
The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010 105

Leader Election Algorithm in 2D Torus Networks

with the Presence of One Link Failure

Mohammed Refai
1
, Ahmad Sharieh

2
, and Fahad Alshammari

3

1
Sciences and Information Technology Collage, Zarqa Private University, Jordan

2
King Abdullah II School for Information Technology, University of Jordan, Jordan

3
Information Technology and Computer Science College, University of Malaya, Malaysia

Abstract: Leader election algorithms solve the instability problem in the network which is caused by leader failure .In this

paper, we propose a new leader election algorithm in two dimensional torus networks. The algorithm aims to elect one node to

be a new leader. The new leader is identified by some characteristics not in the other nodes in the network. When the process is

terminated, the network is returned to a stable state with one node as leader where other nodes are aware of this leader. The new

algorithm solves this problem despite the existence of one link failure. In a network of N nodes connected by two dimensional

torus network, the new algorithm uses O(N) messages to elect a new leader in O(N) time steps. These results are valid for both

cases: simple case (when the leader failure is detected by one node) and in the worst case (when the failure is discovered by up

to N-1 nodes).

Keywords: Concurrency, leader election, link failure, message complexity, 2D torus networks.

Received May 13, 2008; accepted November 25, 2008

1. Introduction

One of the most fundamental problems in distributed

systems is the leader failure. This problem can be

solved by Leader Election Algorithms (LEAs). These

algorithms move the system from an initial state where

all the nodes are in the same computation state into a

new state where only one node is distinguished

computationally (called leader) and all other nodes are

aware of this leader [1 ,4, 8].

Distributed systems are used to increase the

computational speed of problem solving. These systems

use a number of computers which cooperate with each

other to execute tasks. The control of distributed

algorithms requires one node to act as a controller

(leader). If the leader crashes or fails for any reason, a

new leader should be automatically elected to keep the

network working. The LEAs solves this problem by

substituting the failed leader by a new deserved leader

[5, 30, 31].

Election process is a program distributed over all

nodes. It starts when one or more nodes discover that

the leader has failed. It terminates when the remaining

nodes know who the new leader is. The LEAs are

widely used in centralized systems to solve single point

failure problem [4]. For example, in client-server, the

LEAs are used when the server fails and the system

needs to transfer the leadership to another station. The

LEAs are also used in token ring. When the node that

has the token fails, the system should select a new node

to have the token [1].

In distributed systems, there are many network

topologies like hypercube, meshes, torus, ring, bus, …,

etc., [30]. These topologies may be either hardware

processors or software processes embedded over other

hardware topology [10, 14]. This study will focus on

the 2D torus topology where one node works as a

leader. This paper proposes a new election algorithm to

solve leader failure in 2D torus network automatically.

Also it guarantees to solve the leader failure problem

despite of the existence of one link failure.

The election algorithms start when the leader failure

is detected by one node in a simple case or subset of

nodes reached to (N-1) at the worst case. It terminates

when the new leader is elected and all other nodes

become aware of the new leader.

Section 2 presents related work. Section 3 describes

the 2D torus model structure and properties. Section 4

presents the new algorithm. Mathematical proof for the

time steps and message complexity is presented in

section 5. Section 6 will conclude the results and

suggest future works.

2. Related Work

Leader election algorithm was studied by many

researchers [1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 17, 18, 20,

22, 23, 25, 26, 27, 28, 34]. In these studies, the

researchers presented different methods to deal with

the leader election algorithms. In distributed systems, a

major problem is the leader failure and the relevant

106 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

 Left (3)

Figure 2. Node links and codes ks.

UP (2)

Right (1)

Down (4)

X

Y

Figure 1. 2D (7x4) Torus network.

leader election algorithm. The election algorithms were

varied based on the following:

• The nature of the algorithms (dynamic vs.

static) [7, 12, 22, 23].

• Node Identity (ID) (unique identity vs. anonymous

ID) (distinguished vs. not distinguished) [34].

• Topology types such as: ring, tree, complete graph,

meshes, torus, and Hypercube [1, 9, 22, 23].

• Communication mechanism used (synchronous vs.

asynchronous) [22, 23].

• Transmission media (wired vs. wireless or radio)

[13].

• Some of the previous work dealt with the link

failure [1, 26].

The leader election solution was first thought of at the

end of the seventies, it was started by the ring and

complete networks [1, 17, 26, 18, 11]. In the nineties

meshes, hypercube and tree were studied. To date,

these topologies and wireless networks are still being

studied [13, 17]. In [26], Singh proposed a protocol

for leader election which is tolerant to intermittent link

failure in the complete graph network. In [12], Gerard

proposed an election algorithm for oriented hypercube,

where each edge is assumed to be labeled with its

dimension in the hypercube. In [9], the election

problem in hypercube networks was studied, by using

two models with sense of direction. In [3], the problem

of one link failure besides the leader failure in the

hypercube was solved. In [1], the problem of, fault

tolerant and leader election in asynchronous complete

(fully connected) distributed networks was considered.

Antonoiu and Srimani [4] proposed a self-

stabilizing algorithm for leader election in a tree graph.

In [19], Navneet and others presented two new leader

election algorithms for mobile ad-hoc networks. In

[29], they proposed two algorithms assume

asynchronous distributed system in which the various

rounds of election proceed in a lock-step fashion.

Most of the previous researchers employed

theoretical proof to verify their algorithms. They used

the big O notation to obtain the complexity [16] of the

number of messages and time steps which represent the

domain factors of the algorithm complexity [9, 11].

Other researchers used simulation to validate their

algorithms [25].

3. Model Description

In 2D torus network, interconnection topology is a

torus graph with N = X * Y nodes (X is the number of

nodes in the X dimension, and Y is the number of nodes

in the Y dimension of the torus network). This section

explains; the model description; properties, and design

assumptions for this research [32, 33].

The 2D torus network is similar to 2D mesh, except

in the connection between the first and the last nodes in

each dimension. These connections make all nodes

connected with four neighbors (left, right, up, down) in

order to present more flexible topology [32, 33]. Figure

1 shows a two dimensional torus network with seven

columns and four rows (7 X 4).

3.1. Model Properties

The target architectures for the proposed algorithm are

distributed-memory, and two dimensional torus multi-

computers. For research analysis, we use the model

with the following properties: the multi-computers

consist of N nodes, which can be labeled 0, 1, 2, … ,

N-1. The nodes, physically, form an X * Y, (rows) *

(columns), two-dimensional torus.

Communication is with only one node at a time.

Multi cast is not implemented in hardware. A node can

send or receive simultaneously to, and from, the same-

or different nodes. The network uses XY-routing: a

message is routed within a row to the column that

contains the destination node and subsequently routed

within the column. Leader failure can occur any time.

This failure may be discovered by one node in a simple

case, or concurrently by more than one node-reached

in a worst case to N-1 nodes. The proposed algorithm

solves leader failure even when there is a link failure.

Each node has a distinguished ID used in the election

algorithm. Each node is connected by four links as in

Figure 2, which shows node links.

A torus network has advantages that make it one of

the preferable topologies. Torus is an attractive

Leader Election Algorithm in 2D Torus Networks with the Presence of One Link Failure 107

structure for parallel processing due to its symmetry

and regularity [32]. Diameter of the torus is X * Y. A

node is labeled as (X,Y)-and uses X-Y routing

techniques. The number of links is X*Y. In fact, it has

been shown to be a very versatile and robust

architecture which is capable of executing several

efficient parallel algorithms. This topology is a suitable

architecture for designing tightly coupled systems in

both parallel and distributed systems.

 3.2. Assumptions

This research assumes the following:

• Routers should work all the time even with fault

node-because the fault is in leader properties.

• All communication links are bidirectional.

• Leader node could fail due to different reasons

which will lead to loss of the leadership property.

Other nodes can detect this failure when the time

out exceeds without acknowledgement. Nodes

which detect this failure start the election algorithm.

• To solve leader failure problem, each node

calculates a weight that defines its relative

importance. Then, compares it with the weight of

other nodes that it has received and propagate the

maximum weight. This weight is represented by a

Identification Distinguish (ID) for each node.

• Each node has a distinguished ID. The election

algorithm depends on this ID.

• When the leader node crashes, its ID degrades to 0.

So, it can not win the election.

• One intermittent link failure is recoverable.

• Leader failure may be detected by a subset of nodes

(concurrent failure). This case becomes complicated

when the failure is detected by N-1 nodes (worst

case).

Each node has the following variables:

• ID: a unique value for the election process.

• Position: the label indicates its position.

• Leader ID, leader position.

• Phase and step.

• State: leader or normal or candidate.

4. Proposed Algorithm

Before describing the proposed algorithm, the

definition of node state, phase and messages help to

understand the algorithm.

Node states: during the execution of the algorithm

the node state will be in one of the following states:

•••• Normal: network is normal and no leader failure is

detected by this node.

•••• Candidate: there is a failure and the election process

is in progress inside this node.

•••• Leader: one node must have this state in a stable

network.

The algorithm uses X and Y to represent the

dimensions and x and y to represent node position.

Phases: the proposed algorithm is composed of four

phases, as follows:

•••• Phase One: the node that detects leader failure

informs the failure event to its row.

•••• Phase Two: the nodes in candidate states do

election process within each column to obtain the

result in the first row.

•••• Phase Three: nodes in the first row make the

election within the first row to obtain the result in

one node.

•••• Phase Four: the node that aware of the new leader

in phase three, broadcast the new leader to all

nodes.

Now, let us explain the events in each phase of the

proposed algorithm.

•••• Phase One: the algorithm starts by node(s) that

detects leader failure. This node sends failure

messages through link 1 (right) and 3 (left) to

inform its row about leader failure. A failure

message informs the receivers about leader failure.

To avoid the probability of link failure in this phase,

the failure message is sent in two directions. Each

node which receives this message performs the

following: changes its state to candidate. Passes the

failure message to the opposite direction through the

opposite link (1 to 3, or 3 to 1), depending on the

direction it receives the message. Starts phase two:

selects its ID as greater ID, and sends election

message through link 2 (Up). The election message

is composed of (message type, Phase, Step, Greater

ID, Position of the Greater ID, and position of the

message initiator). Ignores the received message if

the state is candidate.

•••• Phase Two: the candidate nodes send election

messages through links 2. Any node which receives

the election message compares its ID with the

received ID in order to continue with the greater.

This process ends when the initiator position

receives the same message. After the column

election, the result is sent to the first node of each

column. This phase faces two problems: concurrent

initialization and link failure. To deal with the first

problem, any candidate node which receives the

election message ignores the message. If there is no

link failure, the result for the column is found in the

node that completed the ring. This node sends the

result to the node labeled (x, 0). To solve the second

problem, the node that sends the election message

waits for acknowledgment. If the node doesn’t

receive this message after time out, it detects that

there is a link failure. The role of the node that

detects the link failure is to send link-failure

108 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

X

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

message through link 3. The node which receives

this message forwards it through link 2, and then

left to pass the failure link. To complete the

algorithm, the result is sent to the node labeled (x,

0). After all, one node is aware of the column leader

so that the result for the leader is within the first row

of the network.

•••• Phase Three: when the node which is labeled (0, 0)

(the most left node in the first row) finishes phase

2, it starts phase 3 by sending election message

through links 1 and waits for acknowledgment. Any

node which receives a phase three election message

from the left sends an acknowledgment message.

Then it compares IDs and sends a phase three

election message through link 1. If the node doesn’t

receive the acknowledgment message after time out,

it detects there is link failure. To solve this problem

in this phase, this node sends a link-failure message

through link 2, then link 1 and down to pass the link

failure. In this phase, any node which receives a

phase three message before finishing phase two

waits for the last message in phase two and then

continues. Phase three is terminated when phase

three election message is received by node (0, 0).

This node starts phase four by broadcasting the

result to all nodes.

•••• Phase Four: after phase three, one node aware of

the new leader information. This node broadcasts

the result as follows:

a. Row broadcast: The nodes sends a leader

message in two directions through links 1 and 3

in order to make all nodes in the first row aware

of the new leader.

b. Column broadcast: the receivers in a row

broadcast, change their contents regarded the

leader, and changes its state to normal. Then,

they send the leader message through links 2 and

4. Any node which is aware of the new leader in

phase four ignores any new message about

election algorithm.

The initiators of the leader message, within the row in

row broadcast and within the columns in column

broadcast send the leader message in two directions.

This is to recover the probability of one link failure.

4.1. Example

This example is applied on a 4X4 torus network.

Assume that the link between nodes (0, 1) and (0, 2) is

failed as shown in Figure 3(a). Node (1, 2) detects

leader failure. So, it starts the algorithm by sending

two leader failure messages to inform about the failure.

Failure messages are sent through links 1 and 3 (thin

arrows). Node (1, 2) also starts phase two by sending

election message through link 2 (bold arrow) as shown

in Figure 3(a). In the second step, the nodes that

received the leader failure, passes this message to the

reverse direction and starts phase two. The node that

starts the algorithm in the first step waits for

acknowledgement. Node (2, 2) continues phase two

after comparing IDs and selecting the greater one.

Then, it sends Ack message to node (1, 2), as shown in

Figure 3(b). The nodes continue the algorithm as in

Figure 3(c) and 3(d).

 We can see the election messages as bold arrows

and Ack messages as gray arrows. The election steps in

phase two are continued until the messages reach to the

election initiator in the column. Then, the column

results are sent to the first line-as shown in dots

arrows.

Phase three is started when node (0, 0) receives its

column results by sending election message via link 1.

Node (0, 1) passes this message and returns the Ack

message. As shown in Figure 3(j), when node (0, 1)

exceeds the waiting time, it detects the link failure. So,

it uses the detour shown in Figure 3(j). The election

process continues until the node (0, 0) receives the

election message. So, it obtains the identification of the

new leader. In Figure 3(k), node (0, 0) starts

broadcasting the new leader information to the first

row.

Each node receives the leader message; changes its

state to normal, and broadcasts the leader information

to its column as in Figure 3(l).

Figure 3. Steps for explaining the proposed algorithm when the link

between nodes (0, 1) and (0, 2) fails and the leader failure is

detected by node (1, 2).

4.2. Abstract Algorithm

This section presents the pseudo code for the

algorithm. A number of assumptions and variables

Leader Election Algorithm in 2D Torus Networks with the Presence of One Link Failure 109

have to be assigned. Each node has the following

variables:

• Local ID: the node ID that participates in the

election process.

•••• Local Pos: the node position.

•••• The algorithm uses five types of messages:

•••• Election: vomposed of: steps of phase one to four,

ID (the winner ID); Pos (the winner position); and

initiator.

•••• Leader: contains the new leader (ID and position).

•••• Link-failure: similar to the election message, except

the type to pass the link failure.

•••• Column-result: is used in phase two in order to

inform the column election result to the first row.

•••• Failure: is used to inform the row about the leader

failure detection.

The nodes are in one of four states:

• Normal: when the node is unaware of any failure

and the network is stable.

• Candidate: when the node is aware of the failure and

the node is participating in the election process.

• Leader: one node must have this state in a stable

network.

• Failure: when the leader lose the leader prosperities.

Figure 4 shows the pseudo code for the proposed

algorithm.

5. Performance Evaluation

Performance evaluation is carried out by computing

the number of messages and time steps. The analyses

process is carried out for two cases. The first case is

the simple case, when the failure is detected by one

node. While the second case, is when the leader failure

is detected by subset of nodes which can reach all

nodes in the worst case.

5.1. Simple Case

5.1.1. Number of Messages

• Phase One: one node detects the leader failure. This

node starts phase one by sending 2 leader-failure

messages through links 1 and 3. Step two to step

X/2 + 1: each step needs two messages (any node

which receives the leader failure message sends this

message through the inverse link). The last two

nodes may use an extra two messages if the node

sends a leader-failure message before receiving it

from inverse links. Another way to find the number

of messages needed for phase one is to think about

receiving messages. Each node receives one

message-except the last two nodes which receive

two messages. So, the number of messages needed

for phase one is (X +2) Messages.

• Phase Two: steps one to step Y, in each step, X

election messages are needed through links labeled

2 and the same number is also needed for

acknowledgment. So, the total number of messages

is expressed as in equation 1. Each column needs

one message in order to inform the first row of the

column-result message. This needs X messages. The

total number of messages for phase 2 is 2XY+X

messages.

 ∑
−

=

1

0

2

y

i

x =2(xy) Messages (1)

• Phase Three: when node (0,0) receives the column

result message, it starts phase three: step one, node

(0,0) sends election message through link 1 and

waits for an acknowledgement. Step 2 to step X:

Each node receives the election message and sends

an acknowledgment message through link 3 and an

election message through link 1. When node (0,0)

receives the election message, it obtains the new

leader information after sending one message for

acknowledgement. In other words in phase three

each node sends two messages (election and

acknowledgement messages). So, the number of

messages in phase three is as in equation 2.

 ∑
−

=

1

0

2

x

i

 2x messages (2)

• Phase Four: node (0,0) starts a row broadcast by

sending two messages through links 1 and 3 in step

1. In steps 2 to X/2, two messages are used in each

step. In the last step, two extra messages are used if

the last nodes send the message before receiving it.

Row broadcast needs (X+ 2) messages.

In column broadcast, as in the row broadcast, Y+2

messages are needed for each column. Therefore, the

total number of messages for X columns is X(Y+2). For

phase four the number of messages needed is as in

equation 3.

 X+2 + XY+2X = XY+3X+2 (3)

In order to cover the link failure in phase two or phase

three the algorithm needs three messages. So, the total

number of messages overall the algorithm is as in

equation 4.

 (X +2) + (2YX + X)+ 2X + (XY+3X+ 2) +3

 = 3XY+7X+7 (4)

when X=Y, then XY =N. Thus, the total number of

messages in terms of N is expressed in equation 5.

 3N+7N
1/2
+7 = O(N) Messages (5)

110 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

1. Case state = Normal

 Upon detecting failure

 {

 State = Candidate

 Phase = 1

 Send inform message in links (1 and 3)

 Phase =2

 Send election message on link (2)

 Wait for Ack message

 }

 Upon receive inform message

 {

 Pass Inform message on Links (1 or 3 opposite direction.

 State = Candidate

 Phase = 2

 Step = 1

 Send election message on links (2)

 Wait for Ack message

 }

Upon receiving election message on link 2

 Send Inform message on Links (1 and 3).

 {

 State = Candidate

 Compare received ID with Local-ID and select

the Winner-ID

 Step = Step +1

 Send election message on link (2)

 Wait for Ack message

 }

2- Case state = Candidate

Upon Receiving Election message

 If (Phase = 2)

 {

 Compare received ID with Local-ID and select the

Winner-ID

 If Step = Y (Network width) then

 Send Column-Leader message to node (0, y) (node

same column and first-row)

 Else

 {

 Step = Step+1

 Send election message on link (2)

 Wait for Ack message

 Send ackt message on link (4)

 }

 If time out without receive Ack message then

 {

 Send link-failure message on link 3

 }

 }

Upon receiving link-failure message

 If the message was received from link 3, then

forward it on link 2

 If the message was received from link 2, then

forward it on link 1

 If the message was received from link 1, then

 {

 Compare received ID with Local-ID and select

the Winner-ID

 If Step = Y (Network width) then

 Send Column-Leader message to node(0, y)

(node same column and first-row)

 Else {

 Step = Step+1

 Send election message on link (2)

 }

Upon Receiving Column-Leader message

 {

If x=0 and y =0

 Select greater ID

Phase = 3,

step =1

 Send election message on link 1

 Wait for Ack message

 }

If Phase = 3 then

 {

 Compare received ID with Local-ID and select the

Winner-ID

 If Step = X (Network Length) then

 State = normal

 Send leader message on link 1 and 3

 Else

 {

 Step = Step+1

 Send election message on link (1)

 Wait for Ack message

 Send Ack message on link (3)

 }

 If time out without receive acknowledgment message

then

 {

 Send link-failure message on link 2

 }

 Upon Receiving link-failure message

 If the message was received from link 4 then forward it

on link 1

 If the message was received from link 1 then forward it

on link 4

 If the message was received from link 2 then

 {

 Compare received ID with Local-ID and select

the Winner-ID

 If Step = X (Network length) then

 State =normal, Send leader message on link 1

and 3

 Else

 {

 Step = Step+1

 Send election message on link (1)

 }

 }

Upon Receiving Leader message

 If the message from link 1 or 3 then

 {

 Pass the message to inverse link (1 to 3 or 3 to 1)

 State = normal

 Send Leader message on links 2 and 4

 }

 If the message from link 2 or 4

{

 State = normal

 Pass the message to inverse link (2 to 4 or 4 to 2)

}

End the algorithm Figure 4. Leader election algorithm in 2D torus with the presence of one link failure.

Leader Election Algorithm in 2D Torus Networks with the Presence of One Link Failure 111

5.1.2. Time Steps

In any case, the number of Time Steps that needs to

complete the leader election algorithm in 2D torus -

with the presence of one link failure- is at most)(NO

steps.

In order to find the number of time steps, a complete

computation is carried out for each phase, and then the

total number of computation for the overall algorithm

is calculated. We apply the computations at the simple

case and then at the worst case as follows:

• Phase One: step 1, a node detects the failure and

sends Leader-failure message to the right and left

neighbors. steps 2 to X/2 + 1: nodes receive the

leader-failure messages forward the message

through the inverse link. At the same step, the node

sends an acknowledgement message. The same

procedure is repeated until step X/2+1. When the

leader failure message is received by a candidate

node, the time steps for phase one is (X/2+1) Steps.

• Phase Two: step 1, after phase 1, the candidate

nodes start phase two by sending election messages

through links labeled 2. Step 2 to step Y: nodes

which receive the election messages make the

comparison and pass election messages up with the

greater ID. After Y -1 step the result of the column

leader is found in one node. The node sends the

column result to the first row. So the algorithm

needs (Y+1) steps to complete phase 2 as in equation

6.

 1+Y-1+1 = Y+1 (6)

• Phase Three: node (0, 0) starts the election process

in step one by sending the greater ID through link 1

(right). This process continues as follow, step 2 to

step X: Any node which receives the election

message, makes the comparison and sends the

election message with greater ID to the right

neighbor. Phase three is terminated when node (0,

0) receive the election message from link 3 (left).

This process needs X steps. To tolerate the

probability of the presence of one link failure in

phases 2 and 3 the algorithm needs 3 steps as

explained in the algorithm description.

• Phase Four: row broadcasting needs are (X/2+1)

steps. Since node (0, 0) has the new leader

information and it sends this information in two

directions (left and right), the row broadcasting is

terminated after X/2 steps and an extra step may

occur if the last two nodes send the messages before

receiving the message-or if X dimension is odd. So,

the total is (X/2+1) steps.

The column broadcasting, using the same way column

broadcasting needs (Y/2+1) steps. The total time steps

overall the algorithm is as in equation 7.

X/2 + 1+ Y+1 +X +(X/2+1)+ (Y/2 + 1)+ 3

 =2X+3/2Y+7 time steps (7)

when X= Y = N , the number of time steps can be

expressed as in equation 8.

)(7
2

3
2 NONN =++

5.2. Worst Case

5.2.1. Number of Messages

In the worst case, all nodes detect the leader failure

simultaneously and start the algorithm.

• Phase One: all nodes detect the leader failure and

start the algorithm. So each node sends two

messages in links 1 and 3. Phase one is finished

after one step because all of the nodes become a

candidate. The number of messages is equal 2(XY)

messages.

• Phase Two: after phase one, all nodes are in the

candidate state, so all nodes start phase two.

Step One all nodes send election messages through link

2. All nodes also send acknowledgement messages.

Therefore, step1 needs 2XY messages. Step 2 to Y: one

node in each column will continue the election for the

column. In each step, X nodes send election messages

and X nodes send acknowledgement messages. The

number of messages needed is as in equation 9.

∑
=

Y

I

X
2

2

After step Y in phase 2, one node in each column has

the election result for this column. The results are sent

to the first row. So, X messages are needed for this

step. So, all over the number of messages is as in

equation 10.

 2XY + 2XY – 2X + X = 4XY – X (10)

Phase three and Phase four are the same as in the

simple case as follow:

• Phase Three: when node (0, 0) receives the column

result message, it starts phase three. Step one: node

(0, 0) sends election message through link 1 and

waits for acknowledgement. Step 2 to step X: each

node which receives the election message sends an

acknowledgment message through link 3, and

election message through link 1. When node (0, 0)

receives the election message, it obtains the new

leader information after sending one message for

acknowledgement. In other words, in phase three,

each node sends two messages (election and

acknowledgement) messages. Thus, there will be 2X

messages.

• Phase Four: node (0, 0) starts row broadcast by

sending two messages through links 1 and 3 in step

= 2X(Y-1) (9)

steps (8)

112 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

1. In steps 2 to X/2, two messages is used in each

step. In the last step, two extra messages are used if

the last nodes send the message before receive. Row

broadcast needs X+ 2 messages.

In column broadcast, Y+2 messages are needed for

each column. Therefore the total for X columns is

X(Y+2). For phase four, the of messages is as in

equation 11.

 X+2 + XY+2X = XY+3X+2 (11)

To cover the link failure in phase two-or phase three-

the algorithm needs three messages so the total number

of messages overall the algorithm is as in equation 12.

2XY+ 4XY – X + 2X + (XY+3X+ 2) +3

 = 7XY + 4X + 5 (12)

when X=Y, the XY =N. So, the total number of

messages in terms of N is expressed by formula 13.

 7N+4N
1/2
+5 = O(N) messages (13)

6. Time Steps

When all nodes detect the leader failure

simultaneously, the time steps will be as follows:

• Phase one: all nodes start the algorithm by sending

leader-failure message. The different in this case is

that, all nodes states become candidate after step

one and start phase two. Therefore, phase one needs

one time step to complete.

• Phase Two: in step one, all nodes start phase two.

In step two, one node in each column continues the

election, while all other nodes in the same column

stop the process. So, the time steps in this phase are

equal Y steps and need one step for column result

message. Thus the total for this phase is Y+1 steps.

• Phase Three and Phase Four: are the same as in the

simple case. The total time steps overall the

algorithm in the worst case is as in equation 14.

 1+ Y+1 +X +(X/2+1) + (Y/2 + 1) + 3 =

 3/2X+3/2Y+7 Time steps (14)

when X= Y = N , the number of time steps can

be expressed as in equation 15.

)(7
2

3

2

3
NONN =++

7. Conclusion and Future Work

In this work, a leader election algorithm in 2D torus

network is proposed and analyzed. This algorithm

consists of four phases. Each phase has many steps and

messages. Phase one is initiated when one or more

nodes detects leader failure, it initiates the election

process. In phase one, the node(s) that detects the

leader failure informs other nodes in the same row

about leader failure. In phase two, nodes which aware

of leader failure start the election process throughout

the column. Phase two terminates when one node has

the winner in the column. The results of all columns

are transferred to the first row. In phase three, another

election is applied on the first row to obtain the new

leader information in the first node. Last phase,

broadcasts one to all is applied to disseminate the new

leader information to all nodes. All algorithm phases

considered the probability of link failure.

Algorithm performance was evaluated by calculating

the number of messages and the steps throughout the

whole algorithm. Several possible extensions to

improve the work are proposed here. An algorithm can

be designed to solve the leader failure in meshes

networks with the presence of link failure. An

algorithm can be designed to solve leader failure in

hypercube when the ID is not distinguished. An

election algorithm on topologies such as mesh- can be

investigated in a wireless communication environment.

References

[1] Abu-Amara H. and Lokre J., “Election in

Asynchronous Complete Networks with

Intermittent Link Failures,” Computer Journal of

IEEE Transactions on Computers, vol. 34, no. 7,

pp. 778-788, 1994.

[2] Akbar B., Effatparvar M., and Effatparvar M.,

“Bully Election Algorithm Improvement with

New Methods and Fault Tolerant Mechanism,” in

Proceedings of Computer Science and

Engineering and Electrical and Electronics

Engineering, North Cyprus, pp. 501-506, 2006.

[3] Ajluni N. and Refai M., “Leader Election

Algorithm in Hypercubes with the Presence of

One Link Failure,” in Proceedings of

International Conference on Parallel and

Distributed Processing Techniques and

Applications, USA, pp. 26-29, 2006.

[4] Antonoiu G. and Srimani K., “A Self-Stabilizing

Leader Election Algorithm for Tree Graphs,”

Computer Journal of Parallel and Distributed

Computing, vol. 34, no. 59, pp. 227-232, 1996.

[5] Coulouris G., Dollimore J., and Kindberg T.,

Distributed Systems Concept and Design,

Addison-Wesley, USA, 2005.

[6] Devillers M., Griffioen D., Romijn J., and

Vaandrager F., “Verification of Leader Election

Protocol Formal Method Applied to IEEE,”

Springer International Journal on Software Tools

for Tecknology Transfer, vol. 5, no. 4, pp. 123-

125, 2004.

[7] Dolev S., Israeli A., and Moran S., “Uniform

Dynamic Self-Stabilizing Leader Election,”

Computer Journal of IEEE Transaction on

Parallel and Distributed Systems, vol. 8, no. 4,

pp. 424-440, 1997.

steps (15)

Leader Election Algorithm in 2D Torus Networks with the Presence of One Link Failure 113

[8] Duato J., Yalamanchili S., and Ni L.,

Interconnection Networks an Engineering

Approach, IEEE Computer Society, Addison

Wesley, California, 1997.

[9] Flocchini P. and Mans B. “Optimal Elections in

Labeled Hypercube,” Computer Journal of

Parallel and Distributed Computing, vol. 33, no.

26, pp. 76-83, 2005.

[10] Foster I., Designing and Building Parallel

Programs, Addison-Wesley, USA, 1994.

[11] Fredrickson N. and Lynch N., “Election a Leader

in Asynchronous Ring,” Computer Journal of the

ACM, vol. 34, no. 5, pp. 98-115, 1987.

[12] Gerard T., “Linear Election for Oriented

Hypercube,” Technical Report TR-RUU-CS-93-

39, Utrecht University, 1993.

[13] Jean F., “Quasi Optimal Leader Election

Algorithms in Radio Network with Log-

Logarithmic Awake Time Slots,” in Proceedings

of Institut National de Recherche en Informatique

et Automatique, France, pp. 97-100, 2005.

[14] Junguk L. and Geneva G., “A Distributed

Election Protocol for Unreliable Networks,”

Computer Journal of Parallel and Distributed

Computing, vol. 35, no. 22. pp. 35-42, 1996.

[15] Kumar V., Grama A., Gupta A., and Karypis G.,

Introduction to Parallel Computing, The

Benjamin/Cumminy Publishing, California,

2003.

[16] Levitin A., Introduction to the Design and

Analysis of Algorithms, Addison Wesley

Company, USA, 2003.

[17] Miroslav K. and Wojciech R., cs.huji.ac.il

/labs/.../adhoc /kuty lowski_2003 advers

daryimmuneleader.pdf, 2007.

[18] Molina H., “Elections in A Distributed

Computing Systems,” Computer Journal of IEEE

Transactions on Computers, vol. 31, no. 1, pp.

48-59, 1982.

[19] Navneet M., Jennifer L., and Welch V., “Leader

Election Algorithms for Mobile Ad Hoc

Networks,” Technical Document CCR-9972235,

2001.

[20] Ostrovsky R., Rajagoplan S., and Vazirani U.,

“Simple and Efficient Leader Election in the Full

Information Model,” in Proceedings of the

Twenty-Sixth Annual ACM Syposium on Theory

of Computing, Canada, pp. 564-573, 1994.
[21] Power H., Algorithms and Application in Parallel

Computing, WIT Press/ Computational,

Mechanics Publications, USA, 1999.

[22] Refai M. and Ababneh E., “Leader Election

Algorithm in 3D Torus Networks,” Master

Theses, Al-Albayet University, 2002.

[23] Refai M. and Ajlouni N., “A New Leader

Election Algorithm in Hypercube Networks,”

Symposium Proceedings Volume II Computer

Science and Engineering and Electrical &

Electronics Engineering, North Cyprus, pp. 497-

501, 2006.

[24] Richard E. and Kumarss N., Foundations of

Algorithms Using Java PseudoCode, Jones and

Bartlett Publishers, Canada, 2004.

[25] Russell A., Saks M., and Zuckerman D., “Lower

Bounds for Leader Election and Collective Coin-

Flipping in the Perfect Information Model,” in

Proceedings of the Symposium on the Theory of

Computing, Atlantic City, pp. 25-29, 1999.

[26] Singh G., “Leader Election in the Presence of

Link Failures,” Computer Journal of IEEE

Transactions on Parallel and Distributed

Systems, vol. 7, no. 3, pp. 33-38, 1996.

[27] Singh G., “Efficient Distributed Algorithms for

Leader Election in Complete Networks,” in

Proceedings of 11
th
 IEEE International

Conferences on Distributed Computing Systems,

New York, pp. 472-479, 1991.

[28] Singh G., “Efficient Leader Election Using Sense

of Direction,” Technical Document KS66506,

Kansas State University, Manhatten, 1997.

[29] Sudarshan V., DeCleene B., Immerman N.,

Kurose J., and Towsley D., “Leader Election

Algorithms for Wireless Ad Hoc Networks,” in

Proceedings of IEEE DISCEX III, California, pp.

291-311, 2003.

[30] Tanenbaum A., Distributed Systems, Prentice-

Hall International, New Jersey, 2002.

[31] Tanenbaum A., Distributed Operating Systems,

Prentice-Hall International, New Jersey, 1995.

[32] William K., Nellson D., and Ryan S.,

http://bkocay.cs.umanitoba.ca/g&g/articles/Torus

.pdf, 2007.

[33] William K. and Winnipeg M., http://

bkocay.cs.umanitoba.ca/g&g/articles/Embedding

s.pdf, 2007.

[34] Yamshita M. and Kammeda T., “Leader Election

Problem on Networks in which Processor

Identity Numbers are not Distinct,” Computer

Journal of IEEE Transactions on Parallel and

Distributed Systems, vol. 10, no. 9, pp. 5-10,

1999.

114 The International Arab Journal of Information Technology, Vol. 7, No. 2, April 2010

Mohammed Refai received his

undergraduate studies in computer

science from Mutah University,

Jordan and MSc degree in computer

science from Alalbayet University,

Jordan. He received his PhD in

computer science from Amman Arab

University for Graduated Studies, Jordan. He is

currently worked as assistant professor in the Faculty

of Science and Information Technology at Zarqa

Private University, Jordan. His main research interests

include many aspects in parallel and distributed

systems, simulation, and data mining.

Ahmad Sharieh received his BSc in

computer science from the

University of Tennessee, USA. His

MSc in computer sciences from

Western Kentucky University, USA.

His PhD in computer and

information sciences from Florida

State University, USA.

Fahad Alshammari received his

BSc in computer science,

Department of Computer Science,

King Saud University, Saudi Arabia.

His MSc in computer science, from

Department of Computer Science,

University of Jordan, Jordan. He is

currently a postgraduate studies student, Information

Technology and Computer Science College, University

of Malaya, Malaysia.

Leader Election Algorithm in 2D Torus Networks with the Presence of One Link Failure 115

116 The International Arab Journal of Information Technology, Vol. 7, No. 1, January

2010

