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Abstract: Compression is the process of representing information in a compact form so as to reduce the bit rate for 
transmission or storage while maintaining acceptable fidelity or data quality. Over the past decade, the success of wavelets in 
solving many different problems has contributed to its unprecedented popularity. For best performance in image compression, 
wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry. Due to 
implementation constraints scalar wavelets do not possess all the properties which are needed for better performance in 
compression. New class of wavelets called ‘Multiwavelets’ which possess more than one scaling filters overcomes this 
problem. The objective of this paper is to develop an efficient compression scheme and to obtain better quality and higher 
compression ratio using Multiwavelet transform with Set Partitioned Embedded bloCK coder algorithm (SPECK). A 
comparison of the best known multiwavelets is made to the best known scalar wavelets. Extensive experimental results 
demonstrate that our techniques exhibit performance equal to, or in several cases superior to, the current wavelet filters.  
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1. Introduction 

It has been suggested that a “picture is worth thousand 
words”. This is all the more true in the modern era in 
which information has become one of the most valued 
of assets. A thousand words stored on a digital 
computer require very little capacity, but a single 
picture/image can require much more. The volume of 
data required to describe such images greatly slow 
transmission and makes storage prohibitively costly. 
The information contained in images must, therefore, 
be compressed by extracting only visible elements, 
which are then encoded. The quantity of data involved 
is thus reduced substantially. Data compression 
algorithms are used in the standards such as ‘JPEG’ and 
‘MPEG’, to reduce the number of bits required for 
representing an image or a video sequence, i.e., 
compression is necessary and essential method for 
creating image files with manageable and transmittable 
sizes. A number of methods have been presented over 
the years to perform image compression. They all have 
one common goal: to alter the representation of 
information contained in an image so that it can be 
represented sufficiently well with less information. 
More recently, the wavelet transform has emerged as a 
cutting edge technology, within the field of image 
compression. Wavelet-based coding [8, 9] provides 
substantial improvements in picture quality at higher 
compression ratios. For better performance in 
compression, filters used in wavelet transforms should 
have the property of orthogonality, symmetry, short 
support and higher approximation order. Due to 

implementation constraints scalar wavelets do not 
satisfy all these properties simultaneously. 
Multiwavelets [4, 5] which are wavelets generated by 
finite set of scaling functions, have several advantages 
in comparison to scalar wavelets. One of the 
advantages is that a multiwavelet can possess the 
orthogonality and symmetry simultaneously [9, 11, 
12] while except for the ‘Haar’ (scalar wavelet) can 
not have these two properties simultaneously. Thus 
multiwavelets offer the possibility of superior 
performance and high degree of freedom for image 
processing applications, compared with scalar 
wavelets. Multiwavelets can achieve better level of 
performance than scalar wavelets with scalar wavelets 
with similar computational complexity. 

This paper is organized as follows. Section 2 
highlights some key points on multiwavelets. Section 
3 provides the motivation for going into multiwavelets 
for image compression. Section 4 presents the 
iteration of decomposition in multiwavelets. Section 5 
discusses the coding of multiwavelet coefficients 
using modified SPECK. Results and discussions are 
presented in section 6 and finally conclusions are 
drawn in section 7.      

 

2. Multiwavelets 

The wavelet transform is a type of signal transform 
that is commonly used in image compression. A newer 
alternative to wavelet transform is the multiwavelet 
transform. Multiwavelets are very similar to wavelets 
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but have some important differences. In particular, 
whereas wavelets have an associated scaling function 
Φ(t) and wavelet function Ψ(t), multiwavelets have two 
or more scaling and wavelet functions [5]. For 
notational convenience, the set of scaling functions can 
be written using the vector notation Φ (t) = [Φ1 (t), Φ2 
(t)…, Φr (t)]

T, where Φ(t) is called the multiscaling 
function. Likewise, the multiwavelet function is defined 
from the set of wavelet functions as Ψ(t) = [Ψ1 (t), Ψ2 
(t)…, Ψr (t)]

T. Called a scalar wavelet, or simply 
wavelet where r = 1, Ψ (t). While in principle r can be 
arbitrarily large, the multiwavelets studied to date are 
primarily for r = 2 [2]. 

The multiwavelet two-scale equations resemble 
those for scalar wavelets 
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However, that {Hk} and {Gk} are matrix filters, i.e., 
Hk and Gk are rxr matrices for each integer k. The 
matrix elements in these filters provide more degrees of 
freedom than a traditional scalar wavelet [4]. These 
extra degrees of freedom can be used to incorporate 
useful properties into the multiwavelet filters, such as 
orthogonality, symmetry, and high order of 
approximation. The key idea is to figure out how to 
make the best use of these extra degrees of freedom. 
Multifilter construction methods are already being 
developed to exploit them. The filter bank 
representation is also mostly unchanged, except now 
the input and output of every branch in multifilter bank 
is a vector [4]. This can be easily understood from 
Figure 1 which shows the analysis (H and G 
multifilters) and synthesis (Ĥ and Ĝ multifilters) stages 
of a single level biorthogonal PR multifilter bank.  

 
Figure.1 Biorthogonal PR multifilter bank. 

 

The detailed structure of the H analysis multifilter is 
shown in Figure 2. 

 

               
Figure 2. H  Multifilter as a 2-input, 2-output system. 

 

3. Motivation for Multiwavelets 

Algorithms based on scalar wavelets have been shown 
to work quite well in image compression. 
Consequently, there must be some justification to use 
multiwavelets in place of scalar wavelets. Some 
reasons for potentially choosing multiwavelets are 
summarized below [4]: 

• The extra degrees of freedom inherent in 
multiwavelets can be used to reduce the restrictions 
on the filter properties. For example, it is well 
known that a scalar wavelet cannot simultaneously 
have both orthogonality and symmetric property. 
Symmetric filters are necessary for symmetric 
signal extension, while orthogonality makes the 
transform easier to design and implement. Also, the 
support length and vanishing moments are directly 
linked to the filter length for scalar wavelets. This 
means longer filter lengths are required to achieve 
higher order of approximation at the expense of 
increasing the wavelet’s interval of support. A 
higher order of approximation is desired for better 
coding gain, but shorter support is generally 
preferred to achieve a better localized 
approximation of the input function. In contrast to 
the limitations of scalar wavelets, multiwavelets are 
able to possess the best of all these properties 
simultaneously. 

• One desirable feature of any transform used in 
image compression is the amount of energy 
compaction achieved. A filter with good energy 
compaction properties can decorrelate a fairly 
uniform input signal into a small number of scaling 
coefficients containing most of the energy and a 
large number of sparse wavelet coefficients. This 
becomes important during the quantization since 
the wavelet coefficients are represented with 
significantly fewer bits on average than the scaling 
coefficients. Therefore better performance is 
obtained when the wavelet coefficients have values 
clustered about zero with little variance, to avoid as 
much quantization noise as possible. Thus 
multiwavelets have the potential to offer better 
reconstructive quality at the same bit rate. 

• Multiwavelets can achieve better level of 
performance than scalar wavelets with similar 
computational complexity. 

 

4. Iteration of Decomposition in 

Multiwavelet Transform 

Since multiwavelet decompositions produce two low 
pass subbands and two high pass subbands in each 
dimension, the organization and statistics of 
multiwavelet subbands differ from the scalar wavelet 
case. During a single level of decomposition using 
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scalar wavelet transform, the 2-D image data is 
replaced with four blocks corresponding to the 
subbands representing either low pass or high pass in 
both dimensions. These subbands are illustrated in 
Figure 3-a. The data in subband ‘LH’ was obtained 
from high pass filtering of the rows and then by low 
pass filtering of the columns. The multiwavelets used 
here have two channels, so there will be two sets of 
scaling coefficients and two sets of wavelet 
coefficients. The multiwavelet decomposition subbands 
are shown in Figure 3-b. For multiwavelets, the L and 
H labels have subscripts denoting the channel to which 
the data corresponds. For example, the subband labeled 
L1H2 corresponds to data from the second channel high 
pass filter in the horizontal direction and the first 
channel low pass in the vertical direction. 

 
     (a) Scalar wavelets.                         (b) Multiwavelets. 

Figure 3. Image subbands after single-level decomposition. 

 
Scalar wavelet transforms give a single quarter-sized 

low pass subband from the original larger subband, as 
seen in subband LL in Figure 3-a. In previous 
multiwavelet literature, multilevel decompositions are 
performed in the same way. The multiwavelet 
decompositions iterate on the low pass coefficients 
from the previous decomposition. (the LiLj subbands in 
Figure 3-b), as shown in Figure 4. In the case of scalar 
wavelets, the low pass quarter image is a single 
subband. But when the multiwavelet transform is used, 
the quarter image of “low pass” coefficients is actually 
a 2x2 block of subbands – one low pass and three band 
pass. This is due to the use of Symmetric-
Antisymmetric (SA) multifilters [4]. Due to the nature 
of preprocessing and symmetric extension method, data 
in these different subbands becomes intermixed during 
iteration of the multiwavelet transform.  
 

        
 

Figure 4.  Conventional iteration of multiwavelet decomposition. 

  
Since four LL subbands possess different statistical 

characteristics, mixing them together using the 
multiwavelet decomposition results in further subbands 
with mixed data characteristics. Since only the L1L1 

subband actually has low pass characteristics, further 
iterations on that one subband is sufficient. Thus 
iterating only on the L1L1 subband requires one quarter 
of the computational complexity as iteration over the 
entire LL subband thus improving run-time 
performance as well. 

      
5. SPECK Algorithm 

Image coding utilizing scalar quantization [10] on 
hierarchical structures of transformed images has been 
a very effective and computationally simple technique. 
Shapiro was the first to introduce such a technique 
with his Embedded Zero tree Wavelet (EZW) 
algorithm [1]. Said & Pearlman successively improved 
the EZW algorithm based on a set-partitioning sorting 
algorithm called the Set-Partitioning In Hierarchical 
Trees (SPIHT) which provided an even better 
performance than the improved version of EZW [7]. 

The algorithm used in this paper has its roots 
primarily in the ideas developed in the SPIHT, 
EBCOT, and image coding algorithms [3]. It is 
different from some of the above mentioned schemes 
in that it does not use trees which span, and exploit the 
similarity, across different subbands; rather, it makes 
use of sets in the form of blocks. The main idea is to 
exploit the clustering of energy in frequency and space 
in hierarchical structures of transformed images [1, 6]. 
Thus, the image coding scheme is called Set 
Partitioned Embedded block coder (SPECK). In 
SPECK, the blocks are recursively and adaptively 
partitioned such that high energy areas are grouped 
together into small sets whereas low energy areas are 
grouped together in large sets. This algorithm makes 
use of the adaptive quad tree splitting to zoom into 
high energy areas within a region to code them with 
minimum significance maps [1, 6].  

   
5.1. Pseudo Code of the Algorithm 

The order in which the subsets are tested for 
significance is important; in a practical 
implementation the significance information is stored 
in the ordered list called (a) List of insignificant sets 
(LIS), (b) List of significant pixels (LSP). In SPECK 
algorithm we are using two lists than SPIHT which is 
a considerable improvement. 

A. Initialization 

Partition image transform X into two sets: S= root 
and I= X-S 

Output  n = floor(log2(max |Ci,j| )) 

                                          ¥ (i,j)  € X 
Add  S  to  LIS and set LSP=Ф 

B. Sorting pass 

In increasing order of size C of sets 

 For each set S € LIS, 
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        * Process S (S) 

Process I ( ) 

C. Refinement  pass 

For each (i,j) € LSP, except those included in the 

 last sorting pass, output the nth MSB of |Ci,j|.   

D. Quantization  step 

Decrement n by 1, and go to step 2. 

In the above pseudo code, process S(S) indicates 
checking the set S for significance. Before checking, 
the entire set is moved into List of Insignificant Set 
(LIS). If S is found to be significant, then the following 
processes take place with respect to the above pseudo 
code S, remove S from LIS and add S to List of 
Significant Pixels (LSP). Process I() indicates, checking 
for significance and if found significant, splitting I into 
three sets S and the remaining I and for each S, process 
S(S). This splitting process of ‘I’ is continued until ‘I’ 
becomes null set. 
As adding S to LIS and removing it from LIS if 

found significant for each S requires frequent up 
gradation of LIS which is quite complex and takes extra 
time in computation. So in this paper some alternative 
approach is tried such that complexity of the algorithm 
is much less and time required for computation is also 
less when compared to that of original algorithm. 

 

5.2. Pseudo Code of the Modified SPECK 

Algorithm 

Modified SPECK is similar to that of original SPECK 
algorithm with only a slight difference. Here, each set S 
is processed for its significance against the threshold 
value and it is moved into LIS only if found 
insignificant which is after the significance test. If S is a 
single pixel, then it is coded for positive or negative 
significance. If it is a block, then it is quad parted and 
further checked for significance and after checking; 
only insignificant blocks are moved to LIS which was 
not the case with original SPECK. 
By proceeding with this approach, better results are 

obtained at much less computation time. In the Pseudo 
code, ‘update LIS and LSP’ means testing of the set for 
its significance and accordingly moving the set or 
coefficient to the LIS or LSP. 

A. Initialization  

Partition image transform X into two sets: S = root & I 
= X – S. 
Output n = floor (log2 (max |Ci,j| )). 
¥ (i,j) € X 
Add S to LIS & set LSP = Ф. 
B. First sorting pass 

Process S(S) 
Process I ( ) 
C. Sort LIS in increasing order of set size C. 

D. Further sorting passes 

For each set S € LIS 
Process S(S) 
E. Refinement pass 

For each (i,j) € LSP, except those included in the last 
sorting pass, output the nth MSB of |Ci,j|. 
F. Quantization step 

Decrement n by 1, and go to next sorting stage 
 

6. Results and Discussion 

The images taken for the experiment are ‘Lena’, 
‘Barbara’, ‘Peppers’, ‘Cameraman’, ‘Mandrill’, ‘Rice’ 
of size (256 X 256). They are subjected to wavelet and 
Multiwavelet decomposition. The wavelet filters used 
in this experiment are “Haar”, “la8”, “Db4”,”Bi9/7” 
[8]. The multiwavelet filters used in this work are 
“GHM” pair of multifilters, Cardinal 3-balanced 
orthogonal multifilter “Cardbal3”, Chui-Lian 
orthogonal multifilter “Cl”, orthogonal 
symmetric/Antisymmetric multifilter “Sa4” [4]. Table 
1 and Table 2 represents the corresponding ‘PSNR’ 
values for different images and different levels of 
decomposition at 0.2bpp (CR=40) and 0.8bpp 
(CR=10) using multiwavelets. From these tables, it is 
clear that as the CR decreases, PSNR increases and as 
level of decomposition increases, PSNR increases. 
Table 3 shows that multiwavelet decomposition 

gives a higher amount ‘PSNR’ value (better image 
quality) with same amount of Compression Ratio (CR) 
when compared to that of “Daubechies” wavelet. This 
is because of the multifilters available in the 
multiwavelets, not in the case of wavelets. 
Multiscaling functions and Multiwavelet functions 
available in multiwavelets led to better decomposition 
of images in each band. 
SPECK algorithm is said to be an efficient 

algorithm than SPIHT [7]. Many comparison tables 
for different images are provided below from which 
the above said statement is made true. 

 

Table 1. PSNR (dB) for images under various levels of 
decomposition at 0.2bpp (CR=40). 

 

 Multiwavelet 

(Cardbal3) 

PSNR(dB) for Different Levels of 

Decomposition 

Images 2 3 4 

Cameraman 18.27 23.52 24.25 

Peppers 20.51 24.50 26.19 

Barbara 20.67 24.59 25.73 

Lena 21.86 28.80 29.69 

 

Tables 4 and 5 indicate the comparison between 
SPIHT and SPECK algorithm at different levels of 
decomposition in case of scalar wavelets and 
multiwavelets for “Cameraman” image. From tables 4 
and 5, it is evident that SPECK algorithm gives a 
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higher PSNR than SPIHT at a given CR in the case of 
both scalar wavelets and multiwavelets. 

 

Table 2. PSNR (dB) for images under various levels of 
decomposition using  multiwavelet (Cardbal3) at 0.8bpp (CR=10). 

 

Multiwavelet 

(Cardbal3) 

PSNR(dB) for Different Levels of 

Decomposition 

Images 2 3 4 

Cameraman 28.94 30.79 31.07 

Peppers 31.09 34.15 34.36 

Barbara 29.41 30.77 31.10 

Lena 34.98 38.66 39.14 

Rice 35.19 33.55 36.28 

 
Multiwavelets with modified SPECK gives an 

increase in the PSNR value roughly 0.2 to 2dB. This is 
completely evident from the data available in table 5.  
   

Table 3.  PSNR (dB) for “Lena” image for 3rd level of 
decomposition wavelet vs.  multiwavelet. 

 

Rate 

(bpp) 

PSNR(dB) 

Wavelet 

(Db4) 

PSNR(dB) 

Multiwavelet 

(Cardbal3) 

PSNR(dB) 

Multiwavelet 

(Sa4) 

0.2 28.45 28.80 30.41 

0.4 32.34 33.07 35.81 

0.6 35.02 36.30 37.96 

0.8 36.91 38.66 40.98 

1 37.70 40.37 42.42 

 

Table 4. Comparison between SPIHT and SPECK for PSNR (in dB) 
values for “Cameraman” image using scalar wavelets. 

 

Filter SPIHT SPECK 

Level Rate 

(bpp) 
0.2 0.6 1 0.2 0.6 1 

Haar 12.4 16.98 20.04 18.28 26.62 31.05 

Db4 12.53 17.19 20.29 20.40 28.32 32.51 

La8 12.6 17.2 20.73 20.72 28.60 32.58 

2 

Bi9 12.57 17.31 20.46 20.38 26.78 28.99 

Haar 15.83 24.31 29.87 23.24 29.19 32.51 

Db4 16.18 24.68 30.23 23.76 30.30 34.37 

La8 16.17 24.96 30.28 24.04 30.21 33.85 
3 

Bi9 16.38 23.53 26.52 22.82 26.33 27.50 

 
In Table 5, ‘Cardbal3’ represents Cardinal 3-

balanced orthogonal multifilter. Table 6 shows the 
comparison between the two algorithms for various 
images using ‘Dabauchies’ wavelet at various rates. 
Table 7 represents the comparison of PSNR values for 
various images using multiwavelets at a CR of 8 
(bpp=1) through SPECK. From that table, it is clear 
that out of various multiwavelet filters, Sa4 
(Symmetric/Antisymmetric) multifilter shows a higher 
performance when compared to the others in all the 
considered images. The final conclusion from the 
results is that, multiwavelets with SPECK outperform 
wavelets with SPECK in all the observed images. 
 

Table 5. Comparison between SPIHT and SPECK for PSNR (in 
dB) values for “Cameraman” image using multiwavelets. 

 

SPIHT SPECK 
Level Filter 

0.2 0.6 1 0.2 0.6 1 

Ghm 14.52 24.4 29.13 20.14 26.89 31.07 

Cl 15.96 24.8 29.75 23.39 28.90 31.62 

Sa4 16.07 24.9 30.06 23.62 29.80 33.75 

2 

Cdb3 17.17 25.7 30.46 18.27 26.14 29.89 

Ghm 22.67 28.4 31.91 23.72 29.23 32.92 

Cl 22.93 29.1 32.96 23.82 28.16 30.22 

Sa4 23.25 29.2 33.09 24.67 30.08 33.94 
3 

Cdb3 23.62 28.9 32.42 23.52 29.45 33.33 

 

Table 6. Comparison between SPIHT and SPECK for PSNR (in 
dB) values for various images using “Daubechies”   wavelet at 
various rates. 

 

PSNR(dB) using SPIHT 
PSNR(dB) using 

SPECK 
Level Image 

0.2 0.6 1 0.2 0.6 1 

‘Barbara’ 11.14 17.04 20.72 20.97 28.49 31.9 

‘Lena’ 11 16.56 20.88 21.64 32.79 35.8 2 

‘Peppers’ 11.44 17.59 20.54 20.92 30.1 34.2 

‘Barbara’ 16.15 25.42 29.91 25.41 30.04 33.5 

‘Lena’ 15.87 26.17 31.91 28.45 35.02 37.7 3 

‘Peppers’ 16.35 24.75 29.81 25.39 31.82 35.7 

 

Table 7. Comparison of PSNR (in dB) values for various images 
using multiwavelets through SPECK at bpp=1. 

 

Level Filters ‘Barbara’ ‘Peppers’ ‘Lena’ 

Ghm  31.79 33.32 38.05 

Cl  32.09 31.91 32.15 

Sa4 33.91 34.38 41.35 

Cardbal2 31.70 34.31 35.89 

2 

Cardbal3 31.04 34.10 37.00 

Ghm  32.62 34.99 38.64 

Cl  33.02 34.94 33.94 

Sa4 34.10 35.91 42.42 

Cardbal2 32.96 35.41 40.78 

3 

Cardbal3 32.96 35.28 40.37 

 
Figure 5 shows the comparison between many 

multiwavelets when applied for ‘Peppers’ image at 
bpp=1. From the figure, it is clear that out of all 
available multiwavelets, Sa4 multifilter performs well. 
Figure 6 shows a comparison when SPECK 
compression is applied to wavelet and multiwavelets. 
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From the figure, it is clear that multiwavelet 
compression gives 3 dB improvements against wavelet 
compression. Figure 7 shows the comparison graph 
between the algorithms using ‘Dabauchies’ wavelet. 
SPECK shows 8 dB improvements over SPIHT.  
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Figure 5.  PSNR values for various multiwavelets at CR=13.33. 

 

Figure 6. Comparison of wavelets vs. multiwavelets. 

 
 

Figure 7. Comparison of SPIHT and SPECK. 

 

 
 

                  (a) Original image 
 

 
         

(b) 31.41dB0.6bpp(SA4multiwavelet). 
 

Figure 8. SPECK compression of Peppers image PSNR values. 

 
 

               (a) Original image. 
 

 
 

(b) 24.18 dB0.6bpp (SA4 multiwavelet). 
 

Figure 9. SPECK compression of Mandrill image. 
 

Figures 8 and 9 show the original and reconstructed 
images using SA4 multiwavelet for ‘Peppers’ and 
‘Mandrill’ image with a given CR. Figure 10 shows 
the reconstructed images of ‘Barbara’ image at various 
CR. 
 

              
                      

                (a) Original image.                  (b) 0.6 bpp CR=13.33) 
                                                                 29.58 dB. 
 

                              
          (c) 0.8 bpp (CR=10)                        (d) 1 bpp (CR=8)  
          30.78 dB.                                       32.96 dB (SA4 tiwavelet). 

 

Figure 10. SPECK compression of ‘Barbara’ image PSNR values. 

      

7. Conclusion 

The performance of multiwavelets in general depends 
on the image characteristics. For the images with 
mostly low frequency content, (ordinary still images) 
scalar wavelets generally give better performance. 
However multiwavelets appear to excel at preserving 
high frequency content. In particular, multiwavelets 
better capture the sharp edges and geometric patterns 
that occur in images. The SPECK algorithm has some 
important features which are low complexity, 
embeddedness, progressive coding, exploits clustering 
of energy to zoom into high energy areas within a 
region (block) to code them with minimum 
significance maps, better visual perception.  
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