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Abstract: This paper addresses issues involved in representation of causal relationships between medical categories.  An 

interval based approach for medical binary fuzzy relations is proposed to represent the ignorance about uncertainty and 

imprecision. A major advancement propagated by this model lies in formalizing some novel medical measures enhancing the 

sight in understanding the causality relationship between medical entities. This view is expressed in extension of the classical 

fuzzy implication relationship in terms of interval valued fuzzy inclusion relationship in the context of fuzzy binary 

relationships.  The focus of attention of this model is based on utilizing interval based fuzzy inclusion relationships as causality 

measures expressing the strength of the degree of inclusion between fuzzy sets.  In addition, derived from the direction of an 

inclusion degree, an interval based causal relationship can medically be interpreted as the necessity or the sufficiency of 

occurrence of a medical entity such as symptoms or disease with another one.  Furthermore, for simplification of computations 

and defuzzification of dependent intervals a method for transformation of these relations into point-valued relations is pro-

posed.  
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1. Introduction and Motivation 

Establishing causal and associational relationships 

between clinical categories such as clinical 

observations; i.e., findings or symptoms, path 

physiological states, diagnosis or diseases, tests and 

therapies can be represented in different ways and at 

different levels. However, as most medical knowledge 

is uncertain and or imprecise, representing medical 

knowledge requires methods capable of dealing with 

uncertainty and imprecision such as numerical and 

symbolic methods. On the other hand, obtaining pure 

statistical precise values for representing uncertain or 

imprecise relationships might be very complex to 

acquire. Even quantitative medical information coming 

from measurement are never 100% accurate, they are 

usually expressed in terms of intervals considering the 

measurement error factor.  Moreover, knowledge bases 

could possibly be affected with logical inconsistency 

or incompleteness.  

This work is hence attempting to introduce a formal 

knowledge representation model discussing the 

prospect of utilizing the fuzzy inclusion relationship to 

represent significant medical measures between fuzzy 

sets representing medical entities. In this context, 

illdefined causal relationships between   medical 

entities are captured through key medical measures 

such as the necessity and sufficiency of occurrence. 

These basic relationships can be interpreted as 

uncertain rules expressing the degree of impression 

and uncertainty between the antecedents and the 

consequents expressed by the degree of fuzzy 

inclusion. Furthermore, to handle the problem of 

ignorance about the uncertainty this model is 

proposing to extend such fuzzy Subsethood or 

inclusion relations to consistent interval-based 

relationships.   

In this model, the direction of an inclusion 

relationship between fuzzy sets plays a decisive role in 

the interpretation of a medical causal relationship. 

Furthermore, an interval based causal relationship can 

medically be represented at different levels of the 

clinical knowledge, e.g., patient symptom 

manifestation, observational, path physiological, 

disease level, etc.  An important enhancement lies in 

extension of the classical fuzzy implication 

relationship in terms of interval valued fuzzy inclusion 

relationship in the context of fuzzy binary medical 

relationships. Additionally, a transformation of these 

relations into point valued relationship is also proposed 

for reducing and simplification of the computability of 

such relationships. 

 

1.1. Scope and  Related Work 

The importance of the   concept   “fuzzy   inclusion” or 

“fuzzy subsethood”, has already been stressed    by 
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many authors [7, 8, 11, 18]. Meanwhile, it has been 

applied to different areas of computing such as image 

processing, neural network architecture and in 

medicine. On the level of representation of medical 

knowledge, there is some comparable work to this 

approach in recognizing the significance of utilizing 

fuzzy inclusion relationships as a departure point in 

representing clinical medical knowledge [8].  In [10] 

the authors stressed on perception based reasoning 

using medical measures such as necessary causal 

ground and sufficient causal ground, which can be 

derived from the fuzzy cardinality and fuzzy subset 

hood. Also, the different implementations of 

CADIAG-II medical fuzzy expert system [3, 13] have 

a connection to the proposed model in the context of 

considering point valued binary fuzzy relations such as 

strength of conformation, frequency of occurrence and 

utilizing type-2 fuzzy sets in representing clinical 

medical knowledge with the significant difference, that 

the proposed model is proceeding from bidirectional 

interval valued binary fuzzy relations or rules  which 

are based on consistent interval propagations [8].  On 

the general level of representation of uncertainty and 

ignorance, interval valued methods have been 

proposed by many different researchers. Zadeh [19]
 

proposed type-2 fuzzy sets, whose membership 

functions themselves are characterized by fuzzy sets. 

Baldwin [2] employed necessity and possibility 

support boundaries assigned to horn clauses to 

represent the uncertainty. Turksen [17] proposed 

compositional operations based on the disjunctive, 

conjunctive, and normal forms for treating 

approximate analogical reasoning.  

In context of modeling uncertain knowledge based 

on conditional probability as an uncertain implication 

[15], and others, there is some corresponding analogy 

to the proposed model in regarding conditional proba-

bilities as a form of the classical subsethood relation-

ships. Finally, the concept of fuzzy quantifiers based 

on cardinality of fuzzy sets [1, 4, 16] can be regarded 

as imprecise quantification over subsethood 

relationships. Many researchers proceed from 

analyzing properties of the conditional probabilities as 

a probabilistic measure and not from the fuzzy 

inclusion as a measure for measuring the causal and 

associative relationships between medical entities. 

There is also some work considering fuzzy Interval as 

an approach for knowledge representation [12]. 

In the following, we will discuss some aspects of 

utilizing interval based binary fuzzy relations 

characterized by membership functions assigning 

consistent intervals expressed in terms of consistent 

values for possible degrees for an inclusion 

relationship between two fuzzy sets. In the next 

sections, some preliminary definitions and some new 

measures will be introduced. These measures are 

concerned with interval based representations such as 

forward and backward inclusion relations between 

medical entities to describe important medical 

measures such as necessity and sufficiency measures 

and their medical representation. Subsequently, a point 

valued computational model will additionally be 

presented in the context of dependent and consistent 

medical knowledge bases.    

 

2. Measures for Representing  Medical 

Knowledge 

In the following some preliminary and basic notion are 

introduced: a fuzzy set A on a universe 

n= { }1 2x ,x ,...,xU  is defined by a membership function 

:   [0,1]µ →A U  and ( )µA x is the grade of membership 

of the element x in A. In this paper fuzzy sets are 

represented by capitals, e.g. A, B, …, universal sets by 

U, S, D, … 

Definition 1: the cardinality of a fuzzy set A on U is 

defined as follows: 

                                 A|A|= ( )
∈
µ∑
Ux

x                             (1)                                                     

Generally, |A|  is a real number. This approach is 

proceeding form scalar cardinality of fuzzy sets and 

not from a fuzzy cardinality for a fuzzy set [5, 6, 14]. 

A major advantage of adopting this definition lies in 

the fact that some basic properties hold in the scalar 

cardinality in a simplified form such as:  

• Monotonicity; i.e., A  B  |A|  |B|⊆ ⇒ ≤   

• Coverage property; i.e., | A| = | | - |A| ¬ U  

• Additivity rule;  i.e., | A B| + |A B| =  |A| + |B|∪ ∩  

These properties are relevant to the proposed model. 

 

2.1. Measures for Medical Binary Relationships 

In the following, some novel uncertain measures are 

introduced:   

Definition 2: based on [8, 11], the degree of inclusion 

of a fuzzy set in another one is defined by the fuzzy 

subsethood. For the fuzzy sets A and B on U, the 

degree of a forward inclusion FI(A, B)
→

 is defined as 

follows: 

A B

A

 ( ( ) , ( ) )

 [0 ,1 ]  A 0
 ( )F I (A , B )

1                                                     A =  0

x

x

→
∈

∈

µ µ
 ∈ ≠ µ



∑

∑≜

M i n x x

x
U

U

             (2) 

Analogue, a backward inclusion BI(A, B)
←

is defined as 

the fuzzy inclusion degree to which B is contained in 

the fuzzy set A: 

A B

B

 ( ( ), ( ))

 [0,1]  B 0
 ( )BI (A , B)

1                                                     B= 0

x

x

←
∈

∈

µ µ
 ∈ ≠ µ



∑

∑≜

M in x x

x
U

U

       (3)  

fuzzy inclusion relationships expresses the degree of 

inclusion of a fuzzy set in another one. For example 
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FI (A,B)

A B→→ expresses the degree to which the fuzzy 

set A is a subset of the fuzzy set B, which can be 

interpreted as a forward uncertain rule [8].  

Definition 3: let    S 1 2 nS ,S ,...,S = { } be a universal set 

representing the clinical category findings or 

symptoms and  D 1 2 mD ,D ,...,D  = { } a universal set 

representing the clinical category pathophysiological 

states or diseases, then an interval valued necessary 

causal measure, BSDR
��

, is defined as a backward 

interval valued binary fuzzy inclusion relation on the 

Cartesian product S D× , where  

B S D
B S D

R
R  {(( ) , ( ))  | ( ) }µ ∈ ×��
��

≜ S Di j i j i jS , D S , D S , D     (4) 

and                        

B S DR
( )  [ B I ( ) , B I ( ) ]

                            [0 ,1 ]  

← ←

µ

⊆

�� ≜i j i j i jm i n m axS , D S , D S , D           (5) 

where                 

   B I ( ) [ B I ( ) , B I ( ) ]  
← ← ←

∈i j i j i jm i n m axS , D S , D S , D             (6)                                                

The direction of BSDR
←

 is of medical importance. 

BSDR
←

can medically be interpreted as a relation 

expressing the necessity of occurrence in terms of an 

interval. Considering BI ( )
←

i jS , D as a truth-value for a 

fuzzy rule such as
[ ]

←�� ��
min max

i jn ,n
S D expresses, that the 

boundaries for the necessity of occurrence for an 

implication relation should lie within the 

interval [ ]
�� ��

maxminn ,n . Thus, if Si is completely necessary 

for Dj; i.e., ←
i j1

S D , then there is no antecedent Dj 

without occurring the consequent Si. In this case Si is 

obligatory or occurs always with Dj.  In the case of 

←
i j[0.5,0.75]

S D , Si is necessary for Dj to the grade lying 

within [0.5, 0.75], i.e., the degree to which the antece-

dent Si is present whenever the consequent Dj is 

present should be  in [0.5, 0.75].  

 The intervals are supposed to be confident and 

minimal; i.e., the actual degree of the necessity is 

guaranteed to be present within a minimal interval 

BSDR
( )µ�� i jS , D according to an incrementally constructed 

consistent knowledge base. Details for checking the 

consistency of such knowledge are found in [8].  

As the amount − ∩j i jD S D ; i.e., the amount of Dj 

outside of ∩i jS D weakens the causal relation between 

Si and Dj, the square of the inclusion 

degree BI( )
←

i jS ,D might be used as necessary causal 

ground as proposed in [10]: 

      | |
( )

| |

∩ 
⊂  

 
≜

i j

i j

i

2

2 S D
degr ee S D

S
                           (7)                                       

The necessary causal ground is used as a clinical 

measure for measuring the sensitivity of an individual 

patient or object of interest to an initial condition; i.e., 

the fuzzy set A, which might be changed after change 

or therapeutic intervention, represented by B state.  In 

this work, the necessary inclusion relation as a causal 

relation will be used as defined in definition 3. 

Definition 4: FSDR
��

is defined as a forward interval 

valued binary fuzzy inclusion relation on the Cartesian 

product S D× : 
                             

FSD
FSD

R
R {(( ), µ ( )) | ( )  × }∈��
��

≜ S Di j i j i jS , D S , D S , D      (8) 

and           

F S DR
( ) [ F I ( ) , F I ( ) ] [ 0 , 1 ]  

→ →

µ ⊆�� ≜i j i j i jm i nS , D S , D S , D ma x
  (9) 

where     

F I ( ) [ F I ( ) ,  F I ( ) ]  
→ → →

∈i j i j m i n i j m axS , D S , D S , D               (10)  

FIR
��

 in definition 2 , in the context of causality can 

be interpreted as a relation expressing the sufficiency 

of occurrence in terms of an interval. Fuzzy rules 

having the measure 
FSDR

( )µ�� i jS , D  as a truth-value such 

as 
(S , D )

R
µ

→
��

i j

i j

S D should be minimal, guaranteed 

and consistent. Thus, if Si is completely sufficient for 

Dj; e.g., →i j[1, 1]
S D   then there is no Si without 

occurring Dj. That means, the antecedent Si is 

sufficient for the consequent DJ. In the case of 

→i j[0.75, 0.9]
S D , Si is sufficient for DJ to the grade 

which has to lie in [0.75, 0.9], i.e., the degree to which 

DJ is present  whenever Si is present.    

Definition 5: a bidirectional interval-valued relation 

FBR
��

 is defined as simultaneous existence of 

the FSDR
��

and BSDR
��

:  

 

F S D

B S D

F B
R

R

R  { (( ( ) , ( ) ) ,( ( ) , 

                ( ) ) )  | ( ) }

µ

µ ∈ ×

��

��

��
≜

S D

i j i j i

i i jj

jS , D S , D S , D

S , D S , D

              (11) 

 

The Compound Causal Measure (CCM), is defined as 

the minimum of 
FSDR

( )µ�� i jS , D  and 
BSDR

( )µ�� i jS , D  

[ F I ( ) , F I ( ) ]   

[ B I ( ) ,  B I ( ) ]

[M IN ( F I ( ) , B I ( ) )  ,  

M IN ( F I ( ) , B I ( ) ) ]  

→ →

← ←

→ ←

→ ←

∧

≜

i j i j

i j i j

i j i j

i j i j

m i n m ax

m i n m ax

m i n m i n

m ax m ax

S , D S , D

S , D S , D

S , D S , D

S , D S , D

                         (12) 

 

Bidirectional causal measure expresses the degree to 

which both necessity and sufficiency are 

simultaneously present.  In the maximal case when 

observing all patients having | |∩i jS D , Si is sufficient 

and necessary for Dj e.g., 
1

1

→←
i j

S D , i.e., Si=Dj. In 

general, the more Si and DJ are distinct, the less the 

causal flow from Si to Dj and the more something else 

besides Si is causing Dj. The meaning of compound 

measure might be explained in the difference of the 

initial state of a patient before changes and intervention 

or therapies [10], that separates the patient from the 

disease Dj. A patient, who does not exhibit any signs of 
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Si should be separated from Dj, e.g., after the changes 

caused by the therapy. The negation of the compound 

causal measure should therefore express the difference 

between Si and Dj as fuzzy sets.  In the case 

of →←
[0.75,0.9]

i j
[0.5,0.6]

 S D , ←→i j[0.5,0.6]
S D represents the 

compound interval valued causal measure, i.e., Si is 

necessary and sufficient to Dj to the degree lying in 

[0.5, 0.7]. Furthermore, in this context, point valued 

causal relationships can be considered as a special case 

of the compound interval based measure:   

Definition 6: FBpR
��

 is defined as simultaneous 

existence of the point-valued FSDpR
��

and BSDpR
��

 as 

shown in definitions 2 and 3:  

p
F S D p

B S D p

F B
R

R

R  {((( ), ( )),(( ), 

               ( )))  | ( )  }

µ

µ ∈ ×

��

��

��
≜

S D

i j i j i j

i i jj

S , D S , D S , D

S , D S , D

            (13) 

BSDpR
��

 is defined as a backward point-valued binary 

fuzzy inclusion relation on the Cartesian product 

S D× , where                  

p
B S D p

B S D
R

R {(( ) , ( ) ) |( ) }µ ∈ ×��
��

≜ i j i j i jS , D S , D S , D S D    (14) 

and                

B S D pR
( )  B I ( ) [ 0 ,1 ]  

←

µ ∈�� ≜i j i jS , D S , D ,                         (15)  

                                           

 
p F S D p

F S D
R

R  {( ( ) , ( )) |( ) }µ ∈ ×��
��

≜ i j i j i jS , D S , D S , D S D  (16)               

where          

F S D p
jR

( )  F I ( ) [ 0 , 1 ]  
→

µ ∈�� ≜i i jS , D S , D
                            (17) 

   

3. A Framework for Representation Binary 

Medical Causal Relationship  

Considering medical entities as fuzzy sets and 

establishing an inclusion or fuzzy subsethood 

relationships between them, provides a formal 

framework to represent clinical knowledge expressing 

causal relations dealing with imprecision and 

uncertainty. Based on backward interval-valued binary 

fuzzy inclusion relations BSDR
��

as interval-valued 

necessary causal measure and forward   interval-valued  

binary fuzzy inclusion relations as an interval-

valued sufficient causal measure, interval-based 

associative and causal relationships can be established 

as shown in Figure 1. Domain experts are aware of the 

complexity of the network of possible relations, but 

they cannot always deliver exact and consistent values 

for the strength of some causal relationships, without   

evaluation a huge account of medical data. They in-

clined to describe many causal relations by imprecise 

and vague or interval-based descriptions. For example, 

some symptoms, which occur obligatory or always 

with some diseases might not be a confirmation or 

sufficient for occurring such diseases (e.g., increased 

serum glucose occurs always with diabetes but does 

not confirm it, however the causal relationship is 

strong). This type of causal relationship can be 

represented by using FSDR
��

and BSDR
��

 as a bidirectional 

interval-valued relation FBR
��

as →←i j

[0.75,1)

1
S D . If there 

is no information about the strength of a relationship, 

such relation might be represented as →←i j

(0,1)

1
S D . On 

the other hand, the total ignorance about the strength of 

a relationship might be represented as any value lying 

within the unit interval, →←i j
[0,1]

1
S D . In the case of 

possible occurrence but non-sufficiency, such relation 

can be represented in less accurate bidirectional 

interval-valued relation such as →←i j

(0,1)

(0,1)
S D ; e.g., 

elevated serum amylase sometimes confirm 

pancreatitis.  These relations are still consistent; 

however, they might need some refinements for the 

practical use. Furthermore, the binary fuzzy relations 

specified in CADIAG-IV [3, 13]; e.g., the strength of 

exclusion and occurrence of with a negated consequent 

can basically be interpreted as a special case of the 

FSDR
���

and BSDR
���

. 
 

 
 

Figure 1. The proposed model. 

 

3.1. Reasoning with Bidirectional Binary 

Inclusion Relations 

Based on the interval-valued binary fuzzy inclusion 

relations, FSDR
��

and BSDR
��

, bidirectional associative and 

causal relationships, FBR
��

, can be established. 

Triangular set of such relations; i.e., locally oriented 

reasoning, offers a possibility to compute new 

relations. Before presenting such a computation 

facility, we will introduce some compulsory definitions 

describing consistent relationships.  

Definition 6:  a bidirectional causal relationship 

→←
� �

� �
min max

min max

[q ,q ]

[q ,q ]
A  B is dependent if the involved intervals 

do not violate the inclusion restriction: 

         

 

(|  |) (|  |) 

 

=

≠

� �

� �

� � � �

min max

min max

min min max max

q q
A A

q q
if q , q , q , q 0

                       (18)   

                                                                               

       = ⇒ =
� �

i f 0 0min minq q                                   (19)                                                                            
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The first restriction is coming from the following 

equations: 

( )max
(| B |) = |A B| (| A |)∩ =

� �
max maxq q  for 0≠

�
maxq ,            

( )( | B |) = |A B| ( | A |)∩ =
� �min
min minq q                           (20) 

and                                                             

    | B | = ( )(| A |) = ( )(| A |)

� �

� �
min max

min max

q q

q q
                              (21)   

On the other hand, representing relationship 

between medical entities arising always with some 

diseases which might not be a confirmation for 

occurring such diseases requires a hybrid 

representation. This type of causal relationship can be 

represented by using FSDR
��

and BSDpR
��

 as a bidirectional 

interval-valued relation such as →←i j1

[0.75,1]
S D .To deal 

with such a type of causal relationship and in the sense 

of simplification the computation, sometimes it would 

be desirable to transform such interval valued causal 

relationships to consistent point valued causal 

relationships. As a representative value for an interval, 

the middle of the difference between the upper bound 

and the lower bound of each interval can be taken i.e., 

the mean values of a dependent and consistent 

bidirectional intervals. 

Definition 7: a dependent bidirectional causal 

relationship →←
� �

� �
min max

min max

[q ,q ]

[q ,q ]
A  B can be converted into a 

consistent point-valued causal relationship in taking 

the mean values:   

   →←
� �

� �
min max

min max

[q ,q ]

[q ,q ]
A  B ⇒     →←

�

�

q

q
A  B ,  

where  

a. 
� �

� min maxq +  q
 q =  

2
                                          (22)                                                                                                        

b.  

� �
� min maxq + q
q =

2
                                           (23)                                                                                               

It has to be mentioned, that in the case of not minimal 

intervals, q
�

andq
�

represent approximations for some 

intervals. Now, based on these properties we can even 

compute even new reliable values.                                                                                                                                                            

Theorem 1: let KB be set of dependent
pFBR

��
, i.e., 

forward and backward point-valued binary fuzzy 

inclusion relations and A, B and C be medical entities 

then an interval-valued relation can be computed as 

follows: 
 

KBpoint=

2 2

1 1

min max

y z

y z

[s ,s ] 

{A  B, B  C}

  A C

 

                  

→ →← ←

→

� �

� �

� �ً
 

    > ,
 

 ≠




�
� � � � �

��
2

2 2 2 1 1
1min

y
y  -  ((  )(1- z ))  i f  z 1- y  y  0

ys =

0                         otherwise

 (24)                                                                       

( ,( ))

(( ),(( )( ))) 

               

 

 

 
  , 


+





 ≠





� �
�

�

� �
� �

� �
�

� �

� � �

�

2 2
2

1

2 2
2 1

1 1
max

1 1

1 2

2

z y
M in y

y

z y
M in 1 - y 1 - z

z y
s =

i f   z y 0

0         i f    z  = 1, y = y = 0

1 - y     Other wise

                    (25)  

Based on definition 1 (scalar cardinality) , the addi-

tivity property,  definition 2, and dependency property 

def 6,  the grades of the involved compound bidirec-

tional inclusion relationships in such KB can be re-

written in terms of equalities and inequalities. The in-

clusion degrees between A and C can be computed 

comparatively to the cardinality of | A | . The minimal 

and maximal cardinalities of |A C|∩  are consistent 

to ( )|A B|∩ min
, ( )|A B|∩ max

, ( )|B C|∩ min
, ( )|B C|∩ max

, and 

to | B | , | C | , which can be expressed in terms of 

relative cardinality of | A | . The computed values are 

locally consistent to the KB; i.e., the intervals do not 

contain inconsistent values. For example, the following 

holds in the minimal case of 
�
s : 

( )|A B C |
>  0  

|A |

∩ ∩
=

�
m i n

m i ns ⇔ 

( ) ( )|B C| > |B| - |A B|∩ ∩
min min ⇔ > 

� �
min min r 1-q ,       (26) 

otherwise 
�
mins =0 , and so forth.   

Examples:  

• Traditional implication relation:  

 { } →  →  →← ←
T h eo r em  11 1

1 1 2 1 211 1
S D D S Dً  

This example, represents the classical case; i.e., the 

two valued or the material implication relation as 

special case of this model. The fuzzy set S1 ⊂ D1 

and D1⊂ S1 and therefore S1 ⊂ D2, i.e., all patients 

having the symptom S1 must have D2.  

• Derivation of new relations: 

{ }

{ }

 →  → ⇒←  ← 

 →  →←  ← 

  →

D ef. 6,7

T heor em  1

[0.5 ,1]0.75

1 3 4
1 0.75

[0.75]0.75

1 3 4
1 0.75

1 4[0.56,0 .75]

S D D

S D D

              S D

ً
 

Based on utilizing the defuzzification and theorem 

1, we can even derive new relations. 

 

• Compound binary fuzzy relation and the 

defuzzification property: 

 

{ }

{ }

→ → ⇒← ←

→ →← ←

→

ً

Def. 6,7

T heor em 1

[0.5,0.75] [0.75,1]

1 1 5
[0.5,1] [0.5,1]

[0.62] [0.87]

1 1 5
[0.75] [0.75]

1 5[0.52,0.87]

S D D

S D D

               S D
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Based on the above mentioned theorem the obtained 

binary interval based fuzzy relations correspond to 

an approximation of an interval valued computation 

for a knowledge base. 

                                                                                                                                                                                 

4. Discussion  

Knowledge acquisition is considered to be crucial in 

constructing medical knowledge based systems.  

Extracting precise values for representing uncertainty 

and or imprecision could be unavailable or hard to get. 

Furthermore, verifying knowledge bases for logical 

consistency is essential in ensuring quality of a medical 

system.  This work attempts therefore to handle these 

crucial aspects in presenting a wide-ranging model for 

medical knowledge representation relying on 

consistent interval propagation expressing the 

uncertainty about causal and associational relationships 

at different levels of the clinical knowledge.  

The focus of attention of this work is based on 

utilizing the fuzzy inclusion measure as departure point 

to express causal and associational relations between 

medical entities in the form of interval-valued or 

pointvalued necessary and sufficient causal measures. 

In this context, some important medical measures, such 

as necessary and sufficiency measures have been 

formalized in the light of reinterpretation of the fuzzy 

inclusion relationship. Furthermore, a computational 

model has been presented within the concept of fuzzy 

inclusion measure between medical entities.  

The results of this model are promising, in the 

sense, that the computed intervals are consistent, and 

can be refined. On the other hand, considering negative 

relationships between medical entities such as interval 

valued necessary and sufficiency measures between 

medical entities, e.g., degree(α⊂¬β) and the negative 

occurrence as the degree(¬β⊂ α), might be desirable 

in the reasoning process. These aspects could be 

regarded as special cases of this model but they need 

further analysis.  

As mentioned earlier, there is a corresponding 

similarity between this model and the knowledge 

acquisition component of the CADIAG-Systems 

project [3] that can partly be regarded as a special case 

of this model.  Even more, the presented concept of 

forward and backward inclusion relation measure has a 

semantic connection to the statistical terms used in   

project (detection and correction of non word in Arabic 

project) such as Arabic Root PredictiVe (RPV) and 

Pattern Predictive Value (PPV). Details are found in 

[9].  

Finally, for future work, an integration of an interval 

based compositional rule of inference in the sense of 

utilizing the compound interval-based causal measure 

can be regarded as an enhancement towards a 

reasoning method based on consistent interval 

propagation 
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