binds a

concept or an attribute in a source schema to a concept

or an attribute in a target schema or binds a

relationship among concepts in a source schema to a

relationship among concepts in a target schema. Such

simple forms, however, are rarely sufficient, and

researchers thus use queries over source schemas to

form concepts/attributes and relationships among

concepts to bind with target concepts/attributes and

concepts relationships. We must resolve the following

main issues while performing the information

extraction process:

• Locating segments of interest: While it is easy for a

human to locate the data segments of interest on a

HTML page, doing the same action

programmatically on a HTML page, is not generally

a trivial task.

• Semantic parsing of the segments: It is also easy for

a human and not a program to parse the data

segments and determine their meanings,

independent from their viewing formats.

• Identifying semantic correspondence of the terms:

Some terms appeared on the similar pages have an

identical meaning. Again, identifying this semantic

correspondence between two terms is a non-trivial

task and needs some initial knowledge introduced

by a human being.

We present the details of our approach in the

remainder of the paper as follows. After a short

overview of the related work in section 2, section 3

describes a model for representing ontology in our

virtual catalog. Section 4 explains how we locate

segments of interested data and extract their

information. In section 5, we report the experiments

we conducted involving digital camera advertisements

on the Web. Finally, section 6 presents the conclusion

of this work.

2. Related Work

HTML document wrappers are in some point of views

related to our approach of generating virtual catalogs

for comparative shopping. Several types of document

wrappers have been suggested. YAT [5] and WysiWyg

Web Wrapper Factory (W4F) [19] are manual

wrappers which require users to specify exactly how to

extract data from HTML documents through some

wrapping languages. TSIMMIS [10] allows users to

generate wrappers according to declarative

specifications. The specification part states where the

data of interest is located on the HTML pages.

A number of semi-automatic approaches [9, 12, 13,

14, 18] to wrapper generation use the idea of learning

by examples. The user, first, labels a number of

examples of extracted data, and the software then

generates extraction rules based on these examples.

XWRAP [15] is a semi-automatic wrapper-generator

that builds on the structural meaning of specific

HTML tags (e.g., headings and tables) and how they

are used for data layout. Heuristics are used to

determine the parent-child relationships between data

items, for instance table names, field names, and

values.

Related to automatic wrapper generation, several

systems [2, 6] deserve special discussion because they

support fully automatic generation of wrappers. These

systems examine the structures of sample Web pages

and automatically generate a template for the data

contained in these pages.

All of the above mentioned systems are based

purely on syntax and do not take advantage of the

semantics of the specific domain. However, our

approach is based on understanding and extracting the

semantics of HTML documents. Related to semantic

understanding and extraction, we can mention

AUTOBIB [8], an approach that has been proposed to

automate extraction of bibliographic information on

the Web that (like some other automated extraction

systems) bootstraps itself with an initial knowledge of

bibliographic records. In [1, 3, 4, 7], some ontology

and knowledge based approaches have been

introduced for question answering systems that can

extract concepts and their relations based on human

plausible reasoning.

3. Ontology Representation

Ontology is defined as concepts, their relationships,

and concepts instances of specific domain. Concepts

and relationships are identified and defined by domain

experts. When we apply the ontology to a Web page,

the objects and relationships are identified and

associated with concepts and relationships in the

ontology’s conceptual-model. Thus the strings on a

Web page are recognized and understood in terms of

the target schema.

The ontology’s conceptual-model of the system is

represented by a semantic network. Figure 4 depicts a

partial view of semantic net for domain of digital

cameras. Each node in the semantic network may

represent a concept, a concept attribute, or an attribute

value. Each relation along with its connected nodes

forms a logical statement. For instance we can

enumerate several statements in Figure 4: ATT

(Digital Camera) = {Model, Image Sensor …}, VAL

(Model) = {Canon Powershot SD600, Canon

Powershot SD550 …} and so on.

Figure 4. Ontology’s conceptual-model for domain of digital

cameras (partial).

We have defined 10 relations between concepts in

this phase. Most of them have been used to describe

UML associations. The main relations defined in our

ontology’s conceptual-model are PRO, OFR, OFD,

ATT, VAL, SIM, and ISA. PRO means a manufacturer

produces a product. OFR has been used to define offer

relations between sellers and costs. OFD means a price

is offered by a seller. A concept has some attributes

which has been defined by ATT relations between

concepts and their attributes. For some attributes, we

have defined some values by VAL relations. SIM

which is the core of ontology’s conceptual-model has

been used to define semantic correspondence between

concepts or values. Finally, we have used ISA to

define kind of relations between concepts.

Some values (displayed by dashed ellipses in the

ontology’s conceptual-model) have been defined for

some attributes in the ontology. These values are used

as an initial knowledge to bootstrap the system. Other

values will be extracted from Web pages. Therefore,

system’s ontology will be enriched while performing

the information extraction process.

4. Information Extraction

The task of information extraction is to find a semantic

correspondence between one or more source schemas

and a target schema. For example, consider the target

schema shown in Figure 3 and the source schemas

shown in Figure 1 or Figure 2 for digital cameras’

domain. We must extract the information of digital

camera shown in Figure 1 or Figure 2 in terms of

attribute/value, combine and refine these terms, and

map to the target schema. In this process, we should

attend the three mentioned problems of locating

segments of interest, semantic parsing of the segments,

and identifying semantic correspondence of the terms.

In our approach of information extraction, the

extraction process of product information is different

from the sellers’ information extraction process.

Therefore, we describe these two parts of information

extraction in the two following subsections.

4.1. Product Information Extraction

First, the segment of HTML page that contains the

product information must be found. Since, different

tags may be used for displaying the product

information on the Web pages, extraction process of

product information cannot be based on any particular

tag. In our approach, we use a tag-independent method

to find the interesting segments while we suppose that

HTML pages are well formatted. For badly formatted

HTML documents, a structure checker tool like HTML

Tidy [21] (a free utility from W3C) can detect missing

and mismatching end tags.

Some product attributes may have values in the

ontology but not for some others. The process of

information extraction for these two groups of product

attributes would be different. Thus, we define two

groups of attributes as follows:

• Static attributes: product attributes which have

values in the ontology. For example, attribute

Model of digital camera has a number of values in

the ontology such as Canon Powershot SD600.

• Variable attributes: product attributes which have

no values in the ontology and their values must be

extracted from Web pages. For example, attribute

optical zoom of digital camera has no value in the

ontology. Therefore, for each digital camera, this

information must be extracted from the

corresponding Web pages.

For each static attribute of a product, its values

(retrieved from ontology) must be searched on the

Web pages and for each variable attribute, it must be

searched on.

Product title (attribute model) is usually displayed

in a separated tag followed by the other characteristics

of product on the Web pages. Therefore, we describe

our process of information extraction for a product

title and the other attributes in the following two

subsections.

4.1.1. Finding and Extracting Product Title

 Using the ontology, we search the attributes of the

Model of product on the Web page. If no attributes of

the Model are found, the Web page would be

discarded. Model usually contains the manufacturer

name and then the product name. The first part of the

Model is assigned to the Manufacturer and the

remainder part is assigned to the product attribute (i.e.,

Model attribute) respectively. Therefore, the target

schema shown in Figure 3 updated as shown in Figure

5.

Figure 5. Target schema after extracting product title.

In some Web pages, attributes of the Model appear

in different orders. For example, Canon Powershot

Rebel XT digital camera in some Web pages is

displayed in this order but in other cases displayed in

Canon Powershot XT Rebel. Since Model attributes of

products are only different in order of words, hence we

can consider all orders of the words (except the first

word, because this word shows manufacturer name

and is always the first word of product model) as

attributes of the Model. If Model has been composed

from n words, all orders of (n-1) remainder words (i.e.

(n-1)!) are considered as attributes of the Model and

must be searched on the Web pages.

4.1.2. Finding and Extracting Other Attributes of a

Product

 In this step of process, the segment which contains the

product information must be found. All of the static

and variable attributes of product would be considered

to find the segment. There are some attributes with

values of Yes/No that if the value is Yes then the

attribute appears on the segment of product

information, otherwise it does not appear. For

example, if a digital camera has capability of USB

connectivity, the attribute of USB Connectivity for that

digital camera will be displayed on the segment of

product information. We cannot say that a specific

segment of the Web page is not an interesting segment,

if these attributes (part or all of them) don’t appear on

that segment. Therefore, in another classification, we

can group the attributes of a product in two sets, as

follows:

A= {Variable attributes with value of Yes/No}

B= {(Total attributes - A - Values of Model

attribute)}

Static attributes have no value of Yes/No. For the set

B, all values of static attributes must be retrieved from

the ontology and added to the set. Values of Model

attributes are discarded because they have already

been extracted.

Now, we can find the interesting segment of

product information by searching the elements of the

sets A and B on the Web page. In other words, for

each tag, the elements of the sets A and B are searched

on the tag and the probability of this tag as an

interesting tag of product information (P(ti)) is

computed as follow:

P(ti) =
fkl −+

1
[∑
+

=
∈

nl

j
itBjxFound

1
),(+

∑
−

=
∈

nk

c
itAcyFound

1
),(]

 (1)

Where: l and k are the number of static and variable

attributes of product respectively; n is the number of

variable attributes with no value of Yes/No; xj and yc

are attributes of the product with and without the value

of Yes/No respectively; f is the average number of

variable attributes with value of Yes/No that product

doesn’t has the corresponding capability.

The tag with maximum P is the segment of interest.

Some tags might have the same values of P (i.e.,

parent tags in a tree structure); in these cases we keep

the nested tags (i.e., child tags in the tree) and discard

the others. We consider 0.1 as minimum value of P.

The value less than minimum value shows that the tag

(segment) has too little information about product and

can be discarded.

Using this method, the segment of interest for

product information of the Web page shown in Figure

1 is identified as shown in Figure 6.

Figure 6. Segment of product information from the page shown in

Figure 1.

After identifying an interesting segment, we extract

the product information on this segment. There are

three steps for this state:

• For each variable attribute with Yes/No value, if the

name (or a semantic correspondence of the name) is

found on the segment, the value of Yes is assigned

to the corresponding element of the product object

in the target schema.

• For each variable attribute without Yes/No value, if

the name (or a semantic correspondence of the

name) is found on the segment, the former string

(before the found point) is considered as a value for

this attribute and assigned to the corresponding

element of the product object in the target schema.

• Static attributes’ values found on the segment are

assigned to the corresponding element of the

product object in the target schema.

For example, after extracting the product information

on the Web page shown in Figure 1, the target schema

for product object is updated as shown in Figure 7.

Figure 7. Target schema for product object after extracting product

information from the page shown in Figure 1.

This product information will be more complete

during the extraction process from another Web page

as shown in Figure 2. For each Web page that contains

information about this product, we should perform the

searching and the extraction of product information.

4.2. Sellers’ Information Extraction

As shown in Figures 1 and 2, the sellers’ information

(i.e., seller’s URL, price, etc.,) are almost displayed in

the HTML tables, after the product information

segment on the Web pages. In some cases, there are

columns in these tables on different Web pages, that

have the same semantic with different titles (e.g., first

columns of sellers’ tables in Figure 1 and Figure 2 are

identical but their titles are Vendor and Seller

respectively). We resolve this issue through the

ontology by extracting semantic correspondence

relationships between concepts (e.g., Vendor has a

semantic correspondence relationship with Seller).

Each table block in HTML documents uses the

same specific tags (i.e., <TABLE>, <TH>, <TR>,

<TD>) that we can exploit during our extraction

process. However, to perform the sellers’ information

extraction process four steps must be followed:

1. Finding the table of interest: The sellers’

information table almost has the columns with

specific titles (e.g., Seller, Price, Shipping, etc.,).

We use these titles and their synonyms (via the

ontology) to find the table of interest on the Web

page. The nested table with maximum probability P

is identified as the interesting table, using the same

approach as in subsection 4.1.

2. Deleting the columns of no interest: We are

interested in two columns which contain sellers’

URLs and their price (and sellers’ names). Other

columns must be deleted from the table block.

3. Deleting the extra tags: From logical view, all the

HTML tags except and

can be considered unnecessary and hence removed

[20]. The tags <TABLE>, <TH>, <TR>, <TD>, and

their end tags are considered as delimiters in table

block and will not be removed. We can also remove

all extra information in the tags (e.g., font styles,

font size, etc.,).

4. Extracting Information and mapping to target

schema: After performing the steps above, two

remained columns of each row (i.e., placed in a

<TR></TR> tag) will contain a seller’s URL, name,

and price with no extra information. From the first

column, sellers’ URLs and names are extracted

respectively. The second column contains sellers’

price that can be extracted as product price and

mapped to the corresponding element of seller

object in the target schema.

Figure 8 shows the target schema after extracting

sellers’ information of two first rows for Canon

Powershot SD600 digital camera from page shown in

Figure 1.

Figure 8. Target schema after extracting sellers’ information

(partial).

5. Preliminary Experiments

This section explains our experiments conducted to

verify the validity of our approach. First we describe

the process in which the underlying ontology was

created and implemented. Then we present the

evaluation of our proposed approach.

5.1. Creation of the Ontology

Determining and defining the requisite ontology for

ontology-based systems is a cumbersome task.

Classical expert systems required years to be crafted

by perfect and highly skilled knowledge engineers. For

our system, some digital camera domain experts were

asked to fill simple templates with triple relations they

were familiar with. The basics of system’s ontology-

conceptual model were explained to them in advance

to make them understand what types of relations were

needed. Finally, we implemented the concepts and

their relationships (defined by domain experts) in the

text format that its partial view has been shown in

Figure 9.

Figure 9. Digital camera domain ontology (partial).

5.2. Evaluation of Approach

We have tested our approach of virtual catalog

generation by developing a tool. All components of

this tool have been developed in Java. First, we

retrieved 140 Web pages (i.e., product & sellers’

information) in domain of digital cameras manually.

Typical pages have been shown in Figure 1 and Figure

2 from pricescan.com and nextag.com respectively.

Then, we applied these pages to our system and asked

70 questions. We use the recall and precision measures

to evaluate the performance of our system for

information extraction. Recall and precision were

obtained 0.91 and 0.94 respectively. Figure 10 shows

the typical output of our virtual catalog generated from

some Web pages.

Figure 10. Typical output of virtual catalog generated from web

pages.

6. Conclusions

We proposed a new ontology-based approach for

generating virtual catalogs. Although the problem has

been studied by several researchers, existing

techniques are limited to specific heuristics and

databases. An effective method is proposed to locate

the interesting segments of information in a Web page

and extract the information automatically. We

proposed a probabilistic method that can correctly

identify the data segments. We avoid the tag-oriented

approaches to make the solution as generalized as

possible. An ontology provided by domain experts is

used for identification of the interesting segments and

information extraction processes.

References

[1] Angele J., Monch E., Oppermann H., Staab S.,

and Wenke D., “Ontology-based Query and

Answering in Chemistry: Ontonova@Project

Halo,” in Proceedings of the 2nd International

Semantic Web Conference, Berlin, 2003.

[2] Arasu A. and Garcia-Molina H., “Extracting

Structured Data from Web Pages,” in

Proceedings of the ACM SIGMOD International

Conference on Management of Data, California,

2003.

[3] Chung H., Song Y., Han K., Kim S., Yoon D.,

Lee J., and Rim H., “A Practical QA System in

Restricted Domains,” in Proceedings of the ACL

Workshop on Question Answering in Restricted

Domains, Spain, pp. 566-568, 2004.

[4] Clark P., Thompson J., and Porter B., “A

Knowledge-based Approach to Question

Answering,” in Proceedings of AAAI'99 Fall

Symposium on Question-Answering Systems, pp.

43-51, 1999.

[5] Cluet S., Delobel C., Siméon J., and Smaga K.,

“Your Mediators Need Data Conversion!,” in

Proceedings of ACM SIGMOD, pp. 177-188,

1998.

[6] Crescenzi V., Mecca G., and Merialdo P.,

“RoadRunner: Towards Automatic Data

Extraction from Large Web Sites,” in

Proceedings of the International Conference on

Very Large Data Bases, pp. 109-118, Italy, 2001.

[7] Darrudi E., Rahgozar M., and Oroumchian F.,

“Human Plausible Reasoning for Question

Answering Systems,” in Proceeding of Advances

in Intelligent Systems Theory and Applications,

Luxembourg, 2004.

[8] Geng J. and Yang J., “AUTOBIB: Automating

the Extraction of Bibliographic Information on

the Web,” Computer Journal of International

Database Engineering and Application

Symposium, vol. 3, no. 2, pp.155-157, 2004.

[9] Golgher B., Laender F., Da S., and Ribeiro-Neto

A., “An Example-based Environment for

Wrapper Generation,” in Proceeding of the 2nd

International Workshop on the World Wide Web

and Conceptual Modeling, pp. 152-164, 2000.

[10] Hammer J., Garcia-Molina H., Cho J., Crespo A.,

and Aranha R., “Extracting Semistructured

Information from the Web,” in Proceeding of the

Workshop on Management of Semistructured

Data, pp. 18-25, 1997.

[11] Kalakota R. and Whinston B., Electronic

Commerce, A Manager's Guide, Addison Wesley

Professional, 1997.

[12] Knoblock A., Lerman K., Minton S., and Muslea

I., “Accurately and Reliably Extracting Data

from the Web: A Machine Learning Approach,”

Computer Journal of IEEE Data Engineering

Bulletin, vol. 23, no. 4, pp. 33-41, 2000.

[13] Kushmerick N., “Wrapper Induction: Efficiency

and Expressiveness,” Computer Journal of

Artificial Intelligence, vol. 118, no. 1, pp. 15-68,

2000.

[14] Kushmerick N., Weld S., and Doorenbos B.,

“Wrapper Induction for Information Extraction,”

in Proceeding of the International Joint

Conference on Artificial Intelligence, Japan, pp.

729-737, 1997.

[15] Liu L., Pu C., and Han W., “XWRAP: An XML

Enabled Wrapper Construction System for Web

Information Sources,” in Proceedings

International Conference on Data Engineering,

California, pp. 22-26, 2000.

[16] Price Comparisons, Product Reviews in NexTag,

http://www.nextag.com, Last Visited 2009.

[17] Price Comparisons, Product Reviews in

Pricescan, http://www.pricescan.com, Last

Visited 2009.
[18] Ribeiro-Neto A., Laender F., and Da Silva S.,

“Topdown Extraction of Semi-Structured Data,”

in Proceeding of the 6th Symphony on String

Processing and Information Retrieval, Mexico,

pp. 176-183, 1999.

[19] Sahuguet A. and Azavant F., “Looking at the

Web through XML Glasses,” in Proceeding of

the 4th IFCIS International Conference on

Cooperative Information Systems, pp. 148-159,

1999.

[20] Seo H., Yang J., and Choi J., “Knowledge-based

Wrapper Generation by Using XML,” In IJCAI-

Workshop on Adaptive Text Extraction and

Mining (ATEM2001), Seattle, USA, pp.1-8,

2001.

[21] Structure Checker Program, Tidy Tool for

HTML Correction, http://www .w3.org /People/

Raggett/tidy, Last Visited 2009.

Ali Ghobadi received his BSc

degree on software engineering from

University of Tehran and in 2006 he

received his MSc degree on software

engineering from Islamic Azad

University in Tehran. He has joint

the academic community of

Database Research Group of University of Tehran on

September 2005, after over 8 years of professional

career in IT consultancy as an IT project manager and

senior consultant. His current fields of interests are

automatic ontology building, Agent-based and

Intelligent Systems, natural language processing,

question answering systems, service oriented software

development, and service oriented enterprise

architecture.

Maseud Rahgozar has joint the

academic community of Tehran

University on September 2000, after

over 19 years of professional career

in French software house companies

as R&D manager, senior consultant,

etc. His current fields of interests are

database systems, designing CASE tools for object

oriented programming, designing CASE tools for

database normalization and modernization of legacy

applications and their environments. In 1979, he

received his BSc degree on electronics engineering

from Sharif University of Technology in Tehran, and

in 1987 he received his PhD on database systems from

Pierre and Marie Curie University in Paris.

156 The International Arab Journal of Information Technology, Vol. 8, No. 2, April 2011

