
The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010 161

Enhanced Quicksort Algorithm

Rami Mansi

Department of Computer Science, Al al-Bayt University, Jordan

Abstract: Sorting is considered as one of the important issues of computer science. Although there is a huge number of

sorting algorithms, sorting problem has attracted a great deal of research; because efficient sorting is important to optimize

the use of other algorithms. It is also often in producing human-readable output. This paper presents a new sorting algorithm

called SMS-algorithm (Scan, Move, and Sort). The SMS algorithm is considered as an enhancement on the Quicksort

algorithm in the best, average, and worst cases when dealing with an input array of a large size and when the maximum and

the minimum values were small, especially when sorting a list of distinct elements. The SMS algorithm is compared with the

Quicksort algorithm and the results were promising.

Keywords: SMS algorithm, Quicksort algorithm, large size array, distinct elements, time complexity, space complexity.

Received August 25, 2008; accepted September 25, 2008

1. Introduction

Sorting has been a profound area for the algorithmic

researchers. And many resources are invested to

suggest a more working sorting algorithm. For this

purpose many existing sorting algorithms were

observed in terms of the efficiency of the algorithmic

complexity [7]. Quicksort [8] was observed to be both

economical and efficient. Many algorithms are very

well known for sorting the unordered lists. Most

important of them are Heap sort, Bubble sort,

Quicksort, and Insertion sort [3]. Efficient sorting is

important to optimize the use of other algorithms that

require sorted lists to work correctly; it is also often in

producing human-readable output [6]. Formally, the

output should satisfy two major conditions:

• The output is in non-decreasing order.

• The output is a permutation, or reordering, of the

input.

Since the early beginning of computing, the sorting

problem has attracted many researchers, perhaps due to

the time complexity of solving it efficiently [10]. As

stated in [2, 4], sorting has been considered as a

fundamental problem in the study of algorithms, that

due to many reasons:

• The need to sort information is inherent in many

applications.

• Algorithms often use sorting as a key subroutine.

• In algorithm design there are many essential

techniques represented in the body of sorting

algorithms.

• Many engineering issues come to the fore when

implementing sorting algorithms.

In algorithm which uses divide-and-conquer approach,

it divides the problem into smaller instances of the

same problem, then solves that instances of the

problem recursively (conquer), and then collects all

solutions to get the main solution for the original input

(combine). The principle of the divide-and-conquer

algorithm design is that it is easier to solve several

small instances of a problem than one large problem

[5, 11].

In this paper, a new sorting algorithm is presented,

called SMS-Algorithm (Scan, Move, and Sort). The

study shows that the proposed algorithm is more

efficient and faster as compared to the Quicksort

algorithm when dealing with a large size (n) of the

input array. So, we considered the SMS algorithm as

an enhancement on the Quicksort algorithm. Section 2

presents the concept, steps, and the pseudocode of the

SMS algorithm with an example. Section 3 introduces

the detailed time and space analysis of the SMS

algorithm. Section 4 presents a comparison between

the SMS and the Quicksort algorithms. Also, a real-

world case study simulation is introduces in section 5.

Finally, conclusions were presented in section 6.

2. The SMS Algorithm

2.1. The Concept of the SMS Algorithm

The main concept of the SMS algorithm is distributing

the elements of the input array on three additional

temporary arrays. The sizes of these arrays are decided

depending on the maximum and the minimum values

of the input array. The first temporary array is called

(PosArray) and contains the positive elements using

the value of the element itself as its index in the array.

The second array is (NegArray) which contains the

negative elements using the absolute value of the

element itself as its index in the array. The third array

162 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

is (FreqArray) and used to save the frequent elements

of the input array.

2.2. The Steps of the SMS Algorithm

The SMS algorithm consists of three procedures, Scan,

Move, and Sort. The first procedure is (Scan), which

scans the array and gives the values of the minimum,

the maximum, the number of positive elements, and the

number of negative elements. Also, this procedure

checks if min equals to max, then the input array is

already sorted, otherwise, calls the procedure (Move).

The second procedure (Move) creates the three

temporary arrays, FreqArray of size (n), PosArray of

size (max+1), and NegArray of size (|min|+1), and then

initializes the PosArray, the NegArray, and the

FreqArray with the value (min-1) to denoting the

indices that will be skipped in the next phase. Then, this

procedure distributes the elements on the three arrays;

the positive elements are saved in the PosArray using

the element itself as its index, the negative elements are

saved in the NegArray using the absolute value of the

element itself as its index, and the frequent elements are

saved in the FreqArray using a variable (i) as an index

started from zero and incremented by one.

The third procedure (Sort) copies the elements of the

NegArray starting from the last index with ignoring the

values of (min-1). Then it copies the elements of the

PosArray starting from the first index with ignoring the

values of (min-1). The copying is done on the original

input array with overwriting the original values with the

sorted values. After each copying operation of an

element from the NegArray and the PosArray to the

original array, the procedure searches the FreqArray

and copies all element that are equal to the element that

copied in the last copying operation (current element).

2.3. The Pseudocode of the SMS Algorithm

The pseudocode of the first (Scan) procedure can be

expressed as follows:
 procedure Scan(array, size)

 1 if size > 1 then

 2 var a, max, min, NOP, NON

 3 max:=array(0)

 4 min:=array(0)

 5 NOP:=0

 6 NON:=0

 7 for a:= 0 to size-1 do

 8 if array(a) > max then

 9 max := array(a)

10 else

11 min:=array(a)

12 end if

13 if array(a) ≥ 0 then

14 NOP:= NOP+1

15 else

16 NON:= NON+1

17 end if

18 end for

19 if min ≠ max then

20 Move(array, size, NOP, NON, max, min)

21 end if

22 end if

 end procedure scan

The pseudocode of the second (Move) procedure is

expressed as follows:
 Procedure Move(array, size, NOP, NON, max, min)

 1 var b,c,d,i

 2 i:=0

 3 create a new array: FreqArray[size]

 and initialize by the value (min-1)

 4 if NOP > 0 then

 5 create a new array:PosArray[max+1]

 6 for b:=0 to max do

 7 PosArray(b):= min-1

 8 end for

 9 end if

10 if NON>0 then

11 create a new array: NegArray[|min|+1]

12 for c:= 0 to |min|+1 do

13 NegArray(c):= min-1

14 end for

15 end if

16 for d:= 0 to size-1 do

17 if array(d) ≥ 0 then

18 if PosArray(array(d))==min-1 then

19 PosArray(array(d)):=array(d)

20 else

21 FreqArray(i):=array(d)

22 i:=i+1

23 end if

24 else

25 if NegArray(|array(d)|)==min-1 then

26 NegArray(|array(d)|):= array(d)

27 else

28 FreqArray(i):= array(d)

29 i:= i+1

30 end if

31 end if

32 end for

33 Sort(array, NegArray, PosArray, FreqArray,

 NON, NOP, max, min, i)

end procedure move

The pseudocode of third (Sort) procedure is as

follows:
procedure Sort(array, NegArray, PosArray, FreqArray,

NON, NOP, max, min, I)

 1 var index,x,y

 2 index:=0

 3 if NON > 0 then

 4 for x:= |min| downto 0 do

 5 if NegArray(x) ≠ min-1 then

 6 array(index):= NegArray(x)

 7 index:= index+1

 8 for y:= 0 to i do

 9 if FreqArray(y)==array(index-1) then

10 array(index):= FrqArray(y)

11 index:= index+1

12 end if

13 end for

Enhanced Quicksort Algorithm 163

14 end if

15 end for

16 end if

17 if NOP > 0 then

18 for x:= 0 to max do

19 if PosArray(x) ≠ min-1 then

20 array(index):= PosArray(x)

21 index:= index+1

22 for y:= 0 to i do

23 if FreqArray(y)== array(index-1) then

24 array(index):=FrqArray(y)

25 index:= index+1

26 end if

27 end for

28 end if

29 end for

30 end if

end procedure sort

The following example illustrates the work of the SMS

algorithm. If we have the following array to be sorted

using the SMS Algorithm:

Original Array
8 -2 6 -4 8 3 0 2 6 -3

The size of this array is (10) elements. The first phase

of the SMS algorithm (procedure Scan) gives the

minimum value, the maximum value, the number of

positive elements, and the number of negative

elements. For this example, the min is (-4), the max is

(8), the number of positive elements is (7), and the

number of negative elements is (3). Since the number

of positive elements and the number of negative

elements are positive, the second phase of the algorithm

(procedure Move) creates three new arrays. The first

array is FreqArray of size (10), which is the size of the

original array. The second is the PosArray of size (9),

which is (max+1). The third array is NegArray of size

(5), which is (|min|+1), (the absolute value of min, plus

one). The elements of the three arrays will be initialized

with the value (min-1), which is (-5). At this moment,

the algorithm distributes the elements of the original

array on the new three arrays, as follows:

FreqArray
8 6 -5 -5 -5 -5 -5 -5 -5 -5

PosArray
0 -5 2 3 -5 -5 6 -5 8

NegArray
-5 -5 -2 -3 -4

Note that the values in italic are the default values

and will be skipped during the third phase. In the third

phase (procedure Sort), the original array will be

updated with the values of NegArray, PosArray, and

FreqArray arrays, as follows, starting with the

NegArray at the last element, (-4) will be placed at

index (0) of the original array. Notice that the updated

values are in bold.

Original Array
-4 -2 6 -4 8 3 0 2 6 -3

The task now is to copy all elements that are equal to

(-4) from the FreqArray. Since there are no frequent

values of (-4), the next negative element will be

copied from the NegArray array into the original

array.

Original Array
-4 -3 6 -4 8 3 0 2 6 -3

Also the last negative element (-2) will be copied.

Original Array
-4 -3 -2 -4 8 3 0 2 6 -3

Copying the positive elements from the PosArray

array is differing from copying negatives. The

difference is that the algorithm must start copying the

positive elements from the first index of the PosArray,

not from the last as in copying the negative elements.

But as in copying the negative elements; the algorithm

searches in the FreqArray for equal elements of the

element being copied, as follows:

Original Array
-4 -3 -2 0 8 3 0 2 6 -3

Original Array
-4 -3 -2 0 2 3 0 2 6 -3

Original Array
-4 -3 -2 0 2 3 0 2 6 -3

Original Array
-4 -3 -2 0 2 3 6 2 6 -3

At this moment, the value (6) also occurs in the

FreqArray and will be copied to the original array.

Original Array
-4 -3 -2 0 2 3 6 6 6 -3

Original Array
-4 -3 -2 0 2 3 6 6 8 -3

Also, the value (8) will be copied from the FreqArray.

Original Array
-4 -3 -2 0 2 3 6 6 8 8

3. Analysis of the SMS Algorithm

3.1. Time Analysis of Procedure Scan

The goal of procedure Scan is to get the maximum

value, the minimum value, the number of positive

elements, and the number of negative elements. This

requires scanning the array and reaching each element

one time in a single pass. The for-loop (lines 7-18 of

procedure Scan) takes Θ(n) time complexity.

3.2. Time Analysis of Procedure Move

The best case of procedure Move is when all elements

of the original array are positive and the max is small,

or when all of them are negative and the min is small.

164 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

If all elements are positive and there are no negative

elements, then the for-loop (lines 6-8 of procedure

Move) takes O(max) time for initializing the PosArray,

and the for-loop (lines 16-32 of procedure Move) takes

O(n) time. So, in this case, the overall time complexity

of procedure Move is O(n + max).

In the other hand, if all elements of the original array

are negative, then the for-loop (lines 12 -14 of

procedure Move) takes O(|min|) time for initializing the

NegArray, and the for-loop (lines 16-32 of procedure

Move) takes O(n) time. So, in this case, the overall time

complexity of procedure Move is O(n+|min|). We may

say that in the average and worst cases, if there are

positive and negative elements in the original array,

then the overall time complexity of procedure Move is

O(n+max+|min|).

3.3. Time Analysis of Procedure Sort

The best case of procedure Sort is when all elements

are positive and distinct and the max is small, or, when

all of them are negative and distinct and the min is

small.

If all elements are positive and distinct then the for-

loop (lines 18-29 of procedure Sort) takes O(max) time,

since the inner loop (lines 22-27 of procedure Sort)

takes O(1) time in this case. And if all elements are

negative and distinct, then the for-loop (lines 4-15 of

procedure Sort) takes O(|min|) time, since the inner

loop (lines 8-13 of procedure Sort) takes O(1) time in

this case. So, we may say, the best, average, and worst

cases of procedure Sort have Θ(max*f)+Θ(|min|*f),

where f is the number of frequent elements. In other

words, the time complexity of procedure Sort is

Θ(f*(max+|min|)).

The time complexity of the best case of the SMS

algorithm is Θ(n), when the input array is already

sorted. This means, when max is equal to min (lines 19-

21 of procedure Scan) then the input array is already

sorted. In the average and worst cases, procedure Scan

takes Θ(n) time, procedure Move takes Θ(n + max +

|min|) time, and procedure Sort takes Θ(f*(max+|min|))

time. If we suppose a normal distribution of data, the

frequency of elements should be little, and because

most of real applications have n much greater than max

and |min|, we may consider max and min as constants

and eliminate them.

The overall complexity of the SMS algorithm in the

average and worst cases is O(n+f*(max+|min|)), where f

is the number of frequent elements.

3.4. Space Analysis of the SMS Algorithm

The algorithm creates a new array (FreqArray) of size n

to save the frequent elements. In the best case, if all

elements of the original array were positive, the

algorithm creates a new array (PosArray) of size

(max+1), or, if all elements were negative, the

algorithm creates a new array (NegArray) of size

(|min|+1). So, in the best case, the algorithm needs

O(n+max+1) or O(n+|min|+1) additional space. In the

average and worst cases, the algorithm needs

O(n+max+|min|+2) additional space.

4. Comparison with Quicksort Algorithm

Quicksort is a well-known sorting algorithm

developed by Hoare [8] that, on average, makes

O(nlogn) comparisons to sort n items. However, in the

worst case, it makes Θ(n
2
) comparisons. Quicksort is a

comparison sort and, in efficient implementations, is

not a stable sort, since stable sorting algorithms

maintain the relative order of records with equal keys.

This means, a sorting algorithm is stable if whenever

there are two records R and S with the same key and

with R appearing before S in the original list, R will

appear before S in the sorted list [1, 9].

Quicksort is characterized as a “hard division and

easy combination” algorithm. As mentioned in [16],

there are three divide-and-conquer processes for

sorting a typical sub array A[p..r]:

• Divide: the array A[p..r] is partitioned into two

nonempty sub arrays, A[p..q] and A[q+1..r] such

that each element of A[p..q] is less than or equal to

each element of A[q+1..r]. The index q is computed

as part of this partitioning procedure.

• Conquer: the two sub arrays A[p..q] and A[q+1..r]

are sorted by recursive calls to Quick sort.

• Combine: since the sub arrays are sorted in place,

no work is needed to combine them, and the entire

array A[p..r] is now sorted.

The main steps of Quicksort as stated in [8, 12] are:

• Pick an element, called a pivot, from the list.

• Reorder the list so that all elements which are less

than the pivot come before the pivot and so that all

elements greater than the pivot come after it (equal

values can go either way). After this partitioning,

the pivot is in its final position. This is called the

partition operation.

• Recursively sort the sub-list of lesser elements and

the sub-list of greater elements.

The base cases of the recursion are lists of size zero or

one, which are always sorted. The code of the

Quicksort algorithm consists of two parts. The first

part is a procedure (quicksort), which decides the

correct place of the pivot and recursively divides the

array into two parts [13].

The second part is the function (partition) which

partitions the portion of the array between indexes left

and right, inclusively, by moving all elements less

than or equal to array[pivotIndex] to the beginning of

the sub-array, leaving all the greater elements

following them. In this process it also finds the final

position for the pivot element, which it returns. It

Enhanced Quicksort Algorithm 165

temporarily moves the pivot element to the end of the

sub-array, so that it does not get in the way. Because it

only uses exchanges, the final list has the same

elements as the original list [14, 15]. Notice that an

element may be exchanged multiple times before

reaching its final place. The main differences between

SMS algorithm and Quicksort algorithm are:

• The SMS algorithm is stable (maintains the relative

order of records with equal keys) but Quicksort is

unstable sorting algorithm.

• In the best case, the SMS algorithm takes O(n) time

while Quicksort takes O(nlgn) time to sort an array

of size n elements.

• The SMS algorithm is faster than Quicksort

algorithm when dealing with a large size (n) of the

input array, and when the values (max) and (|min|)

are much less than the value (n). In this case, the

time complexity of the average and worst cases of

the SMS algorithm approaches O(n), while

Quicksort algorithm takes O(nlgn) in the average

case, and O(n
2
) in the worst case.

• The SMS algorithm is best used to sort an array of

distinct elements. In this case, the value of (f) will be

equals to 1, and the algorithm takes O(n+max+|min|)

time.

• The SMS algorithm enhances the way that Quicksort

algorithm divides the input array. Quicksort moves

the pivot to reside in its correct place and then

divides the array into two parts, and recursively it

makes the same procedures for both parts, until it

reaches the base case. Instead of doing this, the SMS

algorithm divides the original array into three parts

(arrays), positive, negative, and frequent elements,

and moves each element into its correct place in a

single pass.

• We may say that the SMS algorithm is also a divide-

and-conquer method, since it divides, sorts, and then

it combines.

• In the other hand, Quicksort algorithm needs O(lgn)

additional space, as mentioned in [8], but the SMS

algorithm needs O(n+max+|min|+2) to sort n

elements.

5. Case Study

To prove that the proposed algorithm is faster than

Quicksort when dealing with a large size of the input

array and little values of min and max, especially when

sorting an array of distinct elements values; a real-

world case study has been simulated. In this case study,

the SMS and the Quicksort algorithms have been

applied to sort a list of (10,000) distinct elements.

The simulator was built using Visual C++ 6.0 and

the built-in function (clock()) is used to measure the

elapsed time of both algorithms on the same computer

using the same data set. The min value of the input

array was (1) and the max was (10,000). Figure 1

shows the interface of the used simulator.

Figure 1. The interface of the simulator.

Table 1 shows the recorded elapsed execution time

in milliseconds of Quicksort and SMS algorithms.

These results represent the average execution time of

the recorded execution times of multiple runs of the

programs to sort the same data on the same computer

under the same operating system.

Table 1. Execution time for Quicksort and SMS algorithms.

Algorithm Elapsed Time

Quicksort 425 ms

SMS 259 ms

Figure 2 shows a comparison of the elapsed

execution time in milliseconds of the Quicksort and

the SMS algorithms.

Figure 2. Comparison of sorting techniques.

6. Conclusions

In this paper, a new sorting algorithm is presented

called SMS (Scan, Move, and Sort). The SMS

algorithm considered as an enhancement on the

Quicksort algorithm. The SMS algorithm enhanced

the way that Quicksort algorithm divides the input

array. Quicksort moves the pivot to reside in its

0

50

100

150

200

250

300

350

400

450

Quicksort

SMS

166 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

correct place and then divides the array into two parts,

and recursively it makes the same procedures for both

parts, until it reaches the base case. Instead, the SMS

algorithm divided the original array into three parts

(arrays), positive, negative, and frequent elements, and

moved each element into its correct place in a single

pass.

Quicksort takes O(nlgn) time in the best case while

SMS algorithm takes O(n) time complexity. Also, in

the average case, the Quicksort algorithm takes O(nlgn)

time but the SMS algorithm takes O(n+f*(max+|min|))

time, where f is the number of frequent elements. The

enhancement on the average case occurs when n is

much greater than max and |min|, where the time

complexity be near to O(n). Also, when dealt with an

array of distinct elements, SMS algorithm was more

efficient and faster than Quicksort.

Also, in the worst case, Quicksort algorithm takes

O(n
2
) time while the SMS algorithm takes

O(n+f*(max+|min|)).

We may say that the SMS algorithm is faster than

Quicksort algorithm when dealing with a large size (n)

of the input array with small max and min values of that

array, especially, if the elements are distinct.

Acknowledgements

I would like to thank Dr. Jehad Alnihoud for providing

support and material related to the area of this research,

and for his suggestions and helpful comments on the

manuscript.

References

[1] Aho A., Hopcroft J., and Ullman J., The Design

and Analysis of Computer Algorithms, Addison

Wesley, 1974.

[2] Bell D., “The Principles of Sorting,” The

Computer Journal, vol. 1, no. 2, pp. 71-77, 1958.

[3] Box R. and Lacey S., “A Fast Easy Sort,”

Computer Journal of Byte Magazine, vol. 16, no.

4, pp. 315-321, 1991.

[4] Cormen T., Leiserson C., Rivest R., and Stein C.,

Introduction to Algorithms, McGraw Hill, 2001.

[5] Dean C., “A Simple Expected Running Time

Analysis for Randomized Divide and Conquer

Algorithms,” Computer Journal of Discrete

Applied Mathematics, vol. 154, no. 1, pp. 1-5,

2006.

[6] Deitel H. and Deitel P., C++ How to Program,

Prentice Hall, 2001.

[7] Friend E., “Sorting on Electronic Computer

Systems,” Computer Journal of ACM, vol. 3, no.

3, pp. 134-168, 1956.

[8] Hoare R., “Quicksort,” The Computer Journal,

vol. 5, no. 1, pp. 10-15, 1962.

[9] Knuth E., The Art of Computer Programming

Sorting and Searching, Addison Wesley, 1998.

[10] Kruse R. and Ryba A., Data Structures and

Program Design in C++, Prentice Hall, 1999.

[11] Ledley R., Programming and Utilizing Digital

Computers, McGraw Hill, 1962.

[12] Levitin A., Introduction to the Design and

Analysis of Algorithms, Addison Wesley, 2007.

[13] Moller F., Analysis of Quicksort, McGraw Hill,

2001.

[14] Nyhoff L., An Introduction to Data Structures,

McGraw Hill, 1987.

[15] Thorup M., “Randomized Sorting in O(n log log

n) Time and Linear Space Using Addition Shift,

and Bit Wise Boolean Operations,” Computer

Journal of Algorithms, vol. 42, no. 2, pp. 205-

230, 2002.

[16] Weiss M., Data Structures and Problem Solving

Using Java, Addison Wesley, 2002.

Rami Hasan Mansi obtained

his BSc in Information

Technology with a major in

Software Engineering from

Philadelphia University in 2006

and his MSc in Computer

Science from Al al-Bayt

University in 2009. His research interests include

Design and Analysis of Algorithms, String

Matching, Sorting Algorithms, Bioinformatics

and Optimization Algorithms.

