
The International Arab Journal of Information Technology,   Vol. 4,   No. 3,   July 2007                                                         220                     

Software Reuse for Mobile Robot Applications 
Through Analysis Patterns 

Dayang Jawawi1, Safaai Deris1, and Rosbi Mamat2

1Department of Software Engineering, Universiti Teknologi Malaysia, Malaysia
2Department of Mechatronics and Robotics Engineering, Universiti Teknologi Malaysia, Malaysia

Abstract: Software analysis pattern is an approach of software reuse which provides a way to reuse expertise that can be 
used across domains at early level of development. Developing software for a mobile robot system involves multi-disciplines 
expert knowledge which includes embedded systems, real-time software issues, control theories and artificial intelligence 
aspects. This paper focuses on analysis patterns as a means to facilitate mobile robot software knowledge reuse by capturing 
conceptual models in those domains in order to allow reuse across applications. The use of software analysis patterns as a 
means to facilitate Autonomous Mobile Robots (AMR) software knowledge reuse through component-based software 
engineering is proposed. The software analysis patterns for AMR were obtained through a pattern mining process, and 
documented using a standard catalogue template. These analysis patterns are categorized according to hybrid deliberate 
layered architecture of robot software: Reactive layer, supervisor layer and deliberative layer. Particularly, the analysis 
patterns in the reactive layer are highlighted and presented. The deployment of the analysis patterns are illustrated and 
discussed using an AMR software case study. To verify the existence of the pattern in AMR systems, pattern-based reverse 
engineering was performed on two existing AMR systems. The reuse potential of these patterns is evaluated by measuring the 
reusability of components in the analysis patterns. 

Keywords: Analysis pattern, software reuse, component-based development, pattern-based reverse engineering.

Received December 2, 2005; accepted March 3, 2006

1. Introduction

Autonomous Mobile Robot (AMR) represents a 
mechatronics system, which involves expertise from 
multi-disciplines in the domains of artificial 
intelligence, mechanical, electronics, computer and 
software engineering to develop it. The software aspect 
of AMR has been recognized as one of the challenging 
part [3, 22] for fully functional and successful AMR 
application. Developing software for AMR requires 
knowledge in embedded systems, real-time software 
issues, control theories and artificial intelligence 
aspects. Thus, reusing existing knowledge from 
previous projects can significantly reduce the efforts 
and speeding up the AMR software development 
process. A widely accepted solution to this is through 
software reuse, in the form of components, 
architecture, framework, and software patterns.

Software patterns are used to identify recurring 
problems and describe a generalized solution to the 
problems and help software developers to understand 
how to create an appropriate solution, giving certain 
domain-specific problem [25]. Software patterns can 
be categorized according to three software 
development levels: Analysis patterns or conceptual 
patterns for analysis level, design patterns for design 
level and programming patterns for implementation 
level [21]. 

The focus of this paper is on analysis patterns as a 
means to facilitate AMR software knowledge reuse. 
The main reasons for concentrating on analysis 
patterns are:

1. Analysis patterns speed up the development of 
abstract analysis models that capture the main 
requirements of the concrete problem by providing 
reusable analysis models [11]. 

2. Due to multi-disciplines nature of AMR software, 
conceptual models of experts knowledge in a 
particular domain can be captured independently 
using analysis patterns.

3. Analysis patterns can served as basis for 
development of AMR components and framework. 

The main objectives of this paper are to present AMR 
analysis pattern and some important components in the 
software analysis pattern as a result of our works and 
experience in AMR software requirements; to illustrate 
how the AMR software analysis patterns can be used 
for analysis and early design of AMR software; to 
present the results of pattern-based reverse engineering 
process on two existing AMR software in order to 
verify the existence of the analysis pattern components 
in the software; and to measure the reusability of 
components from the analysis pattern.

This paper is organized as follows. In section 2, 
some other approaches of software reuse in robotics 



221                                                                               Software Reuse for Mobile Robot Applications Through Analysis Patterns                                                                               

software are reviewed. Section 3 describes the pattern 
mining process and catalogues some important AMR 
analysis patterns in a properly documented form. 
Section 4 illustrates the deployment of the AMR 
analysis patterns for analysis and early design of AMR 
software. The pattern-based reverse engineering 
process on two existing AMR applications is discussed 
in section 5. In section 6, the reusability of the 
components from the analysis pattern were measured 
using a metrics suite. Finally, the conclusion is 
presented in section 7.

2. Related Work

Robotics research communities had recognized and 
practiced software reuse in general robotics software.  
The reuse approaches include reuse architecture, 
framework, design patterns, code or library 
components.

Virtual Robot Framework (VRF) [23], NEXUS [7] 
and GenoM [15] are examples of frameworks proposed 
to support abstraction and components reuse in 
robotics. VRF provides an abstraction layer to limit the 
effects of diversity and lack of standardization of robot 
hardware, while NEXUS and GenoM frameworks 
were proposed for integrating software elements in 
robotics. These three frameworks assume that the 
software analysis phase or the conceptual level of the 
software is already defined before the framework can 
be used. 

A number of software architectures was proposed to 
help in viewing a clear logical structure and 
components of the robotic software. CLARAty [17]
architecture aims at developing flexible and reusable 
software components for robotic systems through 
architectural decomposition of a generic robotic 
system. Alami et al. [1] proposed three hierarchical 
levels architecture called LAAS, for mobile robot 
systems. OSCAR [2] is a component-based 
architecture for exploration of indoor environments 
with AMR. These three architectures are all targeted to 
be reused at architecture design level, in contrast, the 
analysis pattern discussed in this paper aims to be 
reused at analysis level.

Component reuse of AMR software has been used 
in industries. Sony’s AIBO entertainment mobile 
robots were claimed to be developed using OPEN
architecture (OPEN-R) component approach developed 
at Sony as a standard for hardware and software 
components interfaces in entertainment robotics by 
providing off-the-shelf components and basic robot 
systems [9]. However, since it is a Sony’s commercial 
proprietary approach, the details of OPEN-R 
components were not available. Mobility [20] is 
another commercially available component-based 
system produced by Real World Interface (RWI) 
Company to support certain classes of mobile robot 
platforms which are produced by RWI. 

Software patterns have also previously been used in 
robotics software. Graves and Czarnecki [12] used 
design patterns for behavior-based robotics systems 
focusing mainly on the area of man-machine 
interaction. Nelson [16] developed a design pattern for 
creating software control systems of autonomous or 
robotic vehicles. 

Currently, the use of software patterns in robotics 
research communities is limited only to design 
patterns. Software analysis pattern has not yet received 
much attention. Since the focus of this work is on reuse 
of domain specific knowledge for analysis of AMR 
software, analysis pattern will serve this purpose 
appropriately. Based on two main tasks of analysis 
patterns proposed by [11], the AMR analysis patterns 
tasks are: 

1. To speed up the analysis of structural model and 
identify the real-time behavior of each object in the 
structural model at analysis level.

2. To facilitate the transformation of structural analysis 
model into design model by suggesting reuse 
component that can be used to solve the identified 
problems in the analysis model.

3. Analysis Pattern for AMR Software

The analysis pattern proposed here aims to develop the 
conceptual level of the robot software. The pattern is to 
guide the software designer to develop the perception 
of AMR application domain and help the designer to 
understand the domain. The AMR analysis pattern 
consists of components and each pattern’s component 
acts as a unit of analysis and the pattern will facilitate 
the transformation of the analysis model into design 
model.

The software analysis patterns for AMR were 
obtained through a pattern mining process, then the 
analysis patterns and the associated pattern’s 
components are documented using a standard 
catalogue template. These processes are elaborated in 
the following sections.

3.1. Analysis Patterns Mining Process 

Pattern mining process concerns with identification 
and documentation of patterns. The patterns mining 
process in this work is based on studies of numerous 
AMR systems from books such as [3, 13], existing 
AMR software architectures [1, 2, 17, 18], and 
experience from research works on AMR systems at 
the Universiti Teknologi Malaysia (UTM). Existing 
embedded and real-time design patterns [6] are also 
analyzed in this process.

As a result of this pattern mining process, currently,
ten software components were identified in the 
analysis pattern for typical AMR software. The 
components identified are: Input-output, actuator, 
sensor, signal processing, motor control, 



The International Arab Journal of Information Technology,   Vol. 4,   No. 3,   July 2007                                                         222                                           

communication, Human-Robot Interface (HRI), 
Behavior-Based Control (BBC), coordinator and 
planner. These components are categorized according 
to hybrid deliberate layered architecture of robot 
software. 

3.2. Defining Analysis Pattern at Reactive 
Layer

At this stage we are focusing on defining patterns in 
reactive layer using behavior-based intelligent control 
approach, since, software at reactive layer is typically 
embedded onboard and constrained by limited 
resources and real-time requirements. The analysis 
pattern is documented based on template for 
documenting analysis pattern as proposed in [11]. An 
example of the documentation of the AMR analysis 
pattern is described in Appendix A.

3.3. Components of the AMR Analysis Pattern 

The essential information in the components of AMR 
analysis pattern is catalogued based on guidelines of
Gamma et al. [10] and Douglass [6]. The components 
of the analysis patterns are documented using five 
essential elements: 

1. Name: Reference to the component patterns.
2. Context: Description of the context of the problem 

identified and the solution presented.
3. Problem: Statement of problem solve by the 

component patterns.
4. Solution: Structural solution presented using class 

diagram, showing the elements and properties in the 
component pattern, and interface to enable the 
component pattern to communicate with other 
components.

5. Example of Reuse Component: Name of 
components that can be reused in and with the 
component pattern. 

Figure 1 shows the catalogue for the BBC component 
pattern documented using these five essential elements.

The Unified Modeling Language (UML) structural 
elements and diagrams were adopted in describing the 
solution element of the patterns as UML provide a 
convenient and a lingua franca graphical representation 
in industry and academic software practice. Even 
though the solution is described using object-oriented 
technique, its implementation or realization need not 
be in object-oriented approach.

The component pattern solution is described using 
both structural model and real-time behavior model. 
The structural model describes classes that make up a 
particular component pattern. The combination of 
classes in the structural model is arranged in a package 
to represent constructional component pattern. 
Interconnection between the packages or components 
in the analysis pattern is supported by interfaces which 

are defined in the analysis pattern solution. The use of 
packages to represent constructional pattern and 
definition of pattern interface in describing structural 
model were adopted from the pattern-oriented analysis 
and design methodology [26].

Figure 1. Behavior-based control pattern catalogue.

For a real-time system such as the AMR software, 
the functional structure description using structural 
model alone is not enough. A real-time behavior model 
is required to specify the real-time behavior of real-
time components in the software. The real-time 
behaviors for classes are categorized in four: Passive 
class, active class, event class, and implementation 
dependence class. A passive class is a class that does 
not has its own thread of control, and it is marked with 
a stereotype “↓”. An active class is a class with its own 
thread of control, and it is marked with a stereotype 
“ ”. An event class is an active class whose behavior 
in triggered by event, and it is marked with a 
stereotype “ ”. An implementation dependence class 
is a class whose real-time behavior can only be 
specified or decided during the implementation phase 
of the pattern depending on the application. This class 
is not marked with any stereotype. As illustrated in 
Figure 1 for the BBC component pattern, the behavior 
layer and behavior classes are active classes while the 
actuator action is a passive class.

In the documentation of the AMR component 
patterns, the typical reusable components as suggested 
by domain experts in each component pattern are also 
proposed. This will facilitate the deployment of any 

Behavior-Based Control

Context: A mobile robot will have multiple behaviors, to react 
to the robot’s environment while trying to achieve its’ goal. 
Behavior-based control will provide intelligent to select the 
parallel behaviors. 

Problem: How to provide intelligence to decide on which 
behavior to select depending on the environment and the 
robot’s goal. 

Solution:

<<BBC>>
BBCInstance

*

Behavior Layer

ActiveBehavior

Actuator Action

direction
desiredSpeed

1

Behavior

behaviorFlag
sensorData

*

1

Actuator ActionBehavior

 Behavior Layer – Responsible to select action based on the 
fixed behavior-based architecture layers of the robot 
behaviors.

 Behavior – A definition of a behavior in the robot system.
 Action – Action that will affect the robot’s actuator.
Example of Reuse Components: Subsumption, motor schema.



223                                                                               Software Reuse for Mobile Robot Applications Through Analysis Patterns                                                                               

existing reusable black box or white box components 
in that particular pattern’s component.

4. Deployment of the Analysis Patterns in 
Component-Based Development

The deployment of the AMR software analysis patterns 
is illustrated using an AMR case study to show how 
the analysis pattern is deployed in a Component-Based 
Development (CBD). The AMR considered in this case 
study is a wheeled AMR, capable of traversing in a 
structured environment, which is surrounded by walls. 
The AMR consists of a body and a pair of wheels. 
Each drive wheel is move by a Direct-Current (DC) 
motor. The speeds of the motors are sensed using shaft 
encoders and fed back to the on-board embedded 
controller which is based on AMD80C188ES 
microcontroller for computation of control signal to the 
DC motors every 50 milliseconds using the 
Proportional-Integral (PI) control algorithm.  The 
embedded controller also monitors the robot 
environment using four Infra Red (IR) proximity 
sensors and a distance sensor. 

The goal of the robot software is to navigate the 
robot in finding a passage and exiting through the 
passage while avoiding obstacles during its motion.  
The embedded software must support the intelligence 
aspect of the robot in order to response to the 
conditions in the environment in achieving the goal. 
The intelligence of AMR is supported by a behavior-
based control using subsumption architecture [4]. To 
support concurrent behavior in subsumption 
architecture and to satisfy the multi-tasking 
requirements for these major tasks, a pre-emptive Real-
Time Operating System (RTOS) is used in the robot 
software. The embedded controller also communicates 
with human through Liquid Crystal Display (LCD) and 
switches.

4.1. The AMR Software Analysis Using POAD 
Methodology

The Pattern-Oriented Analysis and Design (POAD) 
[26] methodology is used in the analysis and early 
design of the AMR software using the software 
analysis patterns. The choice of POAD methodology is 
due to several reasons:

1. POAD takes structural composition approach to 
glue patterns at high-level.

2. POAD provides logical views to represent AMR 
application analysis and design as a composition of 
the patterns.

3. POAD provides the necessary means to trace 
participants of those patterns into the application’s 
final class diagram.

In this analysis phase, suitable candidates from the 
AMR analysis patterns that could capture the main 

requirements of the problem are identified. The AMR 
software requirements were modeled using the UML 
use-case diagram as shown in Figure 2. By matching 
the decomposed use-case of Figure 2 with the context 
and problem elements available in AMR analysis 
patterns, a mapping of the application requirements 
and the AMR analysis patterns are obtained. From this, 
a POAD pattern-level diagram which specifies the 
AMR pattern instances and their relationships for this 
case study is developed as shown in Figure 3.

4.2. The AMR Software Early Design Using 
POAD Methodology

In CBD, interfaces are the means by which 
components connect. The composition of the 
components using AMR analysis patterns is supported 
by interfaces defined in the analysis pattern solution. 
The relationship between patterns instances as shown 
in Figure 3 can be further detailed out to a lower-level 
design relationship using interfaces in pattern-level 
with interface diagram. For example, Figure 4 shows a 
section of the pattern-level with interface diagram 
relating the four packages involve in the AMR 
intelligence behavior: Switches, IR distance sensors, 
IR proximity sensors, and subsumption architecture.

Wall

Operator

Obstacle

Display Robot
Status

Display Robot
Mode

Configure Display Battery
Status

Detect Obstacle
Occurence

Measure Object
Distance

Detect Wall
Existance

Monitor
Environment

Control
MotorControl Robot

Movement

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>>

Figure 2. The AMR use-case diagram.

<<BBC>>
Subsumption
Architecture

Operator

Wall

<<Sensor.>>
Battery Sensor

<<IO>>
Robot Status

<<IO>>
Switches

Update switch
status

Update
battery level

<<Sensor>>
IR Distance

Sensors

Update object
existence

status

Update
distance
reading

Update
behavior

Obstacle

<<Sensor>>
IR Proximity

Sensors

<<MotorControl>>
PI Control

<<Actuator>>
Motors

<<Sensor>>
Encoders

Update current
motors value

Send new
control signal

Set desired
control value

Figure 3. Pattern-level diagram for the AMR software.



The International Arab Journal of Information Technology,   Vol. 4,   No. 3,   July 2007                                                         224                                           

<<BBC>>
Subsumption
Architecture

<<IO>>
Switches

<<Sensor>>
IR Proximity

Sensors

<<Sensor>>
IR Distance

Sensors

stop
behaviorsetvalue()

update()

update()

actuator
action

cruise
behavior

avoid
behavior

follow wall
behavior

find wall
behavior

Figure 4. Pattern-level with interface diagram for AMR intelligence 
behavior.

Once the pattern-level with interface diagram 
similar to Figure 4 is obtained, each of the generic 
analysis patterns in the diagram needs to be renamed, 
classes in the pattern need to be detailed out according 
to the specific AMR system, and the tracing of pattern 
interfaces to internal classes need to be defined. Figure
5 shows the results obtained from Figure 4 following 
those processes. All function and classes defined as the 
pattern interfaces are connected directly to show the 
relationship between the internal classes in each 
pattern.

Actuator
Action1

1
Selector
Arbiter

Find Wall

Avoid

Stop

Cruise

Follow Wall

IO driver Digital IO

setValue()

IR Distance
Sensor driver

IR Distance
Sensors

update()

IR Proximity
Sensor driver

IR Proximity
Sensors

update()

Subsumption
Architecture

IR Proximity
Sensor

IR Distance
Sensor

Switches

Figure 5. Detail internal classes representation of the AMR for 
intelligence behaviour.

Concurrency and multitasking capabilities of the 
AMR software are supported by the RTOS. The real-
time behavior of AMR components specified in Figure 
5, which require the RTOS services has to be wired to 
a concurrency or RTOS design pattern as proposed in 
[6]. Control interface is introduced for wiring real-time 
components to the RTOS design pattern as shown in 
Figure 6. The control interface defines the attributes of 
real-time requirements of a component pattern, and this 
is only necessary in active and event classes. The 
control interface, however, is not explicitly showed in 
a pattern solution, since services required from RTOS 
design pattern can only be specified during the wiring 
of components pattern at design stage.

<<BBC>>
Subsumption
Architecture

Behavior
Selector Arbiter

Behavior
Stop

Behavior
Find Wall

Behavior
Follow Wall

Behavior
Avoid

<<RTOS>>
Pre-emptive

Abstract
Thread

Shared
Resources

Behavior
Cruise

Figure 6. Pattern-level with control interface diagram for 
intelligence behavior.

The detail internal classes of Figure 5 acts as the 
initial class diagram for static design model of the 
AMR software. Up to this point, POAD methodology 
provides logical views to represent AMR application 
analysis and design as a composition of the 
components using structural elements of UML. Figure 
6 enhances the static design model of Figure 5 by 
detailing the real-time concurrency support required in 
the design model. 

Once the detail software behaviors of the AMR are 
defined, the software implementers can choose any 
appropriate ways and suitable programming languages 
for implementing the AMR software. For this case 
study, the software implementation process includes 
writing functions, modules and tasks in C 
programming language, program translation into 
executable code, testing and debugging. The software 
tools used for the software implementation are 
Paradigm C/C++ compiler [19] for generating 
ROMable code and µC/OS-II real-time kernel [14] for 
multitasking support. 

5. Pattern-Based Reverse-Engineering on 
Two Existing AMR Software

Reverse engineering is the process of analyzing a 
subject system to identify the system’s components 
and their interrelationships, and create representations 
of the system in another form or at a higher level of 
abstraction [5]. A pattern-based reverse engineering 
process was performed on two existing AMR software 
to obtain higher abstractions and document their 
structural description using the proposed AMR 
analysis patterns. This will verify the existence of the 
patterns in AMR systems. 

The reverse engineering was performed on a 
Universiti Teknologi Malaysia (UTM) intelligent 
AMR software and a Fire Marshal Bill AMR software 
[8] to gain the graphical analysis representation of the 
software, based on the AMR analysis pattern. The first 
AMR software is the leader agent’s code as a part of 
our own multi-agent mobile robots software. The real-
time behaviors of the software are supported using a 
cooperative RTOS and the intelligent control is 
implemented using subsumption behavior-based 



225                                                                               Software Reuse for Mobile Robot Applications Through Analysis Patterns                                                                               

intelligent architecture. The second robot software is 
the Fire Marshal Bill balancing robot which uses the 
Real Time Executive for Multiprocessor Systems 
(RTEMS) RTOS to support multitasking. The robot 
intelligent was implemented using a non-behavior-
based architecture. 

The two robot software were selected due to several 
reasons: 

1. The C codes for both software were accessible to us.
2. Both software were developed without using the 

proposed analysis pattern.
3. Both software were implemented using the 

traditional non-object-oriented approach.
4. The first software was based on behavior-based 

approach which represents common AMR software 
architecture, thus matched with the proposed 
analysis patterns.

5. The second software was not implemented using the 
behavior-based approach, thus posed a challenge in 
documenting it using the proposed analysis patterns.

To preserve the design history of the codes, the reverse 
engineering processes were performed manually. 
These reverse engineering processes did not consider 
in detail the reused components utilized in the codes 
such as the cooperative RTOS and some hardware 
interfaces code, as these components are already in the 
reuse forms. The results of the pattern-based reverse 
engineering are pattern level diagrams of the AMR 
systems. Figure 7 and Figure 8 show the pattern-level 
diagrams for the Fire Marshal Bill and UTM intelligent 
AMR, respectively.

Figure 7. Pattern level diagram for the Fire Marshal Bill robot.

Table 1 summarized the number of pattern instances 
component from the AMR analysis pattern. The UTM 
intelligent AMR software which is based on behavior-
based approach can be directly mapped into the AMR 
analysis pattern. All the components in the software 
are the component from the proposed patterns. For the 
Fire Marshal Bill AMR software, only a component 
called robot and position PID which handle the robot 
high-level intelligence does not match with the 
proposed patterns. This proved that this analysis 
pattern still can be used for analysis of non behavior-

based approach with only a few of the components 
cannot be mapped directly with the AMR analysis 
patterns.

<<BBC>>
Arbitration <<Sensor>>

Wall Following
Sensor

<<IO>>
Push Button

<<Sensor>>
IR Obstacle

Sensor

<<Sensor>>
Landmark 2

Behavior
Load
Detection

load_check()

pass_check()

obst_check()

wallfol_check()

Actuator
Action

<<IO>>
Buzzer

tone()

<<IO>>
RF Receiver

rf_check() Behavior
Task

Completion

<<IO>>
RF Transmitter

rf_set()

<<Sensor>>
Landmark 1

task_check()

Behavior
Passage
Detection

Behavior
Obstacle

Avoidance

Behavior
Wall

Detection

<<Sensor>>
IR Wall Detection

Sensor wall_check()

Behavior
Wall

Following

<<Actuator>>
Motor

move()

<<Sensor>>
Encoder

encoder_check()

Figure 8. Pattern-level with functional interface diagram for the 
intelligent AMR.

Table 1. Number of components from the pattern used.

Analysis 
Component

Fire 
Marshal 

Bill

UTM 
Intelligent 

AMR

Input-Output 2 4

Sensor 7 6

Actuator 2 1

Motor Control 1 0

BBC 0 1

Signal 
Processing

1 0

6. Reusability of the Analysis Components

To quantify the benefit of using the analysis pattern, 
the reusability of the components from the analysis 
pattern is measured using a metrics suite proposed by 
Washizaki et al. [24]. This metrics suite is suitable for 
measuring the usability of black-box components in 
analysis patterns without the availability of source 
codes. The metrics suite is utilized for assessment of 
pattern level reuse of the analysis pattern’s component.

The metrics suite consists of five metrics originally 
for JavaBeans component reusability assessment. The 
metrics suite however, was modified for assessing the 
components of the AMR analysis pattern. The main 
modification is made in trying to match the facade 
class features in the original metrics with the interfaces 
proposed in each components of the AMR analysis 
pattern.



The International Arab Journal of Information Technology,   Vol. 4,   No. 3,   July 2007                                                         226                                           

Three relevant metrics were considered in the 
measurement process. These criteria measured by the 
metrics are: Observability (RCO), customizability 
(RCC) and external dependency (SCC), as defined in 
Table 2. 

Table 2. Washizaki et al.’s metrics definition.

Metric Name Definition

Rate of Component 
Observability (RCO) 

A percentage of readable attributes in all 
attribute implemented within the 
interface class of a component.

Rate of Component 
Customizability 
(RCC)

A percentage of writable attributes in all 
attribute implemented within the 
interface class of a component.

Self-Completeness of 
Component’s Return 
Value (SCCr)

A percentage of methods without any 
return value in all method implemented 
within a component.

Self-Completeness of 
Component’s 
parameter (SCCp)

A percentage of methods without any 
parameter in all method implemented 
within a component.

The metrics were applied to five components of 
AMR analysis patterns. These five components were 
used in the analysis and design composition as shown 
in section 4. For each component, the values of 
adapted Washizaki et al.’s metrics were computed and 
tabulated in Table 3. Value of 1 indicates ‘very high’ 
and value of 0 indicates ‘very low’.

Table 3. Washizaki et al.’s metrics applied on five components of 
the AMR analysis pattern.

Components RCO RCC SCCr SCCp

Input 1 0 1 1

Output 0 1 1 1

Sensor 1 0 1 1

Actuator 0 1 1 1

Motor Control 0.25 0.75 1 1

BBC 0.66 0.33 1 1

From Table 3, it can be concluded that: 

1. The observability of component input and sensor is 
very high.

2. The customizability of component output and 
actuator is very high.

3. External dependency of all components is very high.

High observability for input and sensor components, 
and high customizability for output and actuator are 
due to the readable and writable attributes in the 
component as provided by the interface of the 
components. However, if the observability 
measurement is too high, it will lead to difficulty for 
users to find important readable properties from the 
interface, and if the customizability measurement is too 
high, it will lead to high possibility of misuse of 
components [24]. In the AMR domain, it is important 
for the input and sensor components to have very high 
obsevability, and output and actuator components to 
have very high customizability, since, the main 

objective of the components are to observe its 
environment from sensors readings and to react to 
them appropriately through outputs and actuators.

The high external dependency of five components 
of AMR analysis patterns are due to the 
implementation of the operation in the interface class 
without the use of parameters or return values, this lead 
to self-completed within component.

7. Conclusion

The use of software analysis patterns as a means to 
facilitate AMR software knowledge reuse through 
component-based software engineering is proposed. 
The software analysis patterns for AMR were obtained 
through a pattern mining process, and documented 
using a standard catalogue template.  

Based on this AMR software analysis pattern, the 
pattern level analysis and early design of AMR 
software case study using the POAD methodology is 
illustrated. The results of this pattern level analysis and 
design is the initial class diagram for static design 
model of the AMR software system. Once the detail 
internal classes’ representation of AMR software is 
obtained, it will serve as best starting point for two 
groups of software implementer:

1. Application software engineer who can easily
implementing the AMR software in any way, not 
necessarily based on CBD.

2. Software engineer who develops component can 
develop black box or white box version of 
components, which can later be used by application 
software engineer to compose the AMR software 
based on the black box or white box components.

Based on the software analysis pattern, the pattern-
based reverse engineering was performed on two 
existing AMR software. The result of the pattern-based 
reverse engineering process is the graphical 
documentation of software analysis using pattern-level 
diagrams. From the reverse engineering process, the 
existence of AMR analysis patterns in existing AMR 
software was verified.

The reuse potential of the analysis pattern is 
evaluated by measuring the reusability of components 
in the analysis patterns using a metrics suite. From the 
measurement, the reusability of the component in the 
patterns are found to be high. These results suggest that 
further detail research on the benefits of patterns as a 
means to reuse domain knowledge is needed in domain 
such as AMR software.

Acknowledgements

The authors would like to thank Public Service 
Department of Malaysia for funding of this PhD work. 



227                                                                               Software Reuse for Mobile Robot Applications Through Analysis Patterns                                                                               

Appendix A

 Name: Behavior-based reactive layer.
 Intent: How to organize the components in the 

domain of reactive layer for AMR software?
 Motivation: Traditional robot control programs 

based on the sense-plan-act organization have been 
criticized due to the emphasis placed on 
construction of a world model and planning actions 
based on this model. The computation time required 
to construct a symbolic model has a significant 
impact on the performance of the robot. An 
alternative control organization is to use behavior-
based approach which is a reactive system that do 
not use symbolic representation, and have been 
demonstrated capable of producing reasonably 
complex robot behavior. 

Forces:  

1. Reactive system reacts based on sensory data.
2. The concurrency resulted from different subsystem 

involved in the robot.
3. The dependency between the subsystem in the 

reactive layer are presented.

Solution: Build a reactive layer using behavior-based 
control paradigm. It models the sensory data and 
reaction toward the data in concurrent behaviors. A 
control mechanism will select the appropriate behavior 
for the robot in order to react toward the robot 
environment.

The relationships between the components in the 
analysis pattern in reactive layer are shown in Figure
A1. All the components in the reactive layer are 
organized into a hierarchical organization based on 
their level of abstraction. Each subsystem will be 
treated as component-based analysis pattern to model 
the detail requirement of each domain.

Consequences: The benefits and liability of the pattern:

1. Difficult to manage with increasing system 
complexity. In this type of system, hybrid between 
reactive and deliberative planner is normally used.

2. Cannot perform high-level planning.
3. Avoiding symbolic representation of environment.

Design: Important point to be considered:

1. Identification of behavior from different types of 
sensory data and action in the reactive systems.

2. Interfaces to provide reuse components in the 
systems.

Known Uses: Mobile robot systems, autonomous 
vehicle systems

BEHAVIOR-BASED
CONTROL

HRICOMMUNICATION
SIGNAL

PROCESSING
MOTOR

CONTROL

SENSOR ACTUATOR

INPUT-
OUTPUT

Figure A1. The structure of reactive layer.

References

[1] Alami R., Chatila R., Fleury S., Ghallab M., and 
Ingrand F., “Architecture for Autonomy,” 
Journal of Robotics Research, vol. 17, no. 4, pp. 
315-337, 1998.

[2] Blum S., “Towards a Component-Based System 
Architecture for Autonomous Mobile Robots,” in 
Proceedings of IASTED International 
Conference on Robotics and Applications 
(RA’01), pp. 220-225, 2001.

[3] Braunl. T., Embedded Robotics: Mobile Robot 
Design and Applications with Embedded 
Systems, Springer-Verlag, New York, 2003.

[4] Brooks R. A., “A Robust Layered Control 
System for a Mobile Robot,” IEEE Journal of 
Robotics and Automation, vol. RA-2, no. 1, pp. 
14-23, 1986.

[5] Chikofsky E. J. and Cross II J. H., “Reverse 
Engineering and Design Recovery: A 
Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-
17, 1990.

[6] Douglass B. P., Real-Time Design Patterns: 
Robust Scalable Architecture for Real-Time 
Systems, Addison Wesley, Boston, 2002.

[7] Fernandez J. A., Gonzalez J., “NEXUS: A
Flexible, Efficient and Robust Framework for 
Integrating Software Components of A Robotic 
System,” in Proceedings of the IEEE 
International Conference on Robotics and 
Automation, vol. 1, pp. 524-529, 1998.

[8] Fire Marshal Bill, available at: http://www.
dragonflyhollow.org/matt/robots/firemarshalbill,
August 2004.

[9] Fujita M. and Kageyama K., “An Open 
Architecture for Robot Entertainment,” in
Proceedings of the 1st International Conference 
on Autonomous Agents, pp. 435-442, 1997.

[10] Gamma J., Helm R., Johnson R. and Vlissides J., 
Design Patterns: Elements of Reuse Object-
Oriented Software, Addison-Wesley, 1995.

[11] Geyer-Schulz A. and Hahsler M., “Software 
Reuse with Analysis Patterns,” in Proceedings of 
the 8th Association for Information Systems 
(AMCIS), Dallas, TX, pp. 1156-1165, 2002.



The International Arab Journal of Information Technology,   Vol. 4,   No. 3,   July 2007                                                         228                                           

[12] Graves A. R. and Czarnecki C., “Design Patterns 
for Behaviour-Based Robotics,” Systems and 
Human, vol. 30, no. 1, pp. 36-41, 2000.

[13] Jones L. J., Seiger B. A., and Flynn A. M., 
Mobile Robots Inspiration to Implementation, 
Peters A. K., Natick, 1999.

[14] Labrosse J. J., MicroC/OS-II The Real-Time 
Kernel, R&D Books, USA, 1999.

[15] Mallet A., Fleury S., and Bruyninckx H., “A 
Specification of Generic Robotics Software 
Components: Future Evolutions of GenoM in the 
Orocos Context,” in Proceedings of the IEEE 
International Conference on Intelligent Robots 
and System, vol. 3, pp. 2292-2297, 2002.

[16] Nelson M. L., “A Design Pattern for 
Autonomous Vehicle Software Control 
Architectures,” in Proceedings of 23rd

International Conference on Computer Software 
and Applications, pp. 172-177, October 1999.

[17] Nesnas I. A., Wright A., Bajracharya M., 
Simmons R., Estlin T., and Won S. K., 
“CLARAty: An Architecture for Reusable 
Robotic Software,” in Proceedings of SPIE 
Aerosense Conference, Unmanned Ground 
Vehicle Technology V, vol. 5083, pp. 253-264, 
2003.

[18] Oreback A. and Christensen H. I., “Evaluation of 
Architecture for Mobile Robotics,” Autonomous 
Robots, vol. 14, pp. 33-49, 2003.

[19] Paradigm Systems, Paradigm C++ Reference 
Manual Version 5.0, Endwell, 2000

[20] Real World Interface, “Mobility Robot 
Integration,” available at: http://www.isr.com/
rwi, December 2003.

[21] Riehle D. and Zullighoven H., “Understanding 
and Using Patterns in Software Development,” 
Theory and Practice of Object Systems, vol. 2, 
no. 1, pp. 33-13, 1996.

[22] Seward D. W. and Garman A., “The Software 
Development Process for an Intelligent Robot,” 
IEEE Computing and Control Engineering 
Journal, vol. 7, no. 2, pp. 86-92, 1996.

[23] Smith G., Smith R., and Wardhani A., “Software 
Reuse Across Robotic Platforms: Limiting The
Effects of Diversity,” in Proceedings of the 
Australian Software Engineering Conference, 
pp. 252-261, 2005.

[24] Washizaki H., Yamamoto H., and Fukazawa Y., 
“A Metrics Suite for Measuring Reusability of 
Software Components,” in Proceedings of the 9th

International Software Metrics Symposium, pp. 
211-223, 2003.

[25] Winn T. and Calder, “Is This a Pattern?,” IEEE 
Software, vol. 19 , no. 1 , pp. 59-66, 2002.

[26] Yacoub S. M. and Ammar H. H., Pattern-
Oriented Analysis and Design: Composing 
Patterns to Design Software Systems, Addison-
Wesley, Boston, 2004.

Dayang Jawawi received her BSc 
degree in software engineering from 
Sheffield Hallam University, UK, 
and her MSc degree in computer 
science from Universiti Technologi
Malaysia. Currently, she is working 
toward PhD degree in software 

engineering. Her area of research is component-based 
software engineering for embedded real-time software.

Safaai Deris received his Master 
degree in engineering and his PhD 
in computer and system sciences 
from Osaka Prefecture University, 
Japan. Currently, he is a professor in 
the Department of Software 
Engineering, Faculty of Computer 

Science and Information Systems, Universiti 
Teknologi Malaysia. His research interest include 
software engineering, artificial intelligence and 
bioinformatics. He has authored and co-authored more 
than 50 papers in international and local journals and 
conferences. Currently, he is the deputy dean of 
Graduate Studies, Universiti Teknologi Malaysia.

Rosbi Mamat is an associate 
professor and head of Department of 
Mechatronic and Robotics 
Engineering at the Faculty of 
Electrical Engineering, Universiti 
Teknologi Malaysia. He obtained his 
PhD in control engineering from 

University of Sheffield, UK. His research interests
include intelligent control, robotics and mechatronic 
systems.

BEHAVIOR-BASED
CONTROL

MOTOR
CONTROL


