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Abstract: In this paper, an analytical and simulation solution for touch mode Micro-electromechanical systems pressure 

sensor operating in harsh environment is proposed. The principle of the paper is to design, obtain analytical solution and 

compare the results with the simulation using finite elements analysis for a circular diaphragm deflection before and after 

touch point. By looking at MEMS devices, when the diaphragm starts touching the fixed electrode by applying loads, it will 

have a major effect on the overall performance of the device. Therefore, one should consider the effect of touch mode in the 

system to achieve good linearity, large operating pressure range and large overload protection at output. As of so far the effect 

of touch mode has not been evaluated efficiently in the literatures. The proposed touch mode MEMS capacitive pressure sensor 

demonstrated diaphragm with radius of 180 µ m , the gap depth of 0.5 µ m and the sensor exhibit a linear response with 

pressure from 0.05 Mpa to 2 Mpa. 

 

Keywords: MEMS, Touch mode, capacitive pressure sensor, harsh environment, FEA, and circular diaphragm. 

 

Received October 27, 2008; accepted May 17, 2009 Received  
 

 

1. Introduction 

A simulation solution is one of the valuable processing 

for design a sensor. A circular diaphragm with 

clamped edges and a constant residual stress due to 

using same materials for diaphragm and substrate was 

modeled in Finite Elements Analysis (FEA). One of 

the main mechanisms behind the variation of the 

capacitive pressure sensor is to evaluate capacitance 

between two electrodes and contact area. So far, 

simulation based on FEA are widely used to model 

touch mode pressure sensors, but it is very time 

consuming to optimize the radius, thickness of the 

diaphragm and cavity depth between two electrodes. 

the proposed capacitive pressure sensor using silicon 

carbide as of material for harsh environments, silicon 

carbide owing excellent electrical stability, mechanical 

robustness and chemical inertness properties [5], low 

turn-on temperature drift, having high sensitivity, 

wireless sensing schemes and a minimum dependence 

on side stress [1, 8]. 

 

2. Design Process 
 

High temperature pressure sensors are critical for 

advanced industrial, automotive, aerospace, gas 

turbine, oil/logging equipments, nuclear station, and 

power station applications [5]. Due to limitation exist 

for high temperature silicon’s material properties; this 

device is not adequate to be use for designing MEMS 

sensor in harsh environment (high temperature). In this 

paper it demonstrated the simulation of the MEMS 

capacitive pressure sensor focused on touch mode to 

show good linearity, large operating pressure range 

and large overload protection at output. Figures 1 and 

2 present a cross-sectional view of a touch mode and 

normal mode operation of MEMS capacitive pressure 

sensor. In touch mode operation, when external 

pressure increases, the diaphragm will deflect toward 

inside and the diaphragm start touching the bottom 

electrode with a distance of insulator in between. In 

normal mode operation, the diaphragm is kept distance 

away from bottom electrode [4]. The sensor consists of 

two parallel circular plates with clamped-edges, 

suspended over a sealed cavity. The concept of parallel 

plate capacitor is expressed by equation 1. 

                                           

d

A
C rεε 0=                         (1) 

where o ∑ the permittivity of the media between plates 

is, r ∑ is the dielectric constant of the material between 

the plates of the capacitance, A is the area of the 

electrode, and d is the gap between two plates.  

The concept of the capacitance element of the 

sensor requires a change in the capacitance as a 

function of some applied pressure load. A realization 

function of this concept would be the plates of the 

capacitor could move under pressure load, for example 

if the plates move closer together, the gap height, g, 

134 would decrease, resulting an increase in 
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capacitance of the sensor. In touch mode, when 

external pressure increases on the diaphragm, the 

touched radius ( r1) will increase, and at the same time 

the untouched radius (r2 ) will decrease, therefore the 

value of capacitance will increases nearly linearly with 

increasing pressure, before touch point the radius  (r1) 

is zero. As shown in Figure 1 r, r1, r2 are defined radial 

distance from centre, touched–point radius, and 

untouched-point radius respectively. t1, t2 are defined 

the thickness of dielectrics respectively. g is defined 

cavity depth, h is the thickness of the diaphragm [3]. 

 

 
 

Figure 1. Cross-sectional view of touch mode pressure sensor. 

 

3. Theory of Operation 

A plate defined thin plate or small deflection if the gap 

between two electrodes is less than 1/5 of diaphragm’s 

thickness, and the strains and mid-plane slopes are 

much smaller than unity. A plate defined as of thick 

plate or large deflection if its deflection is up three 

times larger than diaphragm’s thickness [10]. Based on 

small deflection theory for circular plate, the deflection 

w of any point on a circular plate under uniform 

pressure is expressed by the following partial equation 

(eFunds). 

                                  

                             PDw =∇∇ 22

                                (2) 
 

where P applied pressure (force per unit area) acting in 

the same direction as Z, D is the flexural rigidity of  

the plate is given by Figure 2. 
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where E , is Young’s Modulus, h is the thickness of 

diaphragm, v is defined the Poison’s ratio. The 

differential operator 	2 is called the Laplacian 

differential operator. For circular plate is simply 

supported classical formula and is defined by 
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if the bending rigidity D is constant through-out the 

plate, the deflection equation 2 for Cylindrical 

coordinate (circular plates) can be simplify and given 

by 
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where, equation 5 is called the bi-harmonic differential 

operator. The deflection for any point of the plate at ( 0 

< r < a ) would be 
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where, a is the radius of the plate, and r is the radial 

distance from the center, the maximum deflection of 

the plate is located in the center point of the plate ( r 

= 0 ), and defined by 
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                               (7) 

Figure 2, shows the deflection w(r) before touch of the 

circular plate as a function of radius is given by 

equation 6 and maximum center deflection o w is 

defined by equation 7. Equation 6 is valid before the 

diaphragm touches the bottom electrode (with the 

insulator in between the plate), then the shape of the 

bending line deviates extremely from expression 6. For 

every pressure, the radius of the diaphragm that barely 

contacts the bottom is called untouched radius (r2), and 

touched radius (r1) will be calculated by subtracting 

the total radius a from r2, noted that the touched radius 

was zero before touch, as shown in Figure 1. 

 

 
Figure 2. Cross-sectional view of normal mode pressure sensor. 

 

4. Simulation Modeling and Analytical 

Analysis Before and After Touch-Mode 

Effect 

In the modeling of MEMS, touch mode effect is the 

most difficult subject due to deflecting of the top 

diaphragm, and the movement of top diaphragm 

should be considered whenever it touches the bottom 

electrode with an insulator in between. There have 

been good suggestions in the literatures for solving the 

touch-down problems, but as of today none of the 

literatures has come up to a final analytical solution for 

calculating the touch-down effect [6, 7]. Another 

alternative to solve the existing problem by 

considering to changing the boundary conditions by 

writing a power series equation for diaphragm 

   (3) 
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deflection before and after touch-down. To obtain a 

solution of a uniformly loaded circular plate with a 

clamped edge, it is necessary to consider the 

equilibrium conditions of the element of circular plate. 

To achieve that, one first has to write the equations in a 

different form. In summery, we have a set of 

governing equations as follows [9]: 
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For solving power series, solution of circular 

diaphragm under uniform load with clamped edge, a 

set of non-uniform differential equations by 

transforming the equations to a dimensionless form  
( )rt SSp ,,, γ

, and introduced by the following 

notations: 
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with given dimensionless notations equation 11 the 

governing equations become as follows: 
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The boundary conditions in this case require the 

radial displacement and the slope dw dr vanish at the 

boundary. The solution can be represented the function 

by the following power series [9]: 
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Substituting in equation 14 and solve for tS , is given 

by: 
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By integration equation 17, we find 
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All of the equations must be satisfied for any value 

ofγ , and find the relations between the constants 

B andC : 
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where 2,BB
o

…, and 31 ,, CCC
o

…, are constants to be 

determine, where two constants 
o

B and 1C are assigned 

by iteration, all other constants are determined by 

substituting in given equations for different boundary 

conditions. In order to include the touch down effect 

into a behavioral model, we should calculate the radius 

1r (touched radius) that is a function of touched-mode 

pressure TP , for calculation of bending line in touched-

mode, the power series equations (19-21) modified by 

substituting  γ   by   
h

rr 1−  , and is given by the 

following [10]: 
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It is not practical to determine four unknown constants   

o
B ,

o
C , 1C  and 1r  by assigning value . As we know 1r  

before touch is equal to zero and touch point pressure 

( TP ) is given when the load pressure is more than 

touch point pressure. [10]: 
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Now, calculate the equivalent untouched radius (r2) 

of a virtual circular diaphragm by using equation 28, 

and is defined by: w = g o , 2 r = r 
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Touched- point radius 1r  is given by: 
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C Can be defining by the maximum deflection 

equation 8 of circular diaphragm before and after touch 

and is given by, before touch point: 
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After touch point where gw =
o

, by satisfying the 

boundary condition at the touch radius and is given by: 
 

gw
rr

=
= 1

,     0=
=ardr

dw
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Hence, the value of 1r  touched radius and 
o

C constant 

have been determined, the other two constants 
o

B  and 

1C can be assigned proper value to satisfy the 

boundary conditions at ar =  equation 6 and is given 

by:  
 

0=
=ar

w ,       0=
=ardr

dw
 

 

 Finally by having these constants, we can find a set of 

kB and kC . 

 

5. Simulation Results 

Figure 3 shows the comparison result of the Analytical 

and FEM of the radial distance versus diaphragm 

deflection at different pressure loads. The test model is 

designed, with 180m radius, 4m diaphragm 

thickness, 0.5m of cavity depth, and operates with 

the pressure up to 2Mpa. Figure 3(a) shows the 

deflection with the applied pressure from 10kpa-55kpa 

before touch point and Figure 3(b) shows the 

deflection with the applied pressure from 100kpa- 

500kpa after touch point.  

 

 
(a) Before touch-point. 

 

 
(b)After Touch-point. 

 

Figure 3. Radial distance (diameter) vs. deflection. 

 

Figures 4 and 5 show the 3D-Visulize pressure load. 

Theoretical model for evaluating the change of 

capacitance after touch mode in Table 1 shows FEM 

results pressure loads vs. touched radius and pressure 

vs. capacitance at different pressure range. The model 

is designed from a=180m radius, h= 4m diaphragm 

thickness, g= 0.5m Cavity depth. 
 

 
 

Figure 4. 3D_visulize side view touch-mode contact point_0.1Mpa. 
 

 
 

(a) With no clamp. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

(b) With clamp. 
 

Figure 5. 3D-visulize Pressure vs. deflection with clamp. 
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Table 1. Pressure range from 75Kpa to 1Mpa vs. 
 

Statistic Pressure(Psa) Touch Radius 

Min. 75000  7.1985e-7 

Max. 1000000 8.618e-5 

Mean 5.375e5 6.4123e-5 

Median 5.375e5 7.0427e-5 

Std. 2.6746e5 1.9997e-5 

Range 9.25e5 8.546e-5 

 
Statistic Pressure(Psa) Capacitance(pF) 

Min. 75000  1.5642e-16 

Max. 1000000 2.2419e-12 

Mean 5.375e5 1.3617e-12 

Median 5.375e5 1.4972e-12 

Std. 2.6746e5 6.4929e-13 

Range 9.25e5 2.2417e-12 

 

6. Conclusions 

The results for analytical and FEA is presented to 

evaluate before and after touch mode circular 

diaphragm at different applied pressure loads. These 

methods are widely used to model MEMS pressure 

sensors, but simulating in FEA is time consuming to 

optimize sensor’s parameters such as: radius, cavity 

depth, diaphragm and dielectric thickness, Young’s 

modulus, Thermal Coefficient Expansion (TCE) and 

etc. the solution involved deflection and power series 

theories for before and after touch-point using touch  

mode capacitive pressure sensor, have the advantage of 

good linearity, it has shown exact contact deformation, 

pressure vs. deflection, pressure vs. capacitive 

proposed by Timoshenko’s theories and also by Wen 

H. Ko. The two results by using FEA and analytical 

was very promising results, especially for calculating 

the touch-point radius approximation. 
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