
66 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

Lossless Text Compression Technique Using

Syllable Based Morphology

Ibrahim Akman1, Hakan Bayindir1, Serkan Ozleme2, Zehra Akin3, and Sanjay Misra1

1Computer Engineering Department, Atilim University, Turkey

2Parana Vision Image Processing Technologies and Solutions Consultancy Corporation, Turkey

3Meteksan Systems and Computer Technologies Corporation, Turkey

Abstract: In this paper, we present a new lossless text compression technique which utilizes syllable-based morphology of

multi-syllabic languages. The proposed algorithm is designed to partition words into its syllables and then to produce their

shorter bit representations for compression. The method has six main components namely source file, filtering unit, syllable

unit, compression unit, dictionary file and target file. The number of bits in coding syllables depends on the number of entries

in the dictionary file. The proposed algorithm is implemented and tested using 20 different texts of different lengths collected

from different fields. The results indicated a compression of up to 43%.

Keywords: Algorithm, text compression technique, syllable, multi-syllabic languages.

Received December 15, 2008; accepted August 3, 2010

1. Introduction

The Data Compression (DC) is not only the cost
effective technique due to its small size for data
storage but it also increases the data transfer rate in
data communication. A data compression algorithm
should emphasize the originality of the data during
compression and decompression process. This property
is called lossless compression. Today, available
lossless text compression techniques are generally
based on the assumption that a text contains a large
amount of redundancy and each of these techniques
addresses to different types of redundancies. Most text
compression algorithms perform compression at
character level or at word level [11, 22, 24] and they
do not consider adjacent string structures in words such
as syllables which may provide important advantages
[4, 14]. The existing text compression techniques have
a number of other weaknesses. First, in many cases, a
single bit error is sufficient to result in a long stream of
errors in the coded file. Second, the compression ratio
of the existing utilities is not as large as desired for
storage applications [4]. Lastly, the most effective
compression algorithms are reported to be
computationally expensive as also pointed by [13].
Text compression based on syllables is a relatively new
area of research (see for example, [2, 16, 20, 25]).
The syllable-based text compression may be very
useful especially for languages with rich morphologies
(e.g., Turkish, Czech and German). In these languages,
the words usually consist of several syllables and
syllables play the role of natural transition between
letters and words [16]. Syllables are usually longer
than one character and each word contains at least one
syllable [5, 17]. In many cases, different words contain

the same syllables in their structures. As the syllables
are somewhere between characters and words, it can be
expected that syllable compression could take
advantage of both character compression and word
compression. Further, the HTML pages are normally
smaller (in size) and syllable-based compression may
be the most appropriate technique for their transfer in
networking and communication since the syllable
based compression is reported to be the most
appropriate approach for small documents [16].
Actually, syllable based compression has recently been
studied by Lansky and his colleagues [17, 20, 23].
These studies utilize databases of frequently used
syllables and mainly adapted well-known algorithms of
adaptive Huffman coding and LZW to use syllables
and words instead of characters. They reported in [17]
that the results are ambiguous for Czech. They also left
open the applicability of syllable-based compression
for different languages [17, 19].

Against this backdrop, we propose to take syllabic
nature of multi-syllabic languages into account for text
compression. The proposed approach is different than
previous syllable based compression approaches [16,
20, 25] in that, it uses syllables as the basic unit and
compresses these fragments utilizing an automaton to
produce a volatile dictionary and the approach is based
on an original modular lossless compression algorithm.
The remainder of this paper is organized as follows. A
brief review of classification of languages according to
their syllabic nature and the proposed syllable based
text compression technique are given in section 2. An
example based on the proposed algorithm is
demonstrated in section 3. The decompression
technique is discussed in section 4. Theoretical

 Lossless Text Compression Technique Using Syllable Based Morphology 67

considerations and implementation are outlined in
sections 5 and 6. The discussions and conclusions
drawn constitute the last two sections.

2. Classification of Languages and the

Proposed Syllable Algorithm

A possible classification of languages [9] considering
their syllabic nature is as follows:

• Mono-syllabic Languages: These are formed from
words of one syllable only. Chinese and Japanese
are examples of such languages.

• Multi-syllabic Languages: These are formed from
words of one or more syllables. This category has
two sub classes as follows:

a. Languages which are formed by adding affixes to
their roots. Addition of these affixes may
change the root. The Semitic (e.g., Arabic, and
Hebrew), Germanic (e.g., English, German and
Danish) and Romance (e.g., French, Italian and
Spanish) languages are examples of the languages
falling into this category.

b. Languages which are formed by adding suffixes to
roots or other suffixes. This addition normally does
not change the root. These languages are called
agglutinative. Turkish and Ural-Altaic languages
(e.g., Hungarian and Finnish) are examples of this
category.

The roots, prefixes and suffixes appear in the form of
syllables in these languages and a model for
generalization of their structure is proposed as follows:

 word = syllable1 + syllable2 + ... + syllablen

The main components of the proposed approach are:

• Source file: contains the original text.
• Filtering unit: mainly searches the text for

characters not included in the alphabet.
• Syllables unit: divides words into its syllables.
• Compression unit: creates a dictionary for

compressing the input text and producing the target
file.

• Dictionary: contains different syllables contained in
the text and their corresponding binary codes. This
file is volatile.

• Target file: contains compressed data.

Of these components, source and target files constitute
input and output files respectively. The filtering unit is
the first module to process words to search for
characters not included in the alphabet (non-
alphabetical characters). If such a word is detected then
it is partitioned into three segments which are: the
string preceding the non-alphabetical character, the
character itself and the string following the character.
The preceding and following strings are considered as
separate words in later stages. The character (or string
of such characters) is treated as non-dividable syllable.

For this purpose, the filtering unit inserts tags and
writes a “no” for all non-dividable strings and “yes”
for all dividable strings for all words. These tags are
messages received by the syllables unit. The filtering
system also detects blanks and punctuation marks and
merges them with the last syllable of the divided word
later in the syllable unit.

 The syllables unit uses a finite automaton to
partition filtered words into their syllables.
These syllables are then sent to the compression unit
without any changes being made to the syllable order.
The compression unit processes syllables to create a
dictionary and the target file. The dictionary is used as
a volatile lookup table during compression and is
empty when the compression starts. When a different
syllable is entered into the compression unit it is
directly written into the target file and, consecutively,
its bit representation is created in the dictionary. When
the same syllable later arrives at the compression unit
its code is found in the dictionary and this code is
inserted into the target file. With this approach, the
target file is always a combination of plain text and bit
representations, and the dictionary is embedded in the
target file. Therefore, the dictionary is discarded when
the process finishes. This saves memory space and is
one of the important advantages of the proposed
algorithm. The compression unit uses two flags to
distinguish plain text for different syllables and bit
representations of repeated syllables in the target file.
These flags are needed for decompression. The first
flag should actually be a character whose possibility of
occurrence is zero in the text (e.g., we used δ in our
examples). The second flag which is used at the end of
a bit representation is a bit representation of the
shortest possible length and is composed of ones only
(e.g., 11, 111 or 1111). Finally, the proposed algorithm
is case sensitive.

3. Demonstration of the Proposed

Algorithm: a Worked Example

A Turkish sentence is selected to illustrate the
proposed approach since this is the language used in
implementation. The example sentence is: “Alexander
heranda hersey olacak der ve Alexis ise olanın aleme
anlatılmamasını ilave eder“ (means “Alexander says
anything will happen at any time and Alexis adds that
this fact should not be told to the world”). The given
sentence contains 13 words and is read by the filtering
unit word by word. Each time a word is read, filtering
unit seeks for words containing a letter (or a string of
letters) which is not included in the alphabet. In our
example, the first word entered is “Alexander” as
shown in Table 1. The letter “x” is not included in
Turkish alphabet and therefore, “Alexander” is
partitioned into “Ale”, “x” and “ander” with tags “Y”,
“N” and “Y” respectively as shown in Table 1. The
same procedure applies to “Alexis”. All the other

 68 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

words remain as they are and take the tag “Y”. In this
example, “λ” stands for the blank between words and
is used to make it easier to follow for the reader. Each
word is then sent to the syllables unit one by one to be
broken down into its syllables. For example, syllables
unit partitions the fourth string “heranda” into three
syllables as “her”, “an” and “daλ” as shown in Table 2.
This unit extracts 39 syllables.

Extracted syllables are received by the compression
unit one after the other. Of these syllables, 22 are
different. Therefore, only 22 of the syllables are coded
in the dictionary. For example, “an” is a syllable and
first detected in the word “A-le-x-an-der”. It is
repeated 3 times in the text (“her-an-da” and “an-la-tıl-
ma-ma-sı-nı”). With its first occurrence, the binary
representation is determined as “100” in the dictionary
unit and other occurrences are not considered.
However, “veλ” is not repeated and represented by
“1101” as shown in Table 2. The syllables are written
as they are into the target file when they are observed
for the first time. For example, the first word is
partitioned into its syllables as “A-le-x-an-derλ” and
these syllables are written into the target file as they
are as shown in Table 2. In the next set of syllables the
syllables “her” and “daλ” directly go to the dictionary
file in which their codes are created and target file
since they appear for the first time. However, the
middle syllable “an” was detected in “A-le-x-an-der”
and its binary representation “100” was created then.
Therefore, “herδ-100-111-daλ” is written into the
target file. The flag “δ” indicates that binary code
representation will follow the plain text and possible
shortest string of binary digit “1” (i.e., “111”) is used
to indicate that binary code representation for a
syllable has been completed and plain text will follow.

4. Decompression

The decompression algorithm is the same as its
compression counterpart. The decompression
algorithm uses the same main components as that of
compression algorithm and can be summarized as
follows:

• Data is read from the file (whose first entry is a
word since new syllables are not modified during
compression) and then a check is applied for the
flag of data. The input mode is changed according to
the type of flag.

• The inputted data is sent to filtering unit if it is an
alphabetical string. The filtering unit searches for a
character not included in the alphabet and inserts
tags. This stage is bypassed for binary codes since
they are aliases for syllables that have been
encountered before. The inputted word is then sent
to syllables unit and is partitioned into its syllables
according to its tag. Binary data bypasses this stage
since it does not need to be partitioned but to be
replaced with original syllable.

• Finally, data arrives at the decompression module. If
this data is a word, then it’s directly recorded to
dictionary and its binary code is created. This code
will be the same as the code created during
compression procedure since the order of syllables
is not changed during compression and
decompression. Concurrently, this alphabetic data is
sent to the output module. If the inputted data is a
binary representation then its code is searched in the
dictionary file since it must have been encountered
before. As a result of the search process the
matching entry is found and sent to output unit.

The above steps are repeated until the end of the file is
reached.

5. Theoretical Considerations

The size (os) of the original file is measured in terms

of bits and can be given by the following formula:

 ∑
−

=

=
1

0

)(
cc

i

ieo characterls (1)

where ()el is a function that gives the encoding length

of a given character. The character count (cc) and

encoding length (el) for a particular character in the

text are two main parameters effecting original file size
in this formula.

Text Tag Word Text Tag Word

Alexanderλherandaλheyλ Y Ale Alexisλiseλolanınλalemeλ Y Ale

 N x N x

 Y anderλ Y is

 Y herandaλ Y iseλ

 Y herşeyλ Y olanınλ

olacakλderλveλ Y olacakλ Y alemeλ

 Y derλ anlatılmamasınıλilaveλeder Y anlatılmamasınıλ

 Y veλ Y ilaveλ

 Y ederλ

Table 1. Source file and output of filtering unit.

 Lossless Text Compression Technique Using Syllable Based Morphology 69

Compression gain (cg) can be defined as the amount of
space recovered as a result of compression and can be
calculated by

×−= 100100

sizefileoriginal

sizefilecompressed
cg (2)

where original file size and compressed file size should
be in same unit (bits, bytes, Mbytes, etc.).

Compressed file consists of two parts, a unicode
part (UP) and a binary part (BP) according to the

proposed algorithm. Then, compressed file size (cs) is

simply

B
P

U
P

c
S += (3)

where UP represents the size of unicode part and BP is

the size of the binary part. Compression gain can
therefore be reformulated as:

×

+
−= 100100

os

BPUP
cg

(4)

The unicode part (UP) of the compressed file is the

part which includes the syllables encountered for the
first time. These syllables use 16 bits per character.
Therefore, the space used by these syllables is

∑ ×=
−

=

1

0
16)(

sc

i
isyllcharCount

U
P (5)

where sc is the number of syllables that are

encountered for the first time, char count() is a function

that gives character count of a syllable and sylli is ith
first encountered syllable.

Binary Part (BP) of the file is the portion of the file

which includes the exchanged syllable codes which
represent the detected repetition. This part is written in
pure binary form. Therefore, the space used by binary
part of the file is

i
j

Syll
Si

C

j i
r

C
BM
l

i
B
P ×

−

=

−

=

= ∑∑)(

1

0

1

2

 (6)

where BMl is the maximum bit length that can hold all

syllables encoded,
iS

C is the number of different

syllables encountered during the bit length i , cri(sylli)
is a function that returns the repetition count of syllj
and syllj is the jth encountered syllable during bit
length. In this formula, the maximum bit length lbm is a
function which represents the number of bits required
to encode all syllables encountered. The maximum
number of syllables to be encoded using n bits in our
algorithm is 2n-1+1 where n >= 2 since our algorithm
uses zeroes added to header of the syllable codes and
these are length aligners rather than discrete identifiers
of different syllables. This means that, in our coding
scheme 001 and 000001 are pointing to the same entry
in the dictionary. Therefore, the average length of
syllables l Syll Avg is the amount of space that a discrete
syllable occupies on file in terms of bits and can be
calculated by

el

SylC

Syl
C

i
i

SyllcharCount

AvgSylll ×
=

=

∑
0

)(

 (7)

where Csyl is the total number of discrete syllables in
the file, le is the encoding length for the compressed
file, char count() is a function that gives character
count of sylli . The average compression gain is then

Syllables Dictionary Target File

 Syll. Code Syll. Code Syll. Code

A o seλ ma A 00 cakλ 1100 nıλ 11000 Alexanderλherδ 100 111

le la o ma le 01 veλ 1101 e 11001 daλδ110 1111 şeyλolacakλ

x cakλ la sı x 10 isλ 10000 δ0101 1111 veλδ0000 0001

an derλ nınλ nıλ an 100 i 10001 0010 1111 isλiseλδ1010 1011

derλ veλ a i derλ 101 seλ 10010 1111 nınλδ 0000 0001 1111

her A le la her 110 nın 10011 meλδ 0100 1011 1111 tılmaδ

an le meλ veλ daλ 1000 meλ 10100 10110 11111 sınıλδ 10001

daλ x an e şeyλ 1001 tıl 10101 01011 01101 11111 eδ00101

her isλ la derλ o 1010 ma 10110

şeyλ i tıl la 1011 sı 10111

Table 2. Output of syllables and compression units.

70 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

×

×+×

−=
∑ ∑∑

−

=

−

=

−

= 100

)(16)(

100

1

2

1

0

1

0

o

j

l

i

C

j

r

c

i

i

s

iSyllCsyllcharCount

cg

AvgSyll
iS

i

s

 (8)

This leads to the fact that the upper limit for
compression cgu is reached when LBM reaches syll avg.

6. Experimentations and Validation:

Implementation of Proposed Algorithm

for Turkish Language

The Turkish language is used for the implementation
of the proposed algorithm. Turkish is one of the oldest
living languages. It is the sixth most widely spoken
language in the world [12] and spread over a large
geographical area in Europe, Australia and Asia. The
available literature provides few studies targeted text
compression on Turkish language [1, 6, 7, 10]. The
syllable based text compression on Turkish was not
examined properly except the work of Ucoluk et al.
[25], who used a genetic algorithm based on Huffman
encoding upon mixed alphabet of characters and
syllables. This approach requires extensive Huffman
tree constructions.

Java programming language is selected for the
implementation since, with Java, (1) the resulting code
will be totally cross-platform (in theory), (2) project
can be developed faster with the extensive class
support of Java, and (3) development environment may
be altered during development and there will be no loss
of time due to different operating systems. For
implementation, we used a modified version of the
finite automaton given by [2] and [17].

6.1. An Overview of Turkish

The Turkish alphabet contains 29 letters and excludes
the q, x, and w of the English alphabet. The additional
letters are ç, ğ, I, s, ö, and ü, whose corresponding
upper cases are Ç, Ğ, I, S, Ö and Ü respectively. The
upper case of I is Đ. A Turkish text uses blank and
punctuation characters. Fundamental morphological
characteristics are as follows:

• It is mainly suffix based.
• Its words do not contain gender identification.
• Its words are formed by syllables.
• A word/syllable never starts with ğ (or (Ğ)).
• A word contains at least one syllable.
• A syllable may contain one or more letters.
• The letter is always a vowel for one letter syllables.

According to the Turkish language’s vocalic harmony,
every syllable contains one vowel (v) and the number
of letters can be at most four in a syllable [3]. The first
two letters in a syllable cannot be consonants (c) and it
is not possible to have two consecutive vowels in a

syllable [3]. There are seven regular syllable structures
in Turkish [2] as follows:

One v : (v) o (that)
One v and one c : (vc) at (throw)
One c and one v : (cv) ye (eat)
One v, one c and, one v : (vcv) ara (search)
One c, one v and one c : (cvc) gel (come)
One v and two c : (vcc) ilk (first)
One c, one v and two c : (cvcc) sert (Hard)

The other syllable models are irregular and mainly
belong to foreign origin. The most common irregular
syllables are [2]:

One c, one v and, three c :(cvccc) kontr (kontr)
Two c and, one v :(ccv) gri (gray)
Two c, one v and, one c :(ccvc) tren (train)
Two c, one v and, two c :(ccvcc) tröst (trust)
Two c, one v and, three c: (ccvccc) krankl
(crankshaft)

6.2. Implementation

The performance of SA is measured using 20 text files
ranging from 4.6 to 726.4 Kbytes. The type of texts is
given in two categories in Table 3. The first category
generally contains texts collected from different
sources of different natures and the second category
mainly contains translated or original Turkish stories
and novels of different sizes.

The proposed algorithm was also compared against
two other lossless compression algorithms, namely
Adaptive Huffman coding algorithm and bit-oriented
Lempel-Ziv-Welch (LZW) [8, 26] Table 4. The results
are evaluated in terms of Compression Percentage
(CP), CP= (LO-LC)/LO x100, where LO: Length of
original text and LC: Length of compressed text.

A close inspection of Table 4 suggests that better
compression percentages were obtained for larger texts
for SA. This is because the ratio of the same
(incompressible) syllables increases for larger files. In
general an average of 36.22% compression percentage
was obtained for files whose size is larger than 100
Kbytes and it gradually increases as the file size gets
larger as shown in as shown in Figure 1.

It is important to note that compression percentages
for the two categories follow similar trends depending
only on the size of the source files as shown in as
shown in Figure 2. This means that the content of the
text does not affect the performance of the proposed
technique.

It is fairly easy to rank the performance of different
compression algorithms. For smaller files
(file_size<100 Kbytes), Huffman and LZW performed
better than SA. For larger files (100
Kbytes<file_size<750 Kbytes), except C26 and C29,
SA yields better results than Huffman. On the average,
Huffman performs better than SA for small files
(file_size<100Kbytes) at a rate of 9.8% whereas this

Lossless Text Compression Technique Using Syllable Based Morphology 71

percentage is 3.6% in favour of SA for larger files
(file_size>100 Kbytes). Although LZW produces
better performance than SA for larger files the gap
between their average compression percentages was
reduced. This gap between SA and LZW is 21.3% for
smaller files (file_size<100Kbyte) and 10.42% for
larger files (100 Kbytes<file_size<750 Kbytes). For
even larger files, SA is likely to perform better than
Huffman and LZW since these two are stabilized
around 30-35% and 45-50% respectively. Compared to
Adaptive Huffman and LZW algorithms, SA is more
flexible, continually adapting itself to the text.
Although Huffman and LZW algorithms can adapt
themselves after a change in file characteristics, they
need a relatively long time for adaptation [8].
Additionally, LZW is negatively influenced by the
learning period of the compression procedure.
Furthermore, compared to Huffman and LZW, SA
requires a relatively less memory space since it needs
only one volatile dictionary.

It is important to note that computational times
follow an increasing trend for both of Huffman and
LZW algorithms, which means this trend depends
mainly on the size of the source files for these
algorithms as shown in Table 4. However, it is
interesting to observe that the compression time for SA
gradually increases up to a certain size of text and then
starts to decrease as shown in Figure 3. A plausible
explanation for this observation is that syllables start to
repeat themselves after a certain size in which case
dictionary file reaches to saturation a point and new
codes are rarely needed. This, of course, reduces
compression time. This means computation time for
SA does not only depend on the size of the file but also
depends on its content.

File # Category-I
Size (Bytes)

(source file)
File #

Category-II
Size (Bytes)

(source file)

C11
Conference paper on success of MS
students

4666 C21 A paper on Oguz Khan 39040

C12 A text explaining a software 13112 C22
A chapter for data
structure

57431

C13
A document on the Informatics
departments in Turkey

14146 C23 Epic story of Oguz Khan 77570

C14 Software project 17799 C24 A story 107249

C15
Rules and regulations for master of
science

19583 C25

A translated novel

249782

C16 Dictionary 23147 C26 A book 355475

C17 A paper on simulating software quality 44731 C27 A Novel 403029

C18 A report on e-government 124936 C28 A Novel 561651

C19 Higher education law 193943 C29 A Novel 696351

C110
Report on activities for electronic
transformation

325267

C210

A translated novel

726431

Comp. Percentage Comp. Time (msc.) Comp. Percentage Comp. Time (msc.) File #

Algorithm Algorithm

File #

Algorithm Algorithm

 SA Huff. LZW SA Houf. LZW SA Houf. LZW SA Houf. LZW

C11 13.00 33.80 35.15 744 24 13 C24 36.62 35.87 48.54 2958 329 358
C12 12.87 33.52 39.39 777 64 28 C18 36.05 33.41 48.10 3618 379 230
C13 17.97 32.71 41.33 410 63 32 C19 43.22 35.94 51.39 846 622 348
C14 23.41 31.46 42.94 1093 55 69 C25 34.95 34.28 45.38 7115 812 486
C15 30.62 33.12 46.34 4634 87 35 C110 39.85 32.44 52.62 1647 54 515
C16 15.86 35.50 42.13 806 93 94 C26 30.05 33.51 39.85 12629 1204 768
C21 24.06 34.11 43.52 1319 172 147 C27 36.33 35.54 47.02 10963 1456 749
C17 24.04 31.09 44.01 223 121 83 C28 35.55 33.80 46.07 15705 1512 1041
C22 30.09 31.70 54.65 1373 252 88 C29 32.29 35.92 42.42 4634 1677 1291
C23 31.30 33.00 46.47 2236 229 278 C210 37.27 35.01 45.03 1373 2852 1363

Table 3. Text categories.

Table 4. Compression percentage and computation times (file size is sorted in ascending order).

72 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

Figure 1. Compression percentage for SA algorithm for different
files.

Figure 2. Compression percentage of two categories.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
2
1

C
1
7

C
2
2

C
2
3

C
2
4

C
1
8

C
1
9

C
2
5

C
1
1
0

C
2
6

C
2
7

C
2
8

C
2
9

C
2
1
0

Files

Time (msc)

Figure 3. Compression time (file size is sorted in ascending
order).

7. Discussion

Present study provides several notable contributions.
First, our algorithm is robust against corruption in
compressed files. This means, if any corruption occurs
when compressing a syllable, it results in a typo only
for that syllable as a result of decompression. The rest
of the text stays uncorrupted. This property is superior
to many other popular algorithms because bit errors are
catastrophic for most of the other algorithms and result
in an unreadable file after the point of corruption.
Second, the proposed algorithm, contrary to many
other algorithms [15], is modular and each module is
clearly defined. Therefore, the entire system is simple,
easy to understand, implement and make
modifications. Third, SA needs less memory space
due to using volatile dictionary. Finally, it extends
theoretical insights from other algorithms reported in
the literature and our results may provide a basis for
discussions and extensions regarding the use
of languages’ syllabic characteristics in text
compression.

Currently, two strings with different capitalizations
are treated as two different words, but they could be
combined into a single entry and end-of sentence test
could predict which form to use. Using one or more
non-volatile dictionaries for syllables and/or
considering statistical/arithmetic coding of syllables
may improve the performance of the syllabic algorithm
in terms of both compression percentage and
compression time. Additionally, a study on
performance comparison with other multi-syllabic
languages (or mixed languages) will shed light on the
reaction of the proposed algorithm against different
language structures.

 The proposed algorithm has also some advantages
compared to the method reported by Lansky and
Zemlicka [17, 18, 19]. In their study, Lansky and
Zemlicka [17] focused on the specification of syllables.
They created two syllable-based compression
algorithms and, as they noted, their algorithm has
problems in decomposing the words into syllables
(page 39). To improve the compression, they created a
database of frequent words, which of course makes the
procedure more complicated. Additionally, the content
of database may change from one language to another
and, more importantly, is likely to be subjective even
in the same language. As they also expected, the
databases can improve compression ratio for smaller
documents. The experimental results of their
algorithms are ambiguous for Czech. Our algorithm, as
noted before, uses a volatile dictionary only and this
idea applies to all syllabic languages. This dictionary is
created automatically and progressively for each text
when the compression starts. On the contrary of
Lansky and Zemlicka [17], the present approach
performs better for larger files.

Ucoluk et al. [25] proposed a genetic algorithm
approach for syllable based text compression. Their
approach is based on Huffman encoding upon mixed
alphabet of characters and syllables. Although, ideally,
this approach requires extensive Huffman tree
constructions, the authors used a theoretical
approximation for estimating the compressed length
using mathematical operations. In addition, rare
syllables are dissolved into characters every time in
Ucoluk’s [25] approach, in which case the problem is
that which syllables should be included to ensure the
optimal length of the compressed text [21].
Furthermore, the proposed approach generally
produced better compression percentages (30-43%)
than the genetic algorithm of Ucoluk et al. [25].

Another genetic algorithm for syllable based text
compression has been proposed by Lansky and Khutan
[21]. They obtained dictionaries using genetic
algorithm and applied on texts with different languages
such as Czech and English. Compared to Lansky and
Kuthan [21], our approach performs better for
especially medium and large files in terms of
compression percentages.

 Lossless Text Compression Technique Using Syllable Based Morphology 73

Finally, some authors also worked on compression
techniques for Turkish documents. For example,
Celikel et al. [7] proposed a secure compression
(SeCom) algorithm. They stressed for the need of
security during compression. To this end, they applied
multiple encoding to strengthen the security of the
SeCom scheme. In another study, Celikel et al. [6]
proposed Word-Based Fixed and Flexible List
Compression technique. Diri [10] proposed a method
for lossless compression for monograms, diagrams,
trigrams, root grams and suffixes individually using a
statistical approach. Their experiments showed that
compression ratio is changing from 39% to 59%.
Actually, the compression technique for Turkish
language is firstly proposed by one of the authors of
the present paper [1]. This technique was based on
partitioning the word into its root and suffixes by using
dictionaries. The reported compression goes up to 47%
with this approach. The reader should note here that all
the works discussed in this paragraph belong to word
based compression and do not use syllables.

8. Conclusions

The proposed lossless text compression algorithm
takes syllabic characteristic of multi-syllabic languages
into consideration for compressing a given text. The
components of the algorithm are: source file, filtering
unit, syllables unit, compression unit, dictionary file
and target file. The method uses variable bit length
representation depending on the number of different
syllables in the dictionary and performs compression in
three steps. The first step is filtering to find non-
alphabetic characteristics. The second step uses an
automaton to partition the words into their syllables.
Finally, the compression unit first creates a volatile
dictionary to identify bit representations for different
syllables and then uses this dictionary to develop the
target file which contains compressed text. With these
features the proposed technique can be a valuable
contribution in the field of text compression.

The proposed approach was implemented in Turkish
language and experiments were conducted using 20
different and reasonably selected texts whose sizes
vary between 4.6 and 725 Kbytes. The compression
rates were observed to change from 13.0% to 43.2%.
Experiences indicated that higher compression rates
were achieved with increasing text sizes.

Acknowledgement

We used a modified version of the finite automaton
given by Asliyan et al. [2]. The modifications were
done by Dr. Hurevren Kilic of Atilim University.
Authors are thankful to them.

References

[1] Akman I., “A New Text Compression Technique
Based on Language Structure,” Journal of
Information Science, vol. 21, no. 2, pp. 87-94,
1995.

[2] Asliyan R., Günel K., and Filiz A., “Otomatic
Syllable System for Turkish and Syllable
Statistics,” in Proceeding of Academic

Informatics, Information Technologies

Conference IV, Pamukkale University, 2006.
[3] Buyukkuscu I. and Adali E., “Developing Roots

Using Syllables,” Computer Sciences and

Engineering Journal, vol. 2, pp. 25-29, 2006.
[4] Blandon J., Adjouadi M., and Emami S., “A

Synergistic Text Compression Method STCM,”
in Proceedings of IEEE International

Conference on Acoustics, Speech and Signal

Processing, vol. 3, pp. 2773-2776, Florida, 2002.
[5] Cahill L., “Syllable-Based Morphology,” in

Proceedings of Computational linguistics, vol. 3,
pp. 48-53, United Kingdom, 1990.

[6] Celikel E., Dalkilic M., and Dalkilic G., “Word-
Based Fixed and Flexible List Compression,”
Lecture Notes in Computer Science, vol. 3733,
pp. 780-790, 2005.

[7] Celikel E. and Dalkilic M., “Experiments in a
Secure Compression Algorithm, Word-Based
790, Fixed and Flexible List Compression,”
Lecture Notes in Computer Science, vol. 3733,
pp. 780-2005.

[8] Cormack G. and Horspool R., “Data
Compression Using Dynamic Markov
Modelling,” The Computer Journal, vol. 30, no.
6, pp. 541-550, 1987.

[9] Comrie B., The World’s Major Languages,
Croom Helm, London, 1987.

[10] Diri B., “Content Based Compression of Turkish
Documents,” Pakistan Journal of Applied

Science, vol. 1, pp. 446-451, 2001.
[11] Dvorsky J., Pokorny J., and Snasel V., “Word-

Based Compression Methods for Large Text
Documents,” in Proceeding of IEEE Data
Compression Conference, pp. 523, USA, 1999.

[12] http://www.turkishembassy.si/Turkish_Language
.htm, last visited February, 2009.

[13] Horspool R., “Improving LZW,” in Proceeding
of Data Compression Conference, pp. 332-341,
Utah, 1991.

[14] Horspool R. and Cormack G., “Constructing
Word-Based Text Compression Algorithms,” in
Proceedings of IEEE Second Data Compression

Conference, pp. 62-81, 1992.
[15] Kristensen M., “GZip vs. Deflate: Compression

and Performance,” Google Analytics, available
at: http://www. webpronews. com/ expertarticles
/2006/12/08/gzip -vs -deflate- compression-and
performance, 2006.

74 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

[16] Katsiaryna C., Lansky J., and Galambos, L.,

“Syllable-Based Compression for XML
Documents,” in Proceedings of Czech Republic,
pp. 21-31, Desna, 2006.

[17] Lansky J. and Zemlicka M., “Text Compression:
Syllables,” in Proceedings of DATESO' 2005, pp.
32-45, Prague, 2005.

[18] Lansky J. and Zemlicka M., “Compression of
Small Text Files Using Syllables,” Technical
Report, Department of Software Engineering,
Faculty of Mathematics and Physics, Prague,
2006.

[19] Lansky J. and Zemlicka M., “Compression of
Small Text Files Using Syllables,” in

Proceedings of Data Compression Conference p.
458, Utah, 2006.

[20] Lansky J., Chernik K., and Vlckova Z.,
“Syllable-Based-Burrows-Wheeler Transform,”
in Proceedings of the Dateso, Annual

International Workshop on Databases, Texts,

Specifications and Objects, vol. 235, pp. 1-10,
Desna, 2007.

[21] Lansky J. and Kuthan T., “Genetic Algorithms in
Syllable Based Text Compression,” in

Proceedings of DATESO' 2007, pp. 21-34, 2007.
[22] Moffat A., “Word Based Text Compression,”

Software: Practice and Experience, vol. 19, no.
2, pp. 185-198, 1989.

[23] Sestak R. and Lansky J., “Compression of
Concatenated Web Pages Using XBW,” in
Proceedings of SOFSEM' 2008, vol. 4910, pp.
743-754, LNCS, 2008.

[24] Skibinski P., “Two-Level Directory Based
Compression,” in Proceedings of IEEE Data
Compression Conference, pp. 481, 2005.

[25] Ucoluk G. and Toroslu H., “Genetic Algorithm
Approach for Verification of the Syllable Based
Text Compression Technique,” Computer
Journal of Information Science, vol. 23, no. 5,
pp. 365-372, 1997.

[26] Ziv J. and Lempel A., “A Universal Algorithm
for Sequential Data Compression,” IEEE

Transactions on Information Theory, vol. 23, IT-
24, pp. 337-343, 1997.

Ibrahim Akman received his PhD
in operations research from
Lancaster University, UK in 1984.
He has served on the editorial boards
of Electronic Journal of e-
Government and International
Journal of Information Technology

and Management (IJITM). His research interests
include software engineering, simulation, software
piracy, e-government, human resource management,
and data compression.

Hakan Bayindir received his
Bachelor degree in computer
engineering from Atilim University,
Turkey in 2007. Currently, he is
continuing his Master degree from
Atilim University and working at
High Performance and Grid

Computing Center which is a part of Turkish
Academic Network Information Center (TUBITAK-
ULAKBIM) as a Linux system administrator and
developer. His research interests include multi-agent
systems, parallel programming, and AI.

Serkan Ozleme received his
Bachelor degree in 2007 from
Computer Engineering Department
of Atilim University, Turkey. He has
received several certificates about
programming using Microsoft
technologies and relevant tools.

Currently, he is working as software engineer in
system integration business as an application developer
which integrates to various web services and
applications.

Zehra Akin received the BS degree
in computer engineering from Atilim
University in 2007, Turkey. She is
working as a specialist software
developer at the Radio and
Television Supreme Council
(RTÜK) ERP project (METEKSAN

System).

Sanjay Misra is an assistant
professor in Department of
Computer Engineering, Atilim
University, Ankara, Turkey.
Presently, he is working in the area
of software engineering, especially
on software quality estimation

through software metrics. His area of interests are
software measurement, verification and validation
techniques, object oriented technologies, data
compression, XML, Web Services, and cognitive
informatics.

