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Abstract: In this paper, we deal with the problem of time series prediction from a given set of input/output data. This problem 

consists of the prediction of future values based on past and/or present data. We present a new method for prediction of time 

series data using radial basis functions. This approach is based on a new efficient method of clustering of the centers of the 

radial basis function neural network; it uses the error committed in every cluster using the real output of the radial basis 

function neural network trying to concentrate more clusters in those input regions where the error is bigger and move the 

clusters instead of just the input values of the I/O data. This method of clustering, improves the performance of the time series 

prediction system obtained, compared with other methods derived from traditional algorithms. 
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1. Introduction 

Time series is widely used in many aspects of our 

lives. Daily temperature, electrical load and river flood 

forecasting [21],…etc.  The problem consists of 

predicting the next value of a series known up to a 

specific time, using the known past values of the 

series. Basically, time series prediction can be 

considered a modeling problem. The first step is 

establishing a mapping between inputs/outputs. 

Usually, the mapping is nonlinear and chaotic. After 

such a mapping is set up, future values are predicted 

based on past and current observations [16, 21].  

Radial Basis Function Neural Networks (RBFNNs) 

are characterized by a transfer function in the hidden 

unit layer having radial symmetry with respect to a 

center [9]. The basic architecture of an RBFNN is a 3-

layer network as in Figure 1. 

The output of the net is given by the following 

expression:  
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and wi the associate weights for every Radial Basis 

Function (RBF). The basis function φ  can be 

calculated as a Gaussian function using the following 

expression:  
 

       ( , , ) exp
x c

x c r
r

φ
 −

=   
 

r r
r r

                              (2)                   

 

 

 

 
where c

r
 is the central point of the function φ , r is its 

radius and x
r
 is the input vector.  

 

         
 

Figure 1. Radial basis function network. 
 

A common learning method for RBFNNs is clustering. 

Every cluster has a centre, which can be chosen as the 

centre of a new RBF. The RBF centres can be obtained 

by many clustering algorithms. These algorithms are 

classified as unsupervised clustering algorithms such 

as k-means [6], fuzzy c-means [2], enhanced LBG 

[19], and supervised clustering algorithms such as the 

Clustering for Function Approximation method (CFA) 

[3], the Conditional Fuzzy Clustering algorithm (CFC) 

[11] and the Alternating Cluster Estimation method 

(ACE) [18]…etc. The clustering algorithm obtains the 

cluster centres by attempting to minimize the total 

squared error incurred in representing the data set by 

the m cluster centres. However, the clustering 

algorithm can only achieve a local optimal solution, 

which depends on the initial locations of cluster 

centres. A consequence of this local optimality is that 

some initial centres can become stuck in regions of the 

input domain with few or no input patterns. This 

wastes resources and results in a local optimal 

network. 
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RBFNNs are universal approximators and thus best 

suited for function approximation problems. In general 

an approximator is said to be universal if it can 

approximate any continuous function on a compact set 

to a desired degree of precision. The technique of 

finding the suitable number of radial functions is very 

complex since we must be careful of not producing 

excessively large networks which are inefficient and 

sensitive to over-fitting and exhibit poor performances. 

Figure 2 presents a functional approximation using 

several RBFs with different values of the radius r, 

where r is the radius of RBF. 
 

 
Figure 2. Function approximation using RBFNNs. 

 

In this paper we present a new method of clustering 

the centres of RBFs for the prediction of time series 

and a new efficient clustering method for the 

initialization of the centres of the RBF network, this 

method uses the target output of the RBFN to migrate 

and fine-tune the clusters instead of just the input 

values of the I/O data. This method calculates the error 

committed in every cluster using the real output of the 

RBFN trying to concentrate more clusters in those 

input regions where the error is bigger, thus attempting 

to homogenize the contribution to the error of every 

cluster. 

The organization of the rest of this paper is as 

follows. Section 2 presents an overview of the 

proposed algorithm. In section 3, we present in detail 

the proposed algorithm for the determination of the 

pseudo-optimal RBF parameters. Then, in section 4 we 

show some results that confirm the performance of the 

proposed methodology. Some final conclusions are 

drawn in section 5. 

 

2. Proposed Approach 

As mentioned before, the problem of time series 

prediction consists of the prediction of future values 

based on past and/ or present values. A time series is a 

sequence of vectors, x(t), t = 0,1,…, where t represents 

elapsed time. Theoretically, x may be a value which 

varies continuously with t, such as temperature. In 

practice, for any given system, x will be sampled to 

give a series of discrete data points, equally spaced in 

time [7]. Formally this can be stated as: find a function 

( ) ( ( ))x t d f x t+ =  such as to obtain an estimate of x at 

time t + d, from the N time steps back from time t, so 

that: 

                   ( ) ( ( )), ( 1),..., ( 1)x t d f x t x t x t N+ = − − +                   (3)  

The accuracy of the prediction process is measured 

by a cost function which takes into account the error 

between the output of the RBFNN and the real output. 

In this paper, the cost function we are going to use is 

the so-called Normalized/Root Mean Squared Error 

(N/RMSE). This performance index is defined as: 
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where y  is the mean of the real output, and p is the 

data number. The objective of our algorithm is to 

increase the density of clusters in the input domain 

areas where the error committed in every cluster using 

the real output of the RBFN is bigger.  

The RBFNN is completely specified by choosing 

the following parameters: the number m of radial basis 

functions, the centres c
r
 of every RBF, the radius r, 

and the weights w. 

The number of RBFs is a critical choice. In our 

algorithm we have used a simple incremental method 

to determine the number of RBFs. We will stop adding 

new RBFs when the time series prediction error falls 

below a certain target error. As to the rest of the 

parameters of the RBFNN, in section 3 we present a 

new clustering technique. Figure 4 presents a flowchart 

with the general description of the proposed approach. 
 

 
 

Figure 3. The distortion before the migration. 
 

 
 

Figure 4. The distortion after the migration. 

 

3. Parameter Adjustment of the RBFNN 

The locality property inherent to the RBF allows us to 

use a clustering algorithm to obtain the RBF centres. 

Clustering algorithms may get stuck in a local 

minimum ignoring a better placement of some of the 

clusters, i.e., the algorithm is trapped in a local 

minimum which is not the global one. For this reason 

we need a clustering algorithm capable to solve this 

local minimum problem. To avoid this problem we 
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endow our supervised algorithm with a migration 

technique. This modification allows the algorithm to 

escape from local minimum and to obtain a prototype 

allocation independent of the initial configuration.  

To optimize the other parameters of the RBFNN 

(the radius r and the weights w) we used well-known 

heuristics; the k-Nearest Neighbour technique (kNN) 

[10] for the initialization of the radius of each RBF, 

Singular Value Decomposition (SVD) [13] to directly 

optimize the weights. Finally, the levenberg-marquardt 

algorithm is to fine-tune the obtained RBFNN [8].  

Therefore, in this section we will concentrate on the 

proposed clustering algorithm. In Figure 4, we show a 

flowchart representing the general description of our 

clustering algorithm. As can be seen from this figure, 

the initial values of the clusters are calculated using the 

k-means clustering algorithm followed by a local 

displacement process which locally minimizes the 

distortion (D) within each cluster. 

In Figure 3 we can see the initial distortion 

distribution for the case of 6 equally distributed RBFs, 

which is the first configuration whose approximation 

error falls under the target error. Figure 4 represents 

the same information when the clustering process has 

ended. We can now see the advantage that we expect 

from the fact of making each cluster to have an equal 

contribution to the total distortion, which is the 

objective of the proposed clustering algorithm. The 

distortion is defined as: 
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where m is the number of RBFs (clusters), 
j

c
r
 is the 

centre of cluster Cj and Eij is the error committed by 

the net when the input vector 
i

x
r
 belongs to cluster Cj. 

             ( , , )E y f x w= − Φ
r

          (6) 

In the local displacement of the cluster centres, we 

start by making a hard partition of the training set, just 

as in the k-means algorithm. The second step of the 

process of local displacement is the calculation of the 

error of the RBFNN using the the K-nearest 

neighbours algorithm to initiate the radii and the 

singular value decomposition to calculate the weights 

of the RBFs.This is carried out by an iterative process 

that updates each cluster centre as the weighted mean 

of the training data belonging to that cluster and we 

repeat this process until the total distortion of the net 

reaches a minimum. 
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No 
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Figure 5. General description of the proposed clustering algorithm. 

 

After this process we must update the cluster centres in 

order to minimize the total distortion. The algorithm 

stops when the value of the distortion is less than the 

value of a threshold ε. Figure 6 presents a flowchart 

with the general description of the local displacement 

process. 
 

 

Update the Clusters  

Perform the Partition of the Training set. 

∞←D  

DDant ←

 

Calculate the Error of the RBFN, using (KNN) to initiate the Radius 

and (SVD) to calculate the weight of the RBFN  

Calculate the Distortion D 

/ ?antD D D ε− <  

Return the new Cluster Cj 

No 

Yes 

Perform the Partition of the Training set 

Calculate the Error of the RBFN, using (KNN) to initiate the 
Radius and (SVD) to calculate the weight of the RBFN 

 
 

Figure 6. Local displacement of the clusters. 
 

The migration process migrates clusters from the better 

zones toward those zones where the error is worse, 

thus attempting to make equal their contribution to the 

total distortion. 

Our main hypothesis is that the best initial cluster 

configuration will be the one that equalizes the error 

committed by every cluster. The probability of 
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choosing a given cluster inversely proportional to what 

we call the utility of that cluster, which is defined as: 

                     / 1,...,
j j

U D D j m= =                       (8)   

In this way, the proposed algorithm selects one cluster 

that has utility less than one and moves this cluster to 

the zone nearby a new selected cluster having utility 

more than one as shown in Figure 7. This migration 

step is necessary because the local displacement of 

clusters only moves clusters in a local manner.  
 

 

Stop the Migration 

Select all the Clusters that they have U < 1 

Calculate the Distortion Dj and the Utility Uj,  

Yes 

No 

No 

Reject the Migration  Confirm the migration 

Yes 

Select all the Clusters that have (U > 1) 

 

Select one (U<1) using roulette wheel selection 

Calculate the probability of every Cluster that has U>1 

maxU  Has maximum probability. 

Calculate the probability of every Cluster that has U<1 

Has maximum probability. 
minU 

Any cluster with U< 1? 

Calculate the Distortion Dj 

Perform Local Displacement of the Clusters 

Used K-means to repatition the data 

Move the selected cluster with (U<1) to the zone of the 
cluster selected with (U>1). 

Select one (U>1) using the roulette wheel selection 

 

Any cluster with U > 1? 
? 

Yes 

No 

Has the Distotion 
improved? 

 
 

Figure 7. The migration process. 

 

4. Example of the Proposed Procedure 

Experiments have been performed to test the proposed 

algorithm. The system is simulated in MATLAB 7.0 

under Windows XP with processor Pentium IV 

running at 2.4 Ghz.  In this section we attempt a short-

term and large-term prediction of the algorithm 

presented in the above section with regard to the 

Mackey-glass time series data [5]. The Mackey-glass 

time series is commonly used to test the performance 

of neural networks [5]. 

The series is a chaotic time series making it an ideal 

representation of the nonlinear oscillations of many 

physiological processes [17]. To make the comparisons 

with earlier work, we chose the parameters presented 

in [4].  Figure 8 shows the Mackey- glass time series. 

Tables 1 and 2 compares the prediction accuracy of 

different computational paradigms presented in the 

bibliography for this benchmark problem (including 

our proposed approach). Mackey-glass time series 

generated with the following expression: 
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where x(t) is the value of the time series at time t. The 

time series was constructed with parameter values  

0.2a =  and 0.1b = . Here, initial conditions used in 

our test bench are set as (0) 1.2s =  and ( ) 0s t =  when 

0t < , doing 17t = . 1000 samples of the Mackey-glass 

time series are depicted Figure 8. The first 500 points 

are used as a training set and the last 500 are used as 

the test set. The tables present results of the normalized 

root mean-square error  NRMSEtest  obtained by testing 

set of 500 test points after the application of the 

Levenberg–Marquardt method. As can be seen from 

the Tables 1 and 2, the proposed algorithm reaches 

better prediction error. 
 

 

Figure 8. Mackey- glass time series. 

4.1. Short-Term Prediction 

Following the conventions established to predict this 

time series in short-term, the execution of the 

algorithm is considered to look for networks that 

predict the value s(s+6) from current value s(t) and of 

past values s(s-6), s(s-12), and s(s-18), using values of 

training of the form 
 

                          [ ]( 18), ( 12), ( 6), ( ); ( 6)s t s t s t s t s t- - - +                (10) 

 

The NRMSE of the points predicted by the 

algorithms is shown in Table 1. It is clear that the 

proposed algorithm has predicted the time series in 

short-term with much greater accuracy than other 

algorithms. 
 

 
Figure 9. Prediction step 85, with 20 RBF. 
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Table 1. Comparison result of the prediction error of different 

methods for prediction step 6 (500 test data). 
 

Method m RMSEtest 

Lineal model 
prediction 

- 0.55 

Auto Regressive 

model 
- 0.19 

Cascade correlation  

NN 
- 0.06 

6th-order polynomial - 0.04 

Back-Prop NN - 0.02 

5MFs 0.049 

7MFs 0.042 
Kim and Kim (GA A 

& Fuzzy System) [3] 

9MFs 0.038 

ANFIS & Fuzzy 

Svstem   [3] 
16 rules 0.007 

New RBFNs Structure  
[16] 

12 RBF 0.003 

3 × 3 × 3 ×3 0.011 
3 × 4 × 4 ×4 0.007 Pomares [13] 
4 × 4 × 5 ×5 0.006 

4 0.015  ±  0.0019 

7 0.007  ±  0.0009 

10 0.005  ±  0.0010 

13 0.004  ±  0.0011 

González  [7] 

16 0.004  ±  0.0002 

4 0.014  ±  0.0021 

7 0.009  ±  0.0008 

10 0.007  ±  0.0009 

13 0.006  ±  0.0011 

Rivas [15] 

16 0.005  ±  0.0003 

4 0.012 ±  0.0080 

7 0.007 ±  0.0008 

10 0.005 ±  0.0006 

13 0.004 ±  0.0012 

Our Approach 

16 0.003 ±  0.0006 

 

4.2. Large-Term Prediction 

In large-term, the execution of the algorithm is 

considered to look for networks that predict the value 

s(s+85) from current value s(t) and of past values s(s-

6), s(s-12), and s(s-18), using values of training of the 

form 
 

                    [ ]( 18), ( 12), ( 6), ( ); ( 85)s t s t s t s t s t- - - +           (11) 
 

5. Conclusion  

In this paper, a new modified approach is presented to 

predict chaotic time series. We have proposed an 

algorithm of clustering especially suited for function 

approximation problems. This method calculates the 

error committed in every cluster using the real output 

of the RBFNN, and not just an approximate value of 

that output, trying to concentrate more clusters in those 

input regions where the approximation error is bigger, 

thus attempting to homogenize the contribution to the 

error of every cluster. Simulations, in this paper have 

demonstrated that the proposed method produces more 

accurate prediction. This algorithm is easy to 

implement and is superior in both performance and 

computation time to other algorithms. 

 

Table 2. Comparison result of the prediction error of different 

methods for prediction step 85 (500 test data). 
 

Method m NRMSEtest 

14 0.206 

24 0.174 

31 0.160 
RAN-P-GQRD  [1] 

38 0.183 

10 0.108 

11 0.109 

12 0.103 

13 0.223 

14 0.159 

Fuzzy system [1] 

15 0.103 

25 0.29 

50 0.18 

75 0.11 

Whitehead  [20] 
 

125 0.05 

5 0.389 ± 0.0194 

10 0.251 ± 0.0246 

14 0.198 ± 0.0164 

17 0.147 ± 0.0178 

González [7] 

20 0.126 ± 0.0174 

5 0.397 ± 0.0238 

10 0.249 ± 0.0207 

14 0.168 ± 0.0210 

17 0.128 ± 0.0091 

Rivas [15] 

20 0.113 ± 0.0125 

5 0.388 ± 0.0227 

10 0.243 ± 0.0130 

14 0.150 ± 0.0303 

17 0.111 ± 0.0156 

Our Approach 

20 0.097 ± 0.0074 
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