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Abstract: Gaussian mixture models are commonly used in speaker identification and verification systems. However, owing to 

their non discriminant nature, Gaussian mixture models still give greater identification errors in the evaluation process. 

Partitioning speakers database in clusters based on some proximity criteria where only a single cluster Gaussian mixture 

models is run in every test, have been suggested in literature generally to speed up the identification process for very large 

databases. In this paper, we propose a hierarchical clustering scheme using the discriminant power of support vector 

machines. Speakers are divided into small subsets and evaluation is then processed by GMMs. Experimental results show that 

the proposed method reduced significantly the error in overall speaker identification tests.     
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1. Introduction 
 

Actually state of the art speaker recognition systems 

are based on generative speaker models, typically 

Gaussian Mixture Models (GMMs) and Hidden 

Markov Models (HMM).Speaker recognition refers to 

two fields: Speaker Identification (SI) and Speaker 

Verification (SV) [20, 1]. In speaker identification, the 

goal is to determine which one of group of known 

voices (closed set) best matches the input voice 

sample. There are two tasks: text-dependent and text-

independent speaker identification. In text-dependent 

identification, the spoken phrase is known to the 

system whereas in the text-independent case, the 

spoken phrase is unknown. Success in both 

identification tasks depends on extracting and 

modelling the speaker dependent characteristics of the 

speech signal, which can effectively distinguish 

between talkers. In the past years, several modelling 

techniques have been addressed. These cover pattern 

matching approaches (dynamic time warping), 

statistical modelling HMM or GMM, and connectionist 

methods (multilayer perceptrons) [17, 13, 4] 

GMM represents the state-of-the-art technique in 

text independent speaker identification [21]. However 

GMMs trained with Maximum Likelihood (ML) 

criterion suffer from lack of discrimination. Recently, a 

new classification method called Support Vector 

Machines (SVM) [2, 24] based on the principle of 

structural risk minimization has found a great attention 

in the speech community. SVMs are attractive because  

 
they discriminate between classes and could be used to 

train non-linear decision boundaries in an efficient 

manner. So one can hope to increase the efficiency of 

standard generative models like GMMs and HMMs 

with the discriminative power of SVMs. Some 

researchers in last few years proposed methods 

following this way in different tasks of speaker 

recognition with much success [16, 14, 10]. 

In this paper we propose a new combination scheme 

using the SVM ability in discrimination between two 

classes and the classification power of a GMM, we 

argue and we will particularly show that our 

combination method brings a significant performance 

applied in a text independent speaker identification 

task over the standard approach (baseline system) 

using only GMMs. 

The remainder of this paper is organized as follows. 

In section 2, we review the basics of a GMM system 

and its application in a speaker identification task. In 

section 3, we present SVM theory, we also describe 

our combination scheme. Experimental results that 

lead us to construct and choose some crucial 

parameters are given in section 4. Finally, conclusions 

and perspectives are drawn in section 5. 

 

2. Gaussian Mixture Speaker Model 
 

This section describes the form of a GMM and its use 

as a representation of speaker identity for text 

independent speaker identification. Prior to construct a 

GMM for each speaker, speech signal is first 
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transformed to a set of spectral vectors, which is a 

convenient representation of a person’s vocal tract 

structure and would constitute an important factor 

distinguishing one person’s voice from another. Details 

of this transformation are given later in section IV. 

Description of the GMM system herein uses the same 

notation as in [21]. 

 

2.1. The Gaussian Model 
 

A Gaussian mixture density is a weighted sum of M 

component densities given by:                                                                   

                    ∑
=
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M
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where x is a d-dimensional vector, bi(x) are the 

component densities and pi the mixture weights. Each 

component density is a d-variate Gaussian function 

having the form:                                          
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with mean vector iµ and covariance matrix iΣ . The 

mixture weights satisfy the constraint that∑
=

=
M

1i

i 1p . 

Gaussian's mixture density is parameterised by the 

mean vectors, covariance matrices and mixture weights 

from all component densities. The parameters are 

represented by a single notation:                                                          

                 M...1i           ),,p( iii =Σµ=λ                            (3) 

for speaker identification each speaker is modelled by 

a GMM and is referred to by his model λ . 

 

2.2. Parameter Estimation 
 

Given training speech (transformed to spectral vectors) 

from a speaker’s voice, the goal of speaker model 

training is to estimate the parameters of the GMMλ , 

which in some sense best matches the distribution of 

the training feature vectors. The most popular method 

for training GMMs is ML estimation [12]. The aim of 

ML estimation is to find the model parameters, which 

maximize the likelihood of the GMM given the 

training data.  For a sequence of T training vectors 

)x,...,x(X T1= the GMM likelihood can be written as: 
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Maximization of the quantity in equation 4 is 

accomplished through running the Expectation 

Maximization (EM) algorithm [8]. The idea is 

beginning with an initial modelλ , to estimate a new 

model λ  satisfying )/X(p)/X(p λ≥λ . The new model 

then becomes the initial model for the next iteration 

and the process is repeated until some convergence 

threshold is reached. Following formulas are used on 

each EM iteration. Mixture weights:    
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The A posteriori probability for acoustic class is given 

by                                                             
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2.3. Speaker Identification 
 

For speaker identification, a group of S speakers S= (1, 

2,…, S) is represented by GMM’s S21 ,...,, λλλ . The 

objective is to find the speaker model, which has the 

maximum a posteriori probability for a given 

observation sequence.                               
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where the second equation is due to Bayes’s rule. 

Assuming equally likely speakers )S/1)(P( k =λ and 

noting that p(X) is the same for all speaker models, the 

classification becomes: 
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Finally with logarithms, the speaker identification 

system gives:                                                

                     ∑
=≤≤
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in which )/x(p kt λ is given in equation 1. 

 

2.4. Performance Evaluation 
 

Evaluation of a speaker identification experiment is 

conducted as follows. The test speech is first processed 

by the front-end analysis to produce a sequence of 

spectral vectors )x,...,x( T1 . Different test utterances of 

length 2, 5 and 10 seconds were used each having a 

number of T feature vectors. Performance evaluation is 

then computed using the Identification Error Rate 

(IER) given by: 

                                     

          100*
Vectors of Num.  Total

 Vectors Identified Incorrect  Num.
(%)IER =                 (12) 
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the IER is calculated for each test utterance of length T 

vectors. 

 

3. Support Vector Machines 
 

SVMs are binary classifiers based on the principle of 

structural risk minimization [5]. Experimental results 

indicate that SVMs can achieve a generalisation 

performance greater than or at least equal to traditional 

classifiers. SVMs use a known kernel function to 

define a hyperplane in order to separate given data 

points into two predefined classes. Within this 

separation, the soft-margin SVM can tolerate minor 

misclassifications [15]. It is considered to be more 

suitable for classification and therefore is used in our 

work. 

 

3.1. Description of SVMs 
 

We will give below a brief description of SVMs and 

how to use them in a pattern categorization. More 

details can be found in Vapnik’s book [23] and in 

Burges’ tutorial [3]. 

An SVM is a binary classifier that makes its 

decisions by constructing a linear decision boundary or 

hyperplane that optimally separates two classes. 

The hyperplane is defined by 0  b   w.x =+ where w is 

the normal to the plane. For linearly separable data 

labelled { } 1...Ni , -1,1  y ,     x, )y,(x i
n

iii =∈ℜ∈ . The optimal 

hyperplane is chosen according to the maximum 

margin criterion (the minimal distance from the 

hyperplane to each point) i.e., by choosing the 

separating plane that maximises the Euclidean distance 

to the nearest data points on each side of that plane. 

The problem can be formulated as:                                                    
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the solution for the optimal hyper plane w0, is a linear 

combination of a small subset of data, 

{ }1...N   s , x s ∈ known as support vectors. These support 

vectors also satisfy the equality:                                                                   

                                1y)bw.x( ss =+                             (14) 
 

when the data are not linearly separable then no 

hyperplane exists for which all points satisfy the 

inequality equation 13. In this case, we may include 

slack variables iξ shown in Figure 1 into the 

inequalities relaxing them slightly so that some points 

are allowed to be misclassified. The objective function 

becomes:                                            
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Figure 1. Margin and slack variables for a classification problem. 

                            

The second term of equation 15 is the empirical risk 

associated with those points that are misclassified, L is 

the loss function (cost function) and C is a 

hyperparameter that trades off the effects of 

minimizing the empirical risk against maximizing the 

margin. The first term can be thought as a 

regularization term, which gives the SVM its ability to 

generalize well on sparse data. 

The linear error cost function is the most commonly 

used since it is robust to outliers. The dual formulation 

which is more conveniently solved, of equation 15 

with ii )(L ξ=ξ is:                                  
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in which N...1i   i =α is the set of Lagrange multipliers 

of the constraints in the primal optimisation problem. 

The dual can be solved using standard quadratic 

programming techniques. The optimum decision 

boundary w0 is given by: 

                            ∑α=
i

iii0 xyw                                       (17) 

 

and is a linear combination of all points in feature 

space that have 0i >ξ and lying on the margin )0( i ≠α . 

The extension to non-linear boundaries is achieved 

through the use of kernel functions that satisfy 

Mercer’s condition [6]. In essence, a non-linear 

mapping is defined from the input space, in which the 

data are observed, to a manifold in higher dimensional 

feature space, which is defined implicitly by the kernel 

functions. The hyperplane is constructed in the feature 

space and intersects with the manifold creating a non-

linear boundary in the input space. In practice, the 

mapping is achieved by replacing the value of dot 

products between two vectors in input space with the 

value that results when the same dot product is carried 

out in the feature space. The dot product in the feature 

space is expressed conveniently by the kernel as some 

function of the two vectors in input space. The 

 

                                                           iξ      

 
                                                                  margin γ            
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polynomial and Radial Basis Function (RBF) kernels 

are commonly used, and take the form: 
 

                 n
jiji )1x.x()x,x(K +=                                  (18) 
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Respectively, where n is the order of the polynomial 

and σ is the width of the radial basis function. The dual 

for the non-linear case is thus:                                          
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The use of kernels means that an explicit 

transformation of data to the feature space is not 

required. 
 

3.2. SVMs and Speaker Identification Systems 
 

Although GMMs are the most widely used in speaker 

identification systems [9], lack of discrimination of 

such generative models incited researchers to find out 

discrimination based learning procedures in order to 

obtain or to outperform GMM’s performance. SVM 

classifiers are well suited to separate complex regions 

between two classes through an optimal non-linear 

decision boundary. The first approach in using SVM 

classifiers in the framework of speaker identification 

was implemented in [22] where SVMs were trained 

directly on the acoustic space, which characterize the 

client data and the impostor data, during testing the 

segment score is obtained by averaging the scores of 

the SVM output for each frame. Other applications of 

SVMs used kernels sequences [25]. Another approach 

became recently more popular, consists of making a 

combination of GMMs and SVMs. Several types of 

combination were proposed. In [11] a discriminative 

training of GMMs is performed by continuous density 

SVM. Another from of combination used SVMs as a 

post treatment of the GMMs by Fischer mapping [26]. 

This mapping allows obtaining vectors of high 

dimensions where the number of dimensions is equal 

to the number of the GMM parameters. These vectors 

are then used by SVMs to achieve discrimination and 

decision. The work presented in [18] exploits the 

advantages of the GMM models and SVMs in a single 

system by deriving a probabilistic distance kernel 

computed using the divergence of Kullback Leibler 

(KL) between GMMs. 

 

3.3. The Proposed Hybrid GMM/SVM System 

The work presented here belongs to the category of 

combining the benefits of GMMs in training and 

SVMs in discrimination. SVMs used in this paper are 

binary classifiers between two groups of speakers 

giving a hierarchical tree structure. Identification errors 

from the baseline system, as we will see in next section 

often occurs when a speaker is taken for another 

speaker belonging to the same gender, i.e. a male 

speaker msi is confused with another male speaker msj 

and a female speaker fsk unrecognized as another 

female speaker fsl. Since SVMs had proved their 

effectiveness in separating two given classes, we 

applied them in dividing very confusable speakers 

prior to the identification system using GMM 

speaker’s models. The overall structure of our hybrid 

system is depicted in Figure 2. 

Following feature extraction of the input speech 

signal, SVM 1 is aimed at finding the gender of the 

input voice. SVM 2 and SVM 3 are trained to cluster 

the male group (respectively the female group) into 

two subsets of speakers. Finally at the last level 

identification is carried out using only a subset of 

GMM speaker models. In comparison with the 

standard approach GMMs are still used in evaluation 

but with much less computational load, since the initial 

S speakers are divided nearly by a factor of 4, and 

especially achieving higher identification accuracy. 

Thus, our hybrid system involves two main steps: 

• Training: where the individual GMM speakers’ 

models are constructed along with the support 

vector classifiers SVM 1, SVM 2 and SVM 3.   

• Testing: the identification process of the 

GMM/SVM system proposed follows the 

hierarchical structure of Figure 2. It should be noted 

here that errors for the baseline system and the 

hybrid one are not correlated.  

• If the GMM system fails at identification one 

speaker among the whole set of S speakers, it is 

unlikely to happen when only a subset of the S 

speakers are in competition.  

 

 
Figure 2. Hierarchical tree structure of the hybrid GMM/SVM 

system. 
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4. Experimental Results 

4.1. Database and Speech Analysis 
 

Experiments in this study were performed using Arabic 

data sets built for the purpose. Clean speech signals 

using close talk high quality microphone was recorded 

under quiet laboratory conditions. Data sets were 

collected from 16 speakers, 10 were female and 6 

male. For each speaker, there were 3 separate sessions; 

two sessions were used for training data and one 

session for testing. 

Speech signals were sampled at 11025 Hz. Mel 

scale Frequency Cepstral Coefficients (MFCC) were 

employed as feature analysis [7, 19]. A pre-emphasis 

filter 1z95.0  1  )z(H −−= is used before framing. Each 

frame is multiplied with a 23.2ms hamming window 

shifted by 11.6ms. From the windowed frame FFT is 

computed and the magnitude spectrum is filtered with 

a bank of 27 triangular filters spaced on the Mel-scale. 

The log-compressed filter outputs are converted into 

cepstral coefficients by DCT giving twelve 

coefficients. The zeroth cepstral coefficient is not used 

in the cepstral feature vector and replaced with log of 

energy of the frame calculated in the time domain. 

Hence, the feature vector is formed by thirteen 

coefficients. This processing occurs every 11.6ms 

producing approximatively 2586 and 5172 vectors in 

30 and 60 seconds of speech, these quantities were 

used in training the baseline system (GMM only). For 

testing all systems carried out in this work, durations of 

2s, 5s and 10s were utilised since the emphasis in 

speaker identification tasks is to capture the identity of 

a speaker with the minimum material in hand, here the 

speech signal. Vectors obtained are 172, 431 and 862 

corresponding respectively to durations above. 

 

4.2. Baseline System 
 

By the baseline system, it meant the system in which 

only the GMM speakers’ models are used in the 

evaluation process. GMMs were trained using the 

theoretical material given in section II. An important 

problem rises when constructing a GMM’s speaker 

model in how to choose adequately the number of 

components M in a mixture. Fig.3. shows the 

identification performance evaluated with the 

Identification Error Rate (IER) when training data size 

equals to 30s and 60s of speech versus different values 

of M varying from M=2 to M=256. For both 

experiments, IER is slightly decreased when M is 

increased by a factor of 2; this is true for different 

lengths of testing utterances.    

It is clear from the table that the identification errors 

are superior to 20% from 2 to 16 mixture components 

even if training material is large (equals to 60s). We 

could argue that for a value of M up to 16, there are 

still few components to produce an accurate model 

capable at distinguishing characteristics of a speaker’s 

distribution. For M varying from 32 to 256 

components per model, identification errors fall than 

20% except for training data size equals to 60s of 

speech with M=32,  identification error rates for this 

range of M appear rather stable. Greatest reductions in 

IER are reached with M=256 and are 24%  with a 

training data size of 30s and 22.2% with a training data 

of 60s when utterances lengths are compared on their 

extremum values 2s and 10s. it is hence observed 

lowest identification errors occur with longest test 

utterance lengths. Our best result is achieved for 256 

mixture components with an utterance test length of 

10s and a training data size of 60s of speech. Choosing 

too many mixture components (M>256) could increase 

in some cases identification performance but only if we 

have an available training data larger enough relative 

to the number of mixture components. However this is 

not always what happens when dealing with speaker 

recognition tasks, where we could have only small 

amounts of some speakers’ voices. Own experiments 

not included here, had showed an increase in IER to 

25% when using 512 mixture components, this result 

due to the overfitting effect was also reported 

elsewhere in the literature. Based on these 

observations, next comparisons will be conducted with 

32, 64, 128 and 256 components of the GMM 

speakers’ models. 

 

4.3. Choosing SVM Parameters 
 

Crucial parameters for training a SVM are the upper 

bound C allowing us how strictly we want the 

classifier to fit the training data and the variance 2σ of 

the Radial Basis Function (RBF). To investigate the 

performance accuracy of SVM classifier some 

experiments in separating between males and females 

were applied and summarized in Table 1. Training 

SVMs was done using 2s of speech from each speaker. 
 

Table 1. GMM Identification error rate in % for different amounts 

of training data and model orders.  

  

 Training with 30s Training with 60s 

M 2s 5s 10s 2s 5s 10s 

2 51.9 52.1 56.7 54.0 56.0 56.4 

4 43.5 42.7 43.2 46.5 46.8 46.9 

8 34.8 33.6 33.9 36.1 36.9 37.5 

16 25.0 24.7 24.8 27.8 28.3 28.5 

32 19.2 18.1 17.6 20.8 20.5 20.2 

64 15.3 13.7 13.2 16.3 15.3 14.9 

128 13.8 11.9 11.0 13.9 12.4 11.6 

256 12.9 10.6 9.8 11.7 9.8 9.1 

 
Three values of upper bound C were compared over 

a range of preselected variances for the RBF. For each 

combination of C and 2σ , the Number of Support 

Vectors (NSV) given in (%) and the number of 

iterations in training SVMs were computed. It is seen 

that small values for variances but with a linear 

increase in C give acceptable amount of support 
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vectors, which in turn must be stored in memory for 

testing. However the algorithm seems to be faster with 

decreased upper bounds C. Evaluating the accuracy of 

the SVM classifier is shown in Figure 3, where training 

was accomplished with 2s, 5s and 10s of speech per 

speaker.  
 

Table 2. Support vectors and number of iterations in training 

SVM1. 
 

C= 1 C = 10 C =100 

2σ  
NSV 

(%) 
Iter NSV(%) Iter NSV Iter 

0.2 36.9 167 22.4 560 12.7 1829 

0.5 43.9 162 28.3 779 18.2 3128 

0.8 47.7 132 33.0 898 21.4 3237 

1 49.6 130 35.5 978 23.2 3131 

2 54.0 97 42.0 458 29.0 2535 

5 61.3 67 46.6 349 38.7 1714 

10 69.3 67 49.6 323 43.2 1073 

20 48.9 74 53.5 197 45.0 621 

100 97.1 89 68.9 179 49.2 170 

 

It is interesting to observe the insensitivity for the 

classifier regarding the amount of speakers’ durations 

as shown in Figure 3 (a). The average accuracy 

obtained in dividing the two genders, are respectively 

94.08%, 94.7% and 95.5% for the 2s, 5s and 10s of 

speech. Only a 1.5% reduction in performance 

accuracy is noted when comparing the 10s and 2s 

durations while the number of vectors in training is 

multiplied by a factor of 5. Number of support vectors 

is also consistent when C is set to larger values. A 

variance of 0.2 and an upper bound of 1000 appear to 

be good choices in training SVMs in this work.  
 

 
                        (a) fraction of support vectors. 

 
(b) % as a function of upper bound c obtained when training svm1 with 

different speakers’ durations. 
 

                            Figure 3. Performance accuracy. 

 

4.4. The GMM/SVM System  
 

The focus of this paper is to compare the performance 

of the baseline GMM system and the proposed 

GMM/SVM described earlier in Figure 2 applied on a 

text independent speaker identification task. The 

hybrid GMM/SVM uses GMMs in the identification 

process on a relative small subset of speakers given 

after classifying the unknown input speaker’ voice into 

its corresponding group (subset) via the hierarchical 

splitting by SVMs namely SVM1, SVM2 and SVM3. 

Training SVM1 in order to divide into male and 

female genders is straightforward, male and female 

speakers are known form the database, supervised 

training is directly implemented.  

For training SVM2 and SVM3 as binary classifiers 

on positive and negative examples from respectively 

male and female speakers, we used the following 

strategy: experimental analysis of the baseline system 

and searching for sources of identification errors for 

each speaker si taken as another speaker sj, we have 

noted that confusable identification errors occur often 

on the same gender group, speakers si and sj are both 

males or females.  

This is indeed shown in Figure 4 where male 

speakers are indexed as 1, 6, 9, 10, 1 4, 16; the other 

index concerns female speakers. We could observe 

from the figure, let’s take as an example for male 

speakers 1 and 10, they were confused with speakers 

14 and 6; so the idea we adopted for training SVM2 

was to put these confusable speakers on each side of 

the hyperplane.  

The same rule of reasoning was applied for training 

SVM3 corresponding to female speakers. It is worth 

noting the possibility of the evaluation step by GMMs 

to be processed after an individual use of SVM1, 

SVM1 + SVM2, SVM1 + SVM3, and SVM1 + SVM2 

+ SVM3. Identification performance for the hybrid 

GMM/SVM system is summarized in Table 3. 
 

Table 3. Identification error rate (%) for the hybrid GMM/SVM 

system. 
(a) Training data with 30s of speech. 

 

 

SVM1 

 

SVM1+SVM2 SVM1+SVM3 All GMM 

Order 

2s 5s 10s 2s 5s 10s 2s 5s 10s 2s 5s 10s 

32 17.9 16.9 16.4 14.2 13.8 13.0 13.0 11.8 11.7 9.30 8.60 8.30 

64 14.6 12.8 12.3 11.7 10.1 9.6 10.7 9.0 8.6 7.8 6.2 5.9 

128 12.9 11.0 10.2 10.1 8.4 7.8 9.5 7.7 7.0 6.7 5.1 4.7 

256 12.3 10.0 9.1 10.1 8.1 7.2 8.9 6.7 6.2 6.6 4.9 4.4 
 

 

(b) Training with 60s of speech per speaker. 
 

 

SVM1 

 

SVM1+SVM2 SVM1+SVM3 All 

 

GMM 

Order 

2s 5s 10s 2s 5s 10s 2s 5s 10s 2s 5s 10s 

32 19.7 19.0 18.7 15.7 15.2 15.0 15.1 14.1 13.8 11.1 10.3 10.0 

64 15.3 14.1 13.8 12.6 11.4 11.0 11.4 10.2 9.9 8.7 7.4 7.1 

128 12.9 11.4 10.7 10.3 8.9 8.4 9.9 8.2 7.5 7.4 5.7 5.2 

256 11.0 9.0 8.4 8.8 7.0 6.5 8.3 6.4 6.0 6.1 4.4 4.0 

 

The purpose of the experiment is two manifold, we 

would evaluate the effect of training data size and of 

testing utterance length, using model sizes ranging 

from 32 to 256 and several combination of support 

vector machines trained on target subsets of speakers. 

It is clearly shown a significant improvement on 

speaker identification performance for the hybrid 
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system compared to the baseline one over all the 

variants explored. Although the two first raws of the 

two parts of Table 3 give error rates a little bit greater 

than that of the last ones, this fact is due to the number 

of mixture components of the model, when this is 

large, better is the performance of the identification 

system. Relative improvements compared to the 

baseline system when using all the SVMs are 48.8%, 

53.7% and 55.1% corresponding to testing utterance 

lengths of 2s, 5s and 10s respectively, with training 

data size equals 30s of speech per speaker. Further 

improvements are reached when training data size is 

augmented to 60s; reductions in IER are 47.9, 55.1 and 

56% corresponding respectively to testing utterance 

lengths of 2s, 5s and 10s.  

As expected, larger testing utterance length provides 

smallest error rates. 

Hence, our best results are achieved with 256 

mixture components and 10s of testing utterance length 

using the largest amount of training data.  
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Figure 4. Curve representing the confusable speakers averaged 

from experiments on the baseline system. 
 

 

5. Conclusion 
 

In this paper, we have proposed a combination method 

which includes both the descriptive strength of the 

GMM system with the high performance classification 

capabilities of SVMs applied in a text independent 

speaker identification task. SVMs in this work are 

trained to divide the whole set of speakers into small 

subsets through a hierarchical tree structure. Next 

GMMs would be used in the evaluation process. The 

highlights of the proposed hybrid system are: 

• A significant improvement compared to the baseline 

system is reported, a relative reduction in 

identification error rate up to 50% is reached, 

independently neither on the training data size nor 

on the testing utterances lengths. 

• A reduction in computational load since for the 

hybrid system, testing is carried out on a limited 

GMM models depending on the size of speakers’ 

subsets, while for the baseline system all the 

speakers’ GMM models are evaluated. 

Supervised training of SVMs in our work is based 

upon an objective analysis of identification errors of 

confusable speakers provided by the baseline system. 

Further work could include an automatic construction 

of the structured hierarchical tree avoiding any use of a 

priori knowledge about speakers.              
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