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Abstract: In this paper, a quantum-inspired differential evolution algorithm for solving the N-queens problem is presented. 

The N-queens problem aims at placing N queens on an NxN chessboard, in such a way that no queen could capture any of the 

others. The proposed algorithm is a novel hybridization between differential evolution algorithms and quantum computing 

principles. Accordingly, differential evolution algorithms have been enhanced by the adoption of some quantum concepts such 

as quantum bits and states superposition. The use of the quantum interference has allowed this hybrid approach to have a 

remarkable efficiency and good results. 
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1. Introduction 

Combinatorial optimization problems form a set of 

problems which need a considerable effort and time to 

be solved. Their difficulty lies in the fact that there is 

no formula for solving them exactly. Every possibility 

has to be examined in order to find the best solution 

and the number of possibilities increases exponentially 

as the size of the problem increases [3]. 

 Classical methods are very limited in solving such 

problems because a large set of data is to be processed 

and a large solution space must be explored. So, other 

methods, known as approximate methods, are used to 

solve such problems. The aim of an approximate 

method is to get an accepted solution, not necessary the 

optimal one. Genetic algorithms, artificial neural 

networks, simulated annealing; taboo search and 

Differential Evolution Algorithms (DEA) are among 

the most famous approximate methods used in the 

combinatorial optimization field. 

Differential evolution algorithms are population 

based algorithms like genetic algorithms using similar 

operators; crossover, mutation and selection. The main 

difference is that genetic algorithms give more 

importance to the crossover operation while DEAs 

consider the mutation operation as the most important 

one. The DEA's main operation is based on the 

differences of randomly sampled pairs of solutions in 

the population [6]. Like in evolution strategies, the 

differential evolution is oriented to optimize real 

values, but it is very simple to be implemented [8]. 

 Another search field called Quantum Computing 

(QC) has appeared and induced intense researches in 

the last decade. This evolution that takes its origins 

from the quantum physics principles reduces 

remarkably the algorithms' complexity. This is offered 

by the possibility of parallel computing. Such a 

possibility of parallel computing can be exploited to 

solve combinatorial optimization problems which use a 

great mass of data. Thus, quantum computing gives the 

opportunity of designing very powerful and efficient 

algorithms. However, these algorithms may not be well 

exploited before the construction of powerful quantum 

machines. Awaiting the construction of such machines, 

the idea of simulating quantum algorithms on classical 

computers or to combine them to other conventional 

methods has emerged [3].  

 Researches in the field of combination between 

evolutionary algorithms and quantum computing have 

started at the end of the 1990’s. The purpose of this 

combination is to enhance the profit of each one of 

these two approaches by mutually inspiring each from 

the other. Within this sphere, we are interested in 

studying the differential evolution-quantum 

hybridization and its contribution in solving 

combinatorial optimization problems.  

 In this paper, we propose a quantum-inspired 

differential evolution algorithm for solving the N-

Queens Problem (NQP).  A previous instance of 

QDEAs has been applied for image registration [2] and 

it has given good results; that has motivated us to apply 

it on the NQP and to compare its performance to that 

of another work [3] that uses a conventional Quantum-

inspired Genetic Algorithm (QGA) for solving the 

NQP. 

 Consequently, the rest of this paper will be 

organized as follows. Section 2 gives some concepts 
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about differential evolution, NQP and quantum 

computing. The proposed approach is described in 

section 3. Section 4 illustrates some experimental 

results and discussions. Finally, conclusion and future 

directions are drawn up. 

 

2. Basic Concepts 

2.1. N-Queens Problem 

The NQP is a classical artificial intelligence problem. 

It is a general case of the 8-Queens problem. This 

combinatorial optimization problem has been studied 

for more than a century. The 8-Queens problem was 

first introduced by a chess player, Max Bezzel, in 

1848. Since 1850, the problem has attracted the 

attention of several famous mathematicians including 

Gauss, Polya, and Lucas. 

 The N-Queens problem can be defined as follows: 

place N queens on an N x N chessboard, each queen on 

a square, so that no queen could capture any of the 

others, that is, a configuration in which there exists at 

most one queen on a given row, column or diagonal. A 

solution for the 8QP is given in Figure 1. 

 

 

Figure 1. A possible solution of the N-queens problem where N=8. 
 

 During the last three decades, the problem has been 

discussed in the context of computer science and used 

as an example of backtrack algorithms, permutation 

generation, divide and conquer paradigm, program 

development methodology, constraint satisfaction 

problems, integer programming, specification and 

neural networks [1, 12]. 

 A common way to solve this problem consists in 

trying to put the queens on the board squares one after 

the other. If one queen threatens the newly introduced 

queen, we withdraw the queen and search for another 

position. If we cannot find a solution, we choose to 

remove a queen already positioned, assign it another 

position that has not yet been used, and start the search 

again. This last operation is called a back-track, and 

the whole strategy is called a trial-and-error algorithm. 

It is known that for N=8, there are exactly 92 

solutions, or less if we consider symmetric solutions as 

equal [1, 12].  

 The number of solutions for n = 1, 2... 15, is 1, 0, 0, 

2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 

365596, 2279184. 

 

2.2. Differential Evolution 

Differential Evolution (DE) is a novel parallel direct 

search method which uses N parameters vectors xi,G ,  

i=0..N-1 as a population for each generation G. N does 

not change during the minimization process. A 

Differential Evolution Algorithm (DEA) is a 

stochastic, population-based optimisation algorithm. It 

aims at optimizing real parameter and real valued 

functions [2, 8].  

 The crucial idea behind DE is a new scheme for 

generating trial parameter vectors. DE generates new 

parameter vectors by adding the weighted difference 

vector between two population members to a third 

member. If the resulting vector yields a lower objective 

function value than a predetermined population 

member, the newly generated vector replaces the 

vector with which it was compared. The comparison 

vector can, but does not need to be a part of the 

generation process mentioned above. 

 The main evolutionary operator in DE is 

meaningfully different from other evolutionary 

algorithms since mutation is neither based on the 

alteration of genes by using a mutation probability nor 

rest on the use of a defined probability distribution 

function. In DE the mutation operator mutates µ 

vectors through the weighted difference of two (or 

four) other vectors according to: 
 

             )(* 21 rrii aaFaV
rrrr

−+=            (1) 
 

where i =1,2,..., µ , and the random indexes r1 and 

r2∈[1, 2,..., µ] are mutually different and also distinct 

from the index i. F is a real constant belonging to the 

interval [0, 2] which affects the differential variation 

between two vectors. As in other evolutionary 

algorithms, the crossover operator is introduced in 

order to increase the diversity of the population. The 

general structure of a differential evolution algorithm 

is shown in Figure 2. 
 

Generate random solutions that cover the given space. 

Evaluate each solution. 
 

g=1 

While (convergence is not reached) 
 

For i=1 to Population size 

Apply differential mutation. 

Execute differential crossover 

Clip the solutions if necessary 

Evaluate the new solution. 

Apply differential selection. 

End 
 

g=g+1; 

End  

Figure 2. General structure of the DEA. 
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2.3. Quantum Computing 

In early 80, Richard Feynman's observed that some 

quantum mechanical effects cannot be simulated 

efficiently on a computer. His observation led to 

speculation that computation in general could be done 

more efficiently if it used this quantum effects. This 

speculation proved justified in 1994 when Peter Shor 

described a polynomial time quantum algorithm for 

factoring numbers [9]. In this section the basic 

concepts of quantum computing such as quantum bit, 

states superposition, quantum measurement, and 

quantum gates will be described. 

 Quantum computation is based upon physical 

principles from the theory of quantum mechanics, 

which is in many ways counterintuitive. Classical 

computer systems represent a single bit of information 

deterministically: the value is either logic 0 or logic 1. 

Quantum computer systems represent a single bit of 

information as a quantum bit (qubit), which is a unit 

vector in the complex Hilbert space C
2
 [2]. Quantum 

bit (qubit). In a quantum system the elementary 

information unit is the qubit. Unlike the classical bit, 

the qubit does not represent only the value 0 or 1 but a 

superposition of the two. Its state can be given by [7]: 
 

              |Ψ〉 = α|0〉 + β|1〉                                    (2) 
 

where |0〉 and |1〉 represent the classical bit values 0 

and 1, respectively; α and β are complex numbers such 

that:             

                   |α|
2
 + |β|

2
 = 1                        (3) 

 

 If a superposition is measured with respect to the 

basis {|0〉, |1〉}, the probability to measure |0〉 is |α|
2 
and 

the probability to measure |1〉 is |β|
2
. Multiple qubits 

(quantum register) 

In classical computing, the possible states of a 

system of n bits form a vector space of n dimensions, 

i.e., we have 2
n
 possible states. However, in a quantum 

system of n qubits the resulting state space has 2
n
 

dimensions. It is this exponential growth of the state 

space with the number of particles that suggests a 

possible exponential speed-up of computation on 

quantum computers over classical computers. The 

basis of the state space of a quantum system of n qubits 

is: {|00...0〉, |00...1〉… |11...1〉} [4, 5]. 

Measurement: the measurement of a single qubit 

projects the quantum state onto one of the basis states 

associated with the measuring device. The result of a 

measurement is probabilistic and the process of 

measurement changes the quantum state into the 

measured one. Multi-qubit measurement can be treated 

as a series of single-qubit measurements in the 

standard basis. 

Quantum gates: the dynamics of a quantum system 

are governed by Schrödinger's equation. The 

transformations must preserve the orthogonality. For a 

complex vector space, linear transformations that 

preserve orthogonality are unitary transformations, 

defined as follows. Any linear transformation on a 

complex vector space can be described by a matrix. A 

matrix M is unitary if M.M'=I. Any unitary 

transformation of a quantum state space is a legitimate 

quantum transformation and vice-versa. Rotations are, 

for example, unitary transformations. One important 

consequence of the fact that quantum transformations 

are unitary is that they are reversible. Thus quantum 

gates, which can be represented by unitary matrices, 

must be reversible. It has been shown that all classical 

computations can be done reversibly [7, 10]. 

 

3. The Proposed Approach 

Conventional DEAs operate on a set of individuals 

(chromosomes) forming a population. To be more 

representative this population must contain a fit 

number of chromosomes. This makes the solution 

space very large. So, the classical DEAs are usually 

very expensive in terms of processing time and 

memory size.  For reducing the number of 

chromosomes and consequently reducing the heavy 

computation time, an alternative is proposed: it is the 

quantum-inspired differential evolution algorithm. 

 A QDEA is a QDA with quantum coding solutions. 

This representation will reduce the computation time 

by decreasing the number of chromosomes. Moreover 

it gives a better global solution. Like in DEA, initial 

solutions are encoded in N chromosomes representing 

the initial population. The difference in a QDEA is that 

each chromosome does not encode only one solution 

but all the possible solutions by putting them within a 

superposition [3, 11]. 

 

3.1. Solution Modelling 

Every queen on a checker square can reach the other 

squares that are located on the same horizontal, 

vertical, and diagonal line. So there can be at most one 

queen at each horizontal line, at most one queen at 

each vertical line, and at most one queen at each of the 

4n-2 diagonal lines. Furthermore, since we want to 

place as many queens as possible, namely exactly n 

queens, there must be exactly one queen at each 

horizontal line and at each vertical line [3]. For a 1x1 

board, there is one trivial solution: for 2x2 and 3x3 

boards, there are no solutions.  For a 4x4 board, there 

are two: 

   

  

 

 

 

 

 

These are considered distinct solutions, even though 

the solutions are mirror images of each other. There is 
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no quick and easy way to calculate the total number of 

NQP solutions for an NxN board. We can represent the 

NQP solution by an NxN matrix A containing only N 

ones and satisfying the constraint that only one 1 can 

be in a raw, in a column or in a diagonal. For example 

the matrix bellow represents a solution of the 4-qeens 

problem: 
 

                       0     0     1     0 

                       1     0     0     0 

                       0     0     0     1 

                       0     1     0     0 

Figure 3. A solution matrix of the 4-queens problem. 

 

3.2. Fitness Function 

The penalty of one queen is equal to the number of 

queens she can check. The fitness of the configuration 

is equal to the sum of all the queens penalties divided 

by two, deleting redundancy counting. For example the 

fitness of the solution presented in Figure 3 is 0: we 

can easily observe that each queen in this chessboard is 

the only one in all the lines passing through it; 

horizontal, diagonal or vertical.  

 In the matrix solution of Figure 4, the fitness is 8: 

the penalty of the queen in column 1 is 3: it can check 

the second, the third and the fourth queen in the same 

line, the second column’s queen has a penalty of 4: it 

can check the 3 other queens of the same line and that 

situated in the fourth column of the third line. The third 

queen can check the queens of the same line, its 

penalty is 3. Similarly to the second queen in its line, 

the fourth queen of that first line can check the three 

other queens in this line and that in the fourth column 

in the third line. It has a penalty of 4. Finally, the 

queen in the third line of column 4 can check 2 other 

queens. So, its penalty is 2. The sum of these penalties 

is equal to 16, and when dividing it by 2 to reduce 

redundancy, we will have 8 which is the fitness of this 

matrix solution. 

1     1     1     1 

0     0     0     0 

0     0     0     1 

0     0     0     0 

Figure 4. A bad solution matrix of the 4-queens problem. 

 

3.3. Quantum Representation 

The solution representation given above can make the 

search space representation in a conventional DEA 

very large. Because of this, we propose another 

representation of the solution, the chromosome, using 

the quantum state superposition concept. A quantum 

encoding offers a powerful mean to represent the 

solution space and reduces by the way the required 

number of chromosomes [3]. 

 We have represented the solution by a quantum 

matrix which is equivalent to a chromosome in a 

conventional DEA. For example, the following matrix 

is a quantum matrix representing a 4*4 qubits. Such as, 

every qubit represents a superposition of 1 and 0 states. 

So this matrix represents a superposition of all 

solutions including incorrect solutions. 

 
  0.4134    0.8435    0.8597    0.6633 

  0.9105    0.5371    0.5109    0.7484 
  0.9759    0.1819    0.6313    0.2524 

  0.2182    0.9833    0.7755    0.9676 

  0.5261    0.8530    0.7707    0.8326 
  0.8504    0.5219    0.6372    0.5539 

  0.5035    0.2984    0.2579    0.1440 

  0.8640    0.9544    0.9662    0.9896 

Figure 5. A quantum solution matrix. 

  

 The quantum solution matrix is a (2*N)*N matrix 

which represents the superposition of all possible 

matrix containing zeros and ones. Each qubit in this 

solution satisfies the constraints of equation 3: the sum 

of the squares of the two elements of the qubit is equal 

to 1.  

 

3.4. The Proposed Algorithm 

During the whole process we keep in memory the 

global best solution. The algorithm consists on 

applying cyclically the following quantum inspired and 

differential evolution operations: the first operation is a 

quantum interference which allows a shift of each 

qubit in all the direction of the corresponding bit value 

in the best solution. That is performed by applying a 

unitary quantum operator which achieves a rotation, 

whose angle is function of αi, βi and the value of the 

corresponding bit in the best solution [3].  

 

 

 

 

 

 

Figure 6. Quantum interference. 
 

The second operation consists of a quantum 

differential mutation which will perturb values of 

quantum chromosomes using a difference between two 

other quantum chromosomes. This difference is 

multiplied by another factor F before being added to 

the perturbed chromosome. In this work we have 

chosen F=1/1000. 

This operator replaces the quantum-inspired 

corssover and the quantum-inspired mutatioin [3], 

because it has been proved that only the use of 

differential mutation in a conventional DEA do 

produce the diversity and the convergence at the same 

time. So, in this work we will only use the quantum 

differential mutation. 
 

 

A Qubit 

 

± δθ (According to the value of the bit in 
the best solution) 
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Table 1. Lookup table of the rotation angle. 

� � Reference bit value Angle 

    > 0           > 0 1 +δδ 

    > 0      > 0 0 -δδ 

    > 0      < 0 1 -δδ 

    > 0      < 0 0 +δδ 

    < 0      > 0 1 -δδ 

    < 0 > 0 0 +δδ 

    < 0 < 0 1 +δδ 

    < 0 < 0 0 -δδ 

   

 An example is given below; a1, a2, a3 are three 

chromosomes of the 2-wueens problem. 
 

a1= 

0.5761    0.1375 

0.8173    0.9905 

0.7903    0.5635 

0.6127    0.8261 

 

a2= 

0.3706    0.0400 

0.9288    0.9992 

0.6795    0.8466 

0.7337    0.5322 

 

a3= 

0.6887    0.5852 

0.7250    0.8109 

0.4772    0.0531 

0.8788    0.9986 

 

After applying the differential evolution operator:  

a3=a3+(a1-a2)/1000. The chromosome a3 becomes: 
                              a3= 

                    0.6889    0.5853 

                    0.7249    0.8109 

                    0.4773    0.0528 

                    0.8787    0.9989 
 

Finally, we perform a selection of m chromosomes 

among the n existing in the current generation.  For 

this, we apply first a measurement on each 

chromosome to have from it one solution among all 

those present in superposition. But unlike pure 

quantum systems, the measurement here does not 

destroy the states' superposition. Since our algorithm 

operates on conventional computer and does not 

require the presence of a quantum machine, it is 

possible and in our interest to keep all the possible 

solutions in the superposition for the next iterations. 

For each measurement result, we extract a distribution 

of N-queens. To evaluate the quality of a solution, we 

compute its fitness. The best solution is that having the 

minimal fitness (0 in the optimum). 

 

4. Results and Discussion 

This algorithm has been tested on some instances of 

the N-queens problem: for N=1 to 15 with 10 

executions for each instance. The obtained results are 

very promising in comparison with other approaches 

such us Classical Genetic Algorithms (CGA) and 

Hopfield Neural Network (HNN). Compared with the 

CGA, a QEDA offers a faster convergence with a very 

limited number of chromosomes. Also, the best local 

and the global solution evolve in higher performance 

as shown in Figure 7.  Compared with the hopfield 

neural networks the QDEA give an optimal solution in 

a limited number of iterations; QDEA are less 

susceptible to fall in a local optimum. And compared 

with QGA Figure 8, the search process in the QDEA is 

more organized and well guided: the best local 

solutions are generally neighbours of the best global 

solutions.  

 Also the complexity of this QDEA is considerably 

smaller than the CGAs which operate on a large and 

less representative population, and even than that of 

the DEA (because of the use of simple, and less 

number of operators).  So, QDEAs are less expensive 

in representation and processing. 

 

                         (a) Local                                             (b) Global        
 

Figure 7. Local and global best solution evolution CGA and in a 
QDEA. 
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Figure 8. Local best solution evolution and global best solution 

evolution in a QGA (left) and in a QDEA (right). 
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Figure 9. Global best solution evolution in a QGA and in a QDEA. 
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5. Conclusion 

In this paper, we have presented a new approach for 

solving the NQP. A quantum-inspired differential 

evolution algorithm has been employed. This 

algorithm is a hybridization of two well known 

algorithms. The first is the DEA that uses the 

differential evolution operator as alternative of 

classical GAs' mutation. The second is the QGA, 

proposed for the first time in the works of Han [4] and 

which was spread in an exponential manner to touch 

many fields. A QGA has been used for solving the N-

Queens problem [3] and has given promising results. 

Compared with CGA [4, 5] and QGA, our hybrid 

algorithm has given better results either in term of 

computation time or in term of fitness evolution. To 

conclude, we can say that the quantum-inspired 

differential evolution algorithm is well situated to be 

among the good alternatives to solve combinatorial 

optimization problems, especially in term of efficiency 

and algorithmic complexity. As future work, we will 

try to apply this approach for solving other 

combinatorial optimization problems. 
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