
120 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

Modularization of Crosscutting Concerns in
Requirements Engineering

Abdelkrim Amirat1, 2, Mohamed Laskri1, and Tahar Khammaci2

1 Laboratoire de Recherche en Informatique, Université de Annaba, Algeria
2Laboratoire LINA CNRS FRE 2729, Université de Nantes 2, France

Abstract: In spite of the generated benefits, Object-Oriented (OO) paradigm seems reaching its limits, regarding complexity
reduction of current systems. In this context, the Aspect Oriented (AO) comes up as an alternative to reduce software
development complexity while keeping OO advantages. Needs for investigating methodologies of AO Software Development
have emerged a long with AO. As an example, Early Aspect (EA) aims to identify aspects on the early stages of software
development, such as domain analysis requirements specification and architectural design. Being one of the newest software
engineering paradigms, AO emphasizes that new studies and experiments should be carefully carried out, in order to establish
improved methods, techniques and tools applicable to this new way of development. In this paper, we discuss a sequence of
systematic activities toward an early consideration of specifying and separating crosscutting Functional Requirements (FRs)
and Non-Functional Requirements (NFRs) by the adoption of use-cases to model systems. This approach would make it
possible to identify and resolve conflicts between requirements earlier in the development cycle and can promote traceability
of broadly scoped properties throughout system development, maintenance and evolution.

Keywords: Early aspects, requirements engineering, decomposition, composition, methodologies.

Received May 30, 2006; accepted November 22, 2006

1. Introduction
Despite the success of Object-Orientation (OO) in the
effort to achieve separation of concerns (requirements),
certain properties in OO systems cannot be directly
mapped from the problem domain to the solution
space, and thus they cannot be localised in single
modular unit [7]. This is due to the fact that functional
decomposition is performed along the notion of class.
A conflict tends to rise when we map an n-dimensional
requirements space to a single dimensional design and
implementation space while building development
artefacts. This conflict constitutes the source of
CrossCutting (CC) which imposes two symptoms on
implementation: (1) code tangling and (2) code
scattering. In OO development CC does not allow the
benefits of Object-Oriented Programming (OOP) to be
fully utilized. Developers are thus faced with a number
of implications including poor traceability of
requirements, strong coupling between functional
components, low cohesion of modules, low degree of
code reusability, and low productivity. As a
consequence to the above, the quality of software is
negatively affected.

There have been many approaches to Aspect-
Oriented Requirements Engineering (AORE). Each
approach attempts to capture and address a significant
issue or issues relating to crosscutting in requirements
engineering by providing a second axis of
decomposition that enables separation of core
functionality from crosscutting requirements [11]. In

[1, 2], we discussed an AOSD model that constitutes of
a sequence of systematic activities towards an early
consideration of identifying, specifying and separating
crosscutting non functional requirements starting from
requirements elicitation.

Throughout the development process, stakeholders
are in need to verify that they managed capturing and
specifying all related crosscutting requirements
properly. To achieve this target, we choose to extend
our AOSD model in this paper by proposing a set of
steps to deal with functional and non functional
requirements simultaneously. This paper offers the
following contributions:

• It proposes a new approach to identify, separate and
compose requirements starting from early
requirements elicitation to implementation phase.

• It provides a new mechanism to compose
requirements that assist in integrating the captured
main requirements with the crosscutting
requirements.

The rest of this paper is organized as follows: Section 2
introduces some background information related to this
research. Section 3 briefly summarizes the motivation
and the proposal. In section 4, the main ideas of the
paper are discussed. Section 5 presents related works
on Early Aspects (EA), and in section 6 we conclude
and discuss recommendations for future research.

Modularization of Crosscutting Concerns in Requirements Engineering 121

2. Background
The contemporary non-AORE approaches have been
developed to primarily deal with one type of concerns.
For instance, PREview [15] and NFR [6] have
underlined the importance of non-functional concerns
and proposed means to ensure their fulfilment in a
system. Problem frames [8] and use cases [9], on the
other hand, have focused on ensuring the required
functionality of a system. Recently, AORE approaches
try to propagate the idea that all types of concerns are
equally important and should be treated consistently,
and non-discriminatively.

Moreover, the CC concerns have not been treated as
separate units of modularity. For instance, the issues
related to security in PREview [15] would be scattered
across all viewpoints, as each viewpoint will have to
specify the influence of security on it. AORE allow a
broad crosscutting influence for both functional and
non functional requirements and their modularisation.
The issue of requirements elevel composition has not
been extensively investigated before AO.
Composability (Weaving Process) [4] the support for
combining individual requirements into coarser-
grained requirements is the central notion of AORE.
Using AO terminology, this support should include:

• JoinPoint model: a well defined JoinPoint Model
(Interaction Points: a set of points in the
computational flow of the program in AspectJ1)
exposes structured points through which
requirements can be composed.

• Composition semantics: the composition semantics
provides systematic meaning to the composition
process.

Composability allows not only reviewing the
requirements in their entirety, but also the detection of
potential conflicts very early on in order to either take
corrective measures or make appropriate decisions for
the next development step. The composed
requirements also become valuable sources of
validation for the complete system.

3. Related Works
Recently, there has been growing interest in
propagating the aspect paradigm to the earlier activities
of the software development life cycle. A number of
approaches to aspect-oriented design have been
proposed.

In [18], the authors adopted model analysis to detect
semantic conflicts between aspects. However, the
approach is dedicated to serve the detection of direct
conflicts only. Resolving conflicts is recommended
through a process of correction and refinement of the
model, which is not clearly investigated.

In [5] and [14], the composition of the concerns was
defined as the last step of a proposed model for

separation of concerns at requirements engineering
using the formal method LOTOS. Resolving conflicts
among concerns is recommended through negotiation
with stakeholders which may not always be applicable
except for developers. Defining the dominant concern
at a matching point as recommended in this approach
is not always applicable as well because of the
dynamic behaviours of the system. In addition, it is not
clear how to map the combination set defined in
LOTOS to the next stages of the development.

In [3] and [13], composition of concerns is
accomplished by extending UML models to integrate
the candidate aspects to the functional behaviour.
Although the composition process must be considered
at the meta-level, these approaches only model certain
NFRs in a way that is not necessarily applicable for
other requirements.

In [12], the obliviousness property was adopted to
model orthogonal aspects independently from each
other and from the functional requirements. The usage
of formal methods in these approaches (e.g., GAMMA,
LOTOS, Time Temporal Logic) to specify the
functional behaviour and the associated aspects helps
to enable formal validation and facilitates a
specification-driven design. On the other hand, the
weaving process is not presented in a precise
systematic way and it is limited to a specific type of
requirements that can not necessarily be applicable for
others.

4. Motivation and Proposed Approach
An effective software development approach must
harmonise the need to build the functional behaviour of
a system with the need to clearly model the associated
Non Functional Properties (NFP). Most of the current
approaches adopt the AOSD as an effective
mechanism to handle NFPs at the early stage of the
development process. This is mainly because the NFRs
are considered as global properties of the system and
they crosscut at different spots of it, thus they need to
be treated within the context of AOSD which has been
prompted as an approach to separate crosscutting
concerns and improve the modularity in software
system artefacts [6].

In our proposal we adopt use-case driven activities
to model the system. We argue that use-cases tend to
be more concrete in their representation of the system
as they explicitly state series of interactions between
actors and the system. Furthermore, their
representations tend to be easy to map to the next
phases in development. Use-cases are also widely used
as part of the de facto standard of UML [10]. The
different activities that define our approach are
illustrated in Figure 1. In spite of the model sequence
of activities, we emphasize the iterative and
incremental nature of the development is implied even
thought it is not explicitly captured in the diagram.

122 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

5. The AOSD Approach
In this section we describe the different activities that
define our proposed AO approach. The approach is
defined in five phases: requirements elicitation,
analysis and identification of CC requirements,
weaving requirements, design and implementation. We
use the term phase to describe a group of one or more
activities within the AOSD approach. The phase is a
mean to categorize activities based on the general
target they tend to achieve.

5.1. Functional Requirements
By the end of the current activity, we illustrate with a
graphical representation the interactions between the
actors and the system in terms of a System Sequence
Diagrams (SSD).

5.1.1. Identifying Functional Requirements

Functional requirements capture the intended
behaviour of the system. This behaviour may be
expressed as services, tasks or functions whose the
system is required to perform. Those requirements can
carried out using an existing requirements level
separation of concerns mechanism such as view points
[15], use cases [9], goals [6], or problem frames [8]. In
our case we use use-case diagrams as starting point to
summarize with graphical representation the high-level
behaviour of the system: what the system does (as a
black box), what lies outside the system and how it
gets used. Identifying FRs is a process that involves
discussions with stakeholders, reviewing proposals,
building prototypes and arranging requirements
elicitation meetings.

5.1.2. Specifying Functional Requirements

In this activity, we further refine the detailed functional
behaviour of each use-case with textual description,
graphical representation and formal specification. The
outcome of this activity is the completion of a use-case
description Table 1 which forms an extension to the
fully-dressed format.

5.1.3. Identifying Crosscutting Functional
Requirements

To identify the crosscutting nature of certain FRs we
need to take into consideration the information
contained in the row “Related Use Cases” in Table 1.
If a use-case is repeated in multiple occurrences in the
system functional descriptions, then it is a crosscutting,
also we can find a use case depending on another one
without being CC (i.e. the case of extends and includes
relationship between use-cases).

5.2. Non-Functional Requirements

5.2.1. Identifying Non-Functional Requirements

Non functional requirements that are relevant to the
problem domain are captured in parallel to the
identification of FRs. Even though the elicitation of
NFRs can be accomplished in a number of existing
techniques, the most recognized technique is to use
NFR catalogue [6] where each entry in the catalogue is
cheeked whether it is applicable for the system or not.

1AspectJTM is an Aspect Oriented extension of Java
developed by Kiczales [11] at Xerox Palo Alto Research
Center, 2000.

Identifying FRs

Analysis and
Identification of Crosscutting Requirements

Specifying FRs

Identifying
Interaction Points

Defining
Conflicts

Resolving
Conflicts

Requirements
Composition

Identifying NFRs

Specifying NFRs

ImplementationDesign Output : Executable Code

Costomer
Input

Requirements
Elicitation

Weaving Requirements

Control flow
Activities flow

Figure 1. AOSD activities in the proposed approach.

Modularization of Crosscutting Concerns in Requirements Engineering 123

5.2.2. Specifying Non-Functional Requirements

To specify non-functional requirements we adopt an
extended version of our approach presented in [1, 2].
We propose the adoption of the matrix presented in
Table 2 that relates the identified NFRs to the use cases
they affect. In the case where an NFR (e.g., login)
affects the system as a hole, the entire corresponding
column must be check.

Table 1. Template to specify use-c ases.

Use Case No. Unique to the Use-Case
Name The name of the use-case
Priority Importance of the use-case

Actors Primary and secondary actors
Precondition
(Textual
�Formal)

Description of the conditions to be
satisfied before the use-case is executed

Main Scenario A single and complete sequence of steps
describing an interaction between a user
and a system

Alternative
Scenario

Extensions or alternative courses of the
main scenario

Postcondition
(Textual
�Formal)

Description of the conditions to be
satisfied after the use-case is executed

Related
Use-Cases

Use-cases which the current use-case
depend on

Table 2. Use-cases affected by NFRs.

NFR1 NFR2 …. NFRN

Use-Case1 � �

Use-Case2 � �

….

Use-Casen �

5.3. Weaving Requirements
The goal of this activity is to weave (i.e., compose) the
functional requirements and non-functional
requirements together. This is achieved in a series of
four steps:

Step 1: Identifying the interaction points at which
crosscutting requirements affect the system.

Step 2: Identifying possible conflicts among
requirements at each interaction point.

Step 3: Resolving conflicts.
Step 4: Integrating requirements.

A. Identifying Interaction Points

Based on functional crosscutting and the
correspondence between NFRs and use-cases which
constitutes another form of crosscutting, we can
identify interaction points in the system where
crosscutting will manifest themselves. Otherwise the
set of interaction points is defined by the sub set of the
Use Cases (UC) affected by CC Requirements (CCR),
as shown in Table 3.

Table 3. Interactions points in the system.

CCRx CCRy …. CCRz

Use-Casei � �

Use-Casej � �

…. ….

Use-Casek � � ….

B. Defining Conflicts

Rarely requirements manifest in isolation, and
normally the provision of one crosscutting may affect
the level of another. We refer to this mutual
dependency as non-orthogonality [16, 17]. The
dependency can be collaborative (positive) or damage
(negative). We define function for mapping pairs of
CCRs to values “+”, “-”, “?” or “ ”. The rules for
assigning the signs to the pairs of CCRs are as follows:

 F (CCRi , CCRj) � {“+”, “-”, “?”, “ ”} (1)

The values “-”, “+” or “ ” are assigned to the pair of
CCRs originating from the set of NFRs that contribute
respectively negatively, positively or do not interact at
the same interaction point. The assignment is based on
the expert’s judgment of the developers. The “?” value
indicates a lack of information on the contribution; this
might be updated in later phases of the software
development life-cycle, or a subsequent iteration.

We use Table 4 as symmetric matrix presentation of
the previous mapping function. It is important to stress
that any conflict defined at this step may not prove to
be a real conflict when the system will be refined
further during later phases.

Table 4. Aspect contribution matrix for the set of crosscutting
requirements (CCR 1… CCR N).

F: function CCR1 CCR 2 …. CCR N

CCR 1 + -

CCR 2 + ?

….

CCR N - ?

C. Resolving Conflicts

For each interaction point we analyse the set of
crosscutting requirements and study the contribution
among its elements. We are essentially interested in
those elements “requirements” that have a mutual
negative interaction. We solve conflict resolution by
refining the set of the crosscutting requirements to
eliminate the negative contribution, or assign a priority
among these elements to determine the order of their
execution.

124 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

D. Requirements Composition

In this step, we integrate requirements (FRs and NFRs)
together to obtain the whole system, and we use UML
diagrams at this high level of abstraction to model the
composition. In the new structured use-case diagram,
we use <<include>> stereotype for each NFR and have
the set of initial crosscutting use-cases include the new
ones.

6. Conclusion and Future Work
Tangling and scattering are symptoms that do not
exclusively affect implementation, but they also
propagate to early stages of the development process.
Identifying and modelling crosscutting earlier has a
great impact on the improving the general quality of
the system and reducing complexity by (1) prompting
understandability and reusability, (2) enhancing the
process of detecting and removing defects, (3)
reducing development time. In this paper, we discussed
a sequence of systematic activities towards an early
consideration of identifying, specifying and separating
broadly scoped requirements that are traceable
throughout system development process. We addressed
both FRs and NFRs as candidate crosscutting
requirements. To compose requirements, we provided
a fine grained approach to define interaction points and
relate them to the level of use-cases. Our approach
makes it possible to early recognize and resolve
conflicts within the activity of composing
requirements. For future research, we plan to
investigate how to formalize the specification of the
NFRs and how to integrate them with formally
specified FRs. We also plan to investigate how to
formally resolve conflicts among requirements at
interaction points with minimum contribution of
stakeholders. Finally we work on a set of
measurements that help in better designing strategies
based on quantitative analysis and we plan to
investigate how to formalize the traceability
mechanism.

References
[1] Amirat A. and Laskri M., “Modular

Implementation of Aspectual Requirements,” in
Proceedings of the International Arab
Conference on Information Technology
(ACIT’05), Amman, Jordan, pp. 159-163, 2005.

[2] Amirat A., Meslati D., and Laskri M., “An
Aspect-Oriented Approach in Early
Requirements Engineering,” in Proceedings of
the 4th ACS/IEEE International Conference on
Computer Systems and Applications
(AICCSA’06), Sharjah, UAE, pp. 224-227, 2006.

[3] Araujo J., Moreira A., Brito I., and Rashid A.,
“Aspect-Oriented Requirements with UML”, in
Proceedings of the Workshop on Aspect Oriented

Modelling with UML in Conjunction with 1st
International Conference on Aspect-Oriented
Software Development, Enschede, Netherlands,
2002.

[4] Baniassad E., Clements P., Araújo J., Moreira A.,
Rashid A., and Tekinerdoğan B., “Discovring
Early Aspects,” IEEE Software, pp. 61-70,
January/February 2006.

[5] Brito I. and Moreira A., “Integrating the NFR
Framework in a RE Model,” in Workshop on
Early Aspects, in conjunction with 3rd
International Conference on Aspect Oriented
Software Development, Lancaster, UK, 2004.

[6] Chung L., Nixon B., Yu E., and Mylopoulos J.,
Non-Functional Requirements in Software
Engineering, Kluwer Academic Publishers, 2000.

[7] Dijkstra E., A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[8] Jackson M., Problem Frames: Analysing and
Structuring Software Development Problems,
Addison-Wesley, 2001.

[9] Jacobson I., Chirsterson M., Jonsson P., and
Overgaard G., Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

[10] Jacobson I., Booch G., and Rumbaugh J., The
Unified Software Development Process,
Addition-Wisley, 1999.

[11] Kiczales G., Hilsdale E., Hugunin J., Kersten M.,
Palm J., and Griswold W., “An Overview of
AspectJ,” in Proceedings of the ECOOP’2000,
Springer Verlag, 2000.

[12] Mousavi M. Russello G., Chaudron M.,
Reniers M., Basten T., Corsaro A., Shukla S.,
Gupta R., and Schmidt D., “Aspect+
GAMMA= AspectGAMMA: A Formal
Framework for Aspect-Oriented Specification,”
in Proceedings of the Workshop on Aspect-
Oriented Modelling with UML in conjunction
with 1st International Conference on Aspect-
Oriented Software Development, Enschede,
Netherlands, 2002.

[13] Park D. and Kand S., “Design Phase Analysis of
Software Performance Using Aspect-Oriented
Programming,” 5th Aspect Oriented Modelling
Workshop in Conjunction with UML 2004,
Lisbon, Portugal, 2004.

[14] Rashid A., Moreira A., and Araujo J.,
“Modularisation and Composition of Aspectual
Requirement,” in Proceedings of the 2nd
International Conference on Aspect-Oriented
Software Development, Boston, MA, pp. 11-20,
2003.

[15] Sommerville I. and Sawyer P., “PREview
Viewpoints for Process and Requirements in
Software Engineering,” Lancaster University,
Lancaster REAIMS/WP5.1/LU060, 1996.

Modularization of Crosscutting Concerns in Requirements Engineering 125

[16] Sousa G., Soares S., Borb P., and Castro J.,
“Separation of Crosscutting Concerns from
Requirements to Design: Adapting the Use Case
Driven Approach,” Workshop Proceedings,
Lancaster, pp. 98-107, 2004.

[17] Tekinerdoğan B., Moreira A., Araújo J., and
Clements P. “Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture
Design,” Workshop Proceedings, Lancaster, pp.
5-15, 2004.

[18] Tessier F., Badri L., and Madri M., “Towards a
Formal Detection of Semantic Conflicts Between
Aspects: A Model Based Approach,” in
Proceedings of the 5th Aspect-Oriented
Modelling Workshop, in conjunction with UML
2004, Lisbon, Portugal, 2004.

Abdelkrim Amirat received his
engineer and MSc in computer
sciences from the University of
Badji Mokhtar, Annaba, Algeria.
Currently, he is a PhD student at the
University of Nantes, France. His
research interests include aspect

oriented software development, requirement
engineering, and software architecture.

Mohamed Laskri is a professor of
computer science, he holds Doctorat
3ème cycle in computer science
from France in 1987 and Doctorat
d’état in computer science from
Algeria in 1995. He is the leader of a
research group in artificial

intelligence in LRI laboratory, Algeria. His actually
research includes artificial intelligence reasoning and
its applications especially in image processing, multi-
agent systems, interface engineering, and automatic
processing of natural language.

Tahar Khammaci is an associate
professor at University of Nantes
since 1992. He obtained his MS and
PhD degree from University of
Nancy I, France. His area of interest
includes software engineering,
software architecture and automated

software engineering. He supervised number of PhD
and Master students. He has published number of
books, chapters, and articles for International Journals
and Conferences. He is member of IEEE Computer
Society and ACM.

