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Abstract: This article presents a hybrid technique for the recognition of typed Arabic characters. Due to its curved and 
continuous nature, Arabic text has to go through words segmentation, character segmentation, feature extraction, and finally 
character recognition. In this work, Freeman Chain (FC) technique [20, 21] is used to generate a chain for every segmented 
character. This chain represents the extracted features. Moreover, two approaches are presented for the classification process. 
In the first approach, we use a classical sequential weighing algorithm that finds the closest available “Standard Character 
Template” to the extracted chain. In the second approach, we use Learning Vector Quantization (LVQ) (specifically LVQ3) 
technique for classifying the same chain. To improve the performance of that LVQ, the Genetic Algorithm (GA) [11, 23] is 
invoked for some additional training. We call our neural network with the GA “GALVQ3”. For further robustness testing of 
both approaches, we add some artificial noise to the extracted chains and repeat simulations. In general, LVQ techniques 
provide higher classification rate even for cases where noise and partial observations exist. As a result, the GALVQ3 classifier 
is compact, online, robust, and feasible from hardware point of view.
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1. Introduction
Arabic character recognition is one of the most 
challenging topics in character recognition. The fact 
that an Arabic character is written differently 
according to its position in the word makes its 
recognition a difficult task. For example, the Arabic 
letter below:

Looks different if it is written at the beginning, at the 
middle, or even at the end of the word. Moreover, 
Arabic characters have different types and large 
number of curvatures, holes, and dots which make 
them even harder to recognize. Different applications 
nowadays require automatic and precise recognition 
for printed or hand written characters. Even personal 
applications require prompt identification of text as 
preliminary stage for subsequent crucial decisions. 
What we propose in this project is a method beyond 
handling well written, clear words and picking them up 
from a look up table. We propose a Genetic/Neural-
Based system that can detect images with minimum 
effort and with fewer amount of data size. A system 
that has shorter processing time as it is based on 
parallel architectures. It also should be immune against 
unexpected levels of noise and tolerant against 
variations in input images. This system should have the 
attributes of an intelligent system that can make 

decisions under vague and uncertain observations. 
Moreover, it has to be compact and hardware 
realizable. The fact that Arabic letters have holes and 
dots within the characters requires special pre-
processing techniques. These techniques include 
segmentation of pages into lines, segmentation of lines 
into words (sub-words), and words into characters. The 
characters then need to be coded in an efficient way 
utilizing the fact that what is being dealt with is only 
text and not all details of the image are really 
necessary. Previous techniques, such as horizontal and 
vertical projections have weakness in extracting some 
features of Arabic characters [1, 2].

This is due to the overlapping dots, and holes that 
increase segmentation error. In this work, we use a 
method called Freeman Chain (FC) to generate a chain 
coding (the feature) by detecting only the boundaries
of the isolated character [35]. However, classification 
is implemented by two methods; one is basically based 
on a look-up table and the other is basically based on 
the application of artificial neural networks. The look 
up table method uses some intelligent search 
techniques based on frequency analysis that minimizes 
the number of iterations needed to search for a pattern. 
On the other hand, the second method uses neural 
networks. Neural networks are artificial intelligence 
paradigms that mimic neurons in living creature's 
brains [3, 18]. There are many types of neural 
networks, but what we are concerned about here is the 



292                                                 The International Arab Journal of Information Technology,   Vol. 2,   No. 4,   October 2005

classification ability based on extracted features. For 
instance, Self-Organizing Map (SOM) [25] is a 
suitable kind of neural networks for this application. It 
is an unsupervised learning technique that utilizes 
apparent and hidden features of some pattern to 
classify it into a unique class. It uses competitive 
learning techniques for the classification process. 
Adding another linear layer of supervised learning 
makes up an architecture equivalent to the LVQ, which 
is the network that we are using. The linear layer 
sharpens the classification between classes and helps in 
reducing errors.

However, if we switch back to the feature extraction 
method that we are using, which is FC, we find that 
although it can be modified to handle noise added to 
the letters like alterations in fonts, extra ink, lack of 
ink, or variations in thickness, it is still sensitive to 
letter size or different curvatures in the characters. This 
problem can be overcome by using normalization and 
enhancement added to that technique.

With the addition of neural networks we will have a 
classifier that can tolerate the effects of different types 
of noise. In this paper we will deal with well-typed 
letters using some standard and fixed font. In future we 
hope that we will be able to extend it to hand-written 
characters. We should keep in mind that recognition of 
hand-written characters is a real challenging problem. 
The diversity of styles makes it difficult to unify the 
extracted features of some characters in one class. In 
all cases, it is a well-known fact that no matter what is 
the classification technique, the segmentation method 
has to be reliable, especially for characters. At the 
classification stage, it is required to develop more 
efficient feature extraction technique that can discover 
similarities among similar characters typed under 
different conditions, and still distinguish them as a 
unique class. As a matter of fact, the more successful 
the feature extraction stage, the easier the classification 
process will be [36]. With proper extraction methods, 
the dots and holes problem could be converted into 
assisting factor in the classification process. Neural 
networks have shown great success in classification 
applications even if the input features were noisy and 
deceiving [33, 37, 38].
Adequate research has been accomplished with Arabic 
character recognition.

Amin A. et al. [35] suggested methods based on the 
morphology of the printed Arabic text, using vertical 
histograms for segmentation. Refat Ramsis et al. [2] 
used threshold criterion in segmentation of characters 
with Accumulation Invariant Moment (AIM) in 
building classifiers. Others used free-like decision trees 
on extracted features that covered number of points in 
the character, the relative position of dots to the main 
stroke, and the number of secondary strokes and slopes 
of secondary components [39]. Next, we will present 
our segmentation technique of the words and then we 
will present our approach for isolating characters 

before we extract their features with FC. In later stage, 
those features are used in the classification using both 
our classical and the GALVQ3 methods. In 1961, 
Freeman H. [20, 21] proposed and implemented a 
scheme in order to encode efficiently any contour-like 
map. The first assumption is that for any digitized 
binary picture, each pixel has eight neighboring pixels 
at the outside boundary. The coding method is to select 
from any closed curve any pixel at the outside 
boundary, then to move counter clock wise around the 
boundary of the curve extracting the neighboring 
direction of each pixel moved to. At each step the 
neighboring direction of each pixel is registered to 
form successively a chain of directions named as FC. 
The directions, that are shown in Figure 1-a, are given 
numbering as follows; 0 for upper left, 1 for left, 2 for 
lower left, 3 for lower, 4 for lower right, 5 for right, 6 
for upper right, and 7 for upper. Figure 1-b shows an 
example of a binary picture and its associated FC.

2. Segmentation and Chains Extraction
The first step is the line segmentation of the text. The 
TIF file that contains the Arabic text is processed here 
by first separating lines from each other according to 
some threshold. Threshold has been determined by 
experiments. After separating the TIF Line (TL), the 
line can be processed by FC method. The FC works by 
starting at the first black pixel from left to right 
beginning with first blank line to last blank line. If a 
black pixel is found, Freeman counter-tracing-
mechanism starts to move around the body of segment 
quantizing, at each step, the direction of the next 
neighboring point. This continues until moving around 
mechanism reaches the starting pixel. This process 
ends up with an FC of a word or sub-word. The next 
step is implementing the following successively:

1. Partial Character Segment Formation (PCS) which 
basically separates frames of characters.

2. Freeman chain extraction for an isolated character.
3. Relative position of the rectangular frame 

containing PCS.
FC chains we are looking for are actually the partial 
segments of the separated characters (PCS’s). The FC 
method requires much less storage and processing time 
than any segmentation technique since we detect only 
the borders of the characters. An example of TL 
segmentation is shown in Figure 2. It is a text 
containing two graphical Text Line segments (TL’s). 
First TL contains 14 PCS’s (a PCS could be a 
character, dot, hole, part of a word, word, or any 
isolated frame of continuous characters), each PCS 
gives a FC and is enclosed by a small rectangle whose 
upper left corner and right bottom corner are also 
computed from pixels numbers according to location 
on screen (see Textual Line 1). It is worthy to notice 
that the overlapping problem, the dots and holes 
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problem are taken care by using our technique. The 
dots and holes will have their own chains, while any 
two overlapped characters will have their own FC’s as 
long as they are separated by blank. Figure 3 shows 
examples of a single word consisting of 5 FC’s (and 
not PCS’s); FC1, FC2, and FC3 are regular characters, 
in addition to a dot (FC4), a hole (FC5). Here, there are 
two overlapping characters (between FC3 and FC1) (i.
e., their vertical projections overlap). Other 
segmentation techniques such as the horizontal-vertical 
[30] projections do not handle this problem properly as 
the projections usually do not reflect separations 
between characters. Smoothing technique can be 
implemented to enhance the features of the extracted 
chain. Any bent in the body of the character can be 
ignored if some odd or minor numbers for directions 
appeared in the sequence of the chain.

The Arabic characters are converted into straight 
vertical or horizontal lines. The heuristics we used are 
the result of many experiments on Arabic characters. 
These heuristics can be considered as general rules for 
almost any type and style of any set of characters.
Finally, the extracted FC’s are re-coded in pairs of 
(direction, length). This process shortens the 
representation and provides a better view at the FC, 
besides having much less storage and processing time.

As mentioned earlier, the process of isolating the 
characters and finding their FC’s comes after having 
separated the PCS for every TL. However, the FC of a 
word or sub-word is first found, the PCS are generated, 
and then FC’s for every single isolated character 
(within the PCS) are computed. To implement 
character isolation, that part of the chain with long 
straight lines in any of the horizontal directions (1 for 
left and 5 for right) is traced. These two directions lie 
in the direction of the baseline and form the place of 
characters concatenation. Character isolation execution 
will depend on the presence of long sets of opposite 1 
and 5 directions. To implement character isolation, two 
conditions must be satisfied:

1. They must be long enough to indicate the end of a 
single character

2. Their positions must be near the base line within 3 
pixels.

If these two conditions were satisfied, character 
isolation is implemented.

FC = [223344566670101]   
(a)  (b)

Figure 1. Freeman chains and their directional encoding.

Figure 2. A Sample graphical text.

Figure 3. Overlapped PCS’s with non-overlapping FC’s.

3. The Problem of Dots and Holes
Before showing an example of isolating and 
constructing FC’s, we have to explain the process of 
chains extraction of dots and holes that exists
extensively in Arabic words. Dots and holes are 
important features within the body of their own 
characters. They must be identified and related to their 
own characters. This will be done through the use of 
two descriptive and quantitative parameters listed in 
word segmentation. These are the upper left corner and 
the lower right corner of the rectangular box enclosing 
the FC of the dot or of the hole under consideration. 
These positions are to be compared with the respective 
positions of other non-dots FC’s so they lie on their 
ranges. For example, the FC of the dot corresponding 
to the first word of Figure 2:

Have the positions (55,613), (65,624) which are very 
related to positions (26,538), (72,627) of the FC of the 
same word without a dot. The position of the dot s 
below the lower right corner of that word which 
implies that this dot belongs to the first character of the 
word and that will be used in the classification of that 
character. Note that dots do not come by themselves, 
the are parts of other characters.

The following is an example of FC encoding and 
smoothing enhancement for an Arabic word that forms 
by itself a PC (since it contains a frame of Arabic 
characters).

The FC (without dots) for the Arabic word:

is given by:
23233233245435443344334334332111111111110112
22333344455555555555555555555557456456555555
55555555555765656554433555455564555555555555
56555551076777777777776711077677011123332343
54354354432112011111111211012110107766577777
76000011001111111121212233335544544333221111
11100777777707770111133322344443444434321111
1111111110077777706770707077007711
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The smoothed and paired FC of the same word 
(without dots) Paired Freeman Chain (PFC) (direction, 
length) is:

2(1)3(13)4(8)3(3)1(16)3(10)5(94)7(24)1(4)3(14)1(23)
7(21)1(19)3(6)5(6)3(9)1(10)
7(14)1(4)3(14)1(16)7(23)1(2).

Notice that the fived FC’s always starts with 5 (left to 
right) as a standard for the start of chain extraction for 
the isolated characters. If the PFC of this word is 
fractured into isolated characters to form Fived Paired 
Freeman Chains (FPFC’s), then we will have 4 FPFC’s 
as follows:

FPFC of ن“ ” without dot:
5(27)7(24)1(4)3(14)1(23)3(10)

FPFC of  “ع”: 
5(23)7(31)1(19)3(6)5(6)3(9)1(10)3(16)

FPFC of  “ب ” without dot: 
5(20)7(30)1(4)3(14)1(16)3(16)

FPFC of  “د”: 
5(24)7(39)1(2)2(1)3(13)4(8)3(3)1(16)3(14)

Keep in mind that the FPFC’s belong to isolated 
characters with chains formation starting from left to 
right (the 5 direction) opposite to the direction of 
writing in Arabic. As mentioned earlier, the FPFC’s 
are accompanied with two numbered position numbers 
for the upper left pixel and the lower right pixel of the 
rectangle containing the isolated character. This part 
will be declared clearly in simulations.

4. Our Classical Classification Algorithm
The last step in the proposed character recognition is 
the classification. Every isolated character (unknown 
FPFC) now is recognized according to the following 
algorithm:

1. Access the existing set of references of FPFC’s (call 
it Ri). Look for matches with the sequence of 
directions (ignoring the length of direction). 
Established a matching list of all Ri references that 
does match.

2. Repeat next step (labeled a) number of times equal 
to number of directions in the unknown FPFC: (a) 
The value of each length number for current 
direction in the unknown FPFC is quantized module 
10 as an r value. Then a scan for its presence with 
that range is compared with the references of the 
established matching list of the FPFC Ri. If 
matching occurs then a counter (counter (r)) for that 
range for that reference is incremented.

3. A weighted sum wsi is obtained for every reference 
FPFC by multiplying the sums of step (2a) by their r 
values so we will have:

wsi = wsi + r . count (r).

4. The resulted wsi are sorted in descending order. And 
the highest reference is taken as the decision class.

5. In case, of similar FPFC’s dots and holes are used 
for classification decision with simple if-then 
statements.

Table 1. All possible Arabic characters with their codes.

5. Simulations and Results
The recognition system and its algorithm outlined 
above have been tested through a number of textual 
inputs. The system proves to reconstruct almost more 
than 90% of the characters in each textual line. 
However, there are some misrecognition states 
especially with those complicated characters such as 
the character:

Each character, here, has been given a special code, see 
Table 1. The result of the classification is the code of 
the character and its associated position (upper left and 
lower right corners) on the screen. Table 1 shows the 
possible 53 character shapes in Arabic and their codes 
used in our simulations. The following experimented 
textual lines and their character recognition results are 
shown. Please, note that we are using the codes shown 
in Table 1. Also, the positions shown in the output 
table for each textual line indicate the upper left and 
the lower right coordinates of the pixels that form a 
rectangular boundary around the isolated character. 
The “*” sign indicates a misclassification.

5.1. Textual Line 1
This line contains the following three words. Each 
consists of two or three characters.

The system has recognized all seven characters. It 
outputs every identified character as output code in 
addition to the four relative positions of the character.
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PositionsCode
(1, 902) (68, 948)31
(1, 863)  (68, 902)8
(6, 50) (39, 84)21
(6, 29)  (39, 50)15

(6, 4)  (39, 29)4
(9, 444) (57, 480)12
(9, 402) (57, 444)6

5.2. Textual Line 2

In this line, the system has recognized 7 out of 9 
characters. The output as follows: 

PositionsCode
(1, 468) (35, 505)7
(1, 428) (35, 468)6
(1, 390) (35, 410)4.16
(5, 58) (52, 101)21
(5, 2)   (52, 58)28 *
(5, 868) (51, 906)12
(5, 839) (51, 868)21
(5, 799) (51, 839)5

(*) Stands for misrecognized character. It is noticed 
that the misrecognition comes from the multi holes 
character and any neighboring character from the small 
group of characters.

The same misrecognition situation happens here 
where the small characters have been mixed with their 
neighboring characters. Small characters need to be 
supplied with further parameters to enhance their 
classification accuracy. These parameters may include 
their relative positions to the base line and the size of 
their enclosing box.

The FC approach solves the problem of dots and 
holes in addition to the overlapping problem between 
two different segments and words. This is because FC 
technique traces segments along their boundaries and 
they are separate as long as one white pixel separate 
them. Our approach solves the problem of aligning the 
dots and holes relative to their original characters by 
recording the coordinate of each segment whether it is 
a dot, a hole, or a real segment. This technique proved 
to be useful in the recognition stage where the size of 
the enclosing box was used to identify the one dot, two 
dots, large hole and small hole. Also, the size can be 
used in enhancing the recognition of the character “Ç “ 

(in English: Alef). This character has a relatively long 
height (more than 30 pixels) and small width (less than 
16). One problem we have is that there are still some 
difficulties in the character isolation process within a 
segment, specially with group of small characters such 
as:

Moreover, the technique used in recognizing dots, 
holes and “|“ might be extended to include the 
positioning of the isolated characters relative to the 
base line. This condition will isolate those characters 
that lie below the base line such as:

In a separate group from those that lies above base line 
such as: 

Consequently, the use of the enclosing rectangular box 
and its dimension will enhance the character 
recognition process. Some characters have more height 
than width such as:

With the previously mentioned technique we may 
isolate them in a separate group. Other close characters 
such as:

May be isolated with such techniques. However, these 
added conditions and methods require more 
experimentation and “isolation threshold” 
determination.

Our system has recognized typed Arabic characters 
with rate more than 90%. The remaining 10% is due to 
many factors such as noise accumulated by the scanner 
and sensitivity. In addition to the curves, dots, holes, 
and overlapping of the Arabic characters that makes 
the isolation stage more difficult than other stages.

Experiments with the last three text lines gave better 
recognition rate than previous ones. We used higher 
quality scanners, and repeated the usage of this 
classical algorithm until less error rates were achieved. 
Those experiments show recognition rates of 94%. We 
believe that if better segmentation techniques were 
used to avoid the problem of overlapping between 
characters, higher recognition rates may be achieved. 
For example, if we look at the words below:

It is clear that there is some overlapping between the 
characters of the same word. Much more enhanced 
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character segmentation is required to avoid such 
problem.

From the previous simulations we may conclude 
that the proposed system can be used for other 
languages that are not cursive such as English and is 
expected to give higher recognition rates. Our method 
is general and can be implemented on any single 
character set whatever the style, font, and size of that 
set. 

Figure 4 shows a flow chart that summarizes the 
whole process of segmentation, isolation and 
classification for the classical recognition system.

Figure 4. Outline of text segmentation and classification.

6. Neural Network Recognition Approach
The Neural Network (NN) is a fast, parallel, and 
compact approach for processing the extracted features 
of the isolated characters. It has the potential of being 
implemented with hardware [14]. This could be a 
major advantage against digital computer-based 
classification algorithms. The Self Organizing Map 
(SOM), which could be viewed as the first stage of 
LVQ, does internal representation of the data 
classifying them into different corners of the template 
space. A second stage (a linear activation and 
supervised stage) minimizes classification error by fine 
tuning the clustering boundaries between clusters of 
different classes. 

Figure 5 shows diagram of an LVQ neural network 
architecture. The ability of neural networks to 
overcome noise and tolerate short, odd and abrupt 
fluctuations in input data makes it always preferable 
for recognition tasks. For the purpose of fair 
comparisons between what we called our classical 
method and the artificial intelligence inspired methods 
(i. e., NN), we used the same extracted features for the 
same examples in testing an SOM classifier. Our 
neural-based method is based on the LVQ3 neural 
network. The first stage of it consists of an SOM. The 
SOM was originally proposed by Kohonen [15, 25]. It 
is an unsupervised learning technique that has the 
ability to learn from examples and extract statistical 
properties of the examples presented during training. 
The input itself is used to stimulate the SOM to 
classify it into classes according to embedded features 
within input vector itself. In a way, this feature map is 
analogous to the spatial organization of sensory 
processing areas in the brain. For instance, let mi(t) be 
denoted as the weights of the ith neuron in an SOM 
during time instant t, the weights of SOM then are 
updated according to the following simple formula:

mi (t + 1) = mi (t) + hci (t) [x (t) – mi (t)]      (1)

hci(t) is the so called neighborhood kernel, which 
determines the size of the neighborhood of the ith 
neuron within which are all neighboring neurons will 
be updated in response to the present feature vector 
x(t). Initially, the neighborhood is large. As training 
goes on, the size of the neighborhood shrinks. This 
process is called “clustering” process. 

Figure 5. Diagram of an LVQ neural network.

Clustering converges when no neighboring neurons 
get their weights updated. With the LVQ, in general, 
for some input vector x(t) a code yc is formed such that 
c = arg mini {|| x - yi ||}. Specifically, for LVQ3 
method, that we used, Kohonen [19, 25] suggests that 
if yi and yj are weights of neurons associated with 
different classes then yi and yj code words are updated 
according to the following:

yi (t + 1) = yi (t) – k (t) [x (t) – yi (t)]             (2)
yj (t + 1) = yj (t) + k (t) [x (t) – yj (t)]              (3)

On the other hand, if both yi and yj belong to the 
same class as x(t), and x(t) fall in a window centered at 
the cluster boundary of these two classes, then

yk (t + 1) = yk (t) + e . k (t) [x (t) -yk (t)],
k belongs to {i, j}, 0.1 < e < 0.5                    (4)

END

Convert TIF image file into 
textual lines (TL's)

Start

Form Paired Freeman 
Chains (PFC'S)

Form Fived  PFC'S (FPFC's)

Segment FPFC's into 
smaller FC'S

Use FC's in recognition 
algorithm

Print Closest template Code 
and character relative 
position on screen
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where k(t) is time-varying learning rate, and the 
optimal value of e depends on the size of the window, 
being smaller for narrower windows. This algorithm is 
self stabilizing and optimal placement of the yi does 
not change in continual training.

The learning process starts using the above 
mentioned LVQ3 technique. For this application, we 
started by creating 53 templates for all possible 
character shapes of font 12 and regular type writing. 
These templates are the reference templates. The 
position of each isolated character is found but is not 
included in template. We used an SOM of (4x20) 
grids. In that sense, we had enough neurons to cover 
the possible 53 classes with 27 classes more. The extra 
27 classes give more freedom for the SOM in 
distributing its output all over the space having more 
separations between adjacent neurons. In addition to 
that, we used a linear-activation layer of 53 neurons 
where each neuron is associated with a code number. 
This code number is the target for that linear 
supervised layer. By the end of successful training 
phases, only one distinct neuron will go on when the 
LVQ3 is subjected to a specific Fived-Paired-Freeman-
Chains (FPFC) input. Each neuron (at output layer) 
represents a class (out of 53). It should be noted that 
the SOM classifies input vectors into sub-classes, 
while the supervised layer takes the output of the SOM 
and combines those subclasses into one class. If it is 
happened, and a neuron went on for more than one 
class, learning continues until a total one-to-one 
mapping between a set of 53 neurons and the input 
space of the reference FPFC’s is established. Initially 
the LVQ3 algorithm is used in training. However, the 
Genetic Algorithm (GA) is called to take over training 
of the supervised layer (the output layer) when the 
error (mean square error) of the LVQ3 algorithm 
reaches a flat neighborhood. The LVQ3 is turned off 
and the GA presumes the learning process until the 
error level reaches the preset criterion. For many 
FPFC’s references, the output of LVQ3 reached the 
preset criterion. However, when all the training set (53 
codes) is used in one patch, the GA is needed to finish 
the training job. In that case, the LVQ3 could not be 
without the help of the GA. It should be noted that the 
output layer is a single layer supervised neural network 
and a global training algorithm such as the GA is 
needed to escape local minima. The GA in its simplest 
form consists of three basic operations: reproduction, 
crossover, and mutation [11, 23]. The basic building 
block in the GA is the “string”; which is a sequence of 
bits representing variables of the search space. The bits 
themselves form the genotype and their decoded values 
are the phenotype. All GA operations are implemented 
over a finite population of strings. As search process 
goes on, the average fitness for the population of 
strings is expected to increase. Fitness is measured 
using some objective functions that are related to the 

criterion needed to be optimized. Figure 7 shows the 
blocks of the basic operations of the standard GA.

The criteria that the GA optimizes here is the RMS 
(Root Mean Square) error between the targets that are 
the assigned labels for every class and the binary input 
patterns that represents the subclasses generated by the 
SOM layer (inside the LVQ3) network. As indicated 
earlier, the LVQ3 network is actually an SOM network 
followed by some linear activation supervised layer. 
The GA trains only the supervised layer which is the 
output layer for the total GALVQ3 network (the name 
of our NN). The SOM network had 80 neurons, and the 
supervised layer had 53 neurons (equal to the number 
of classes). The learning rate of the SOM started with a 
value of 1.0 and kept going down until reached value 
close to 0.01. The GA had a population of 200 strings, 
probability of crossover of 0.6, and probability of 
mutation of 0.01. However, when the standard 
deviation of the RMS error showed signs of mature 
convergence, the probabilities of mutation and 
crossover were modified considerably. This was done 
to stir the pool of the strings toward new more 
recombination. We used a deterministic criterion of 
selection in the reproduction phase of the GA [11, 23].
Figure 6 shows GALVQ3 (LVQ3 GA supported) 
learning error versus learning cycles. The plots of the 
total RMS error for both techniques show how the 
GALVQ3 method manages to reach lower error values 
for the same problem. The GALVQ3 is a heuristic 
algorithm that contains some random operators 
implemented by the GA. That is why its plot has a 
fluctuating nature compared to the only LVQ3 plot. 
The GA in the GALVQ3 kept disturbing the saturation 
of the error levels in a manner that pushed the search 
process to move toward lower levels of error. After 
completion of the learning stage for the 53 reference 
FPFC’s, we repeated the simulations done on textual 
line 1, textual line 2, textual line 3, textual line 4, 
textual line 5, textual line 6, textual line 7. Moreover, 
experiments were done on 500 characters picked 
randomly from different resources. Out of around 500 
characters, the GALVQ3 recognized around 485 
making up 97% classification rate. The input to the 
GALVQ3 was the FPFC of the isolated character 
followed by any FPFC’s for dots or holes part of that 
character. One bit of 1 is also added if the dot was up, 
or a bit of 0 is added if the dot was down. The output 
of the GALVQ3 was only the number of the only 
active neuron (numbered from 1 to 53) triggered by the 
input FPFC. Those neurons are attached to the constant 
characters codes that are shown in Table 1. The major 
problem with the GALVQ3 is that it requires a fixed 
length input vector for all FPFC’s used as input. We 
had to assume a maximum length of 40 for every 
FPFC. If the actual length of the FPFC was less than 
40, the FPFC was padded by 0’s until length becomes 
40. This padding process was implemented during 
learning and retrieval.
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Figure 6. The RMS error plots for both LVQ3 and GALVQ3.

Figure 7. Basic standard GA operations.

7. Conclusions and Discussions
This character recognition system as a whole is 
compared to other systems. Amin proposed several 
systems. The best Character Recognition rate (CR) 
achieved was 95.4% [31]. Badi [32] used structural 
features, just as [31]. However, unlike Amin, who used 
a nearest-neighbor classification technique, Badi used 
a decision tree technique. Badi’s system gave a CR of 
90%. El-Wakil in [10] applied his mechanism to 
isolated characters utilized structural features in a 

chain code, but unlike our work, used a nearest-
neighbor method for classification. His method yielded 
a CR (identical to ours) of 93%. The best CR claimed 
for any work in on-line Arabic Character Recognition 
is the 99.6% stated in [29]. This work also used 
structural features and a decision tree for classification. 
The system was applied to the recognition of 
characters as well as mathematical formulae [18]. 
Others used Fourier-based descriptors [16, 17, 24] to 
precisely reflect the curved nature of Arabic characters 
and got good results of around 95.5% recognition rate. 
In summary, we can also claim that the (preliminary) 
CR rate achieved with our system is among the best 
reported, but still can be improved significantly. 
However, it is crucial that we reach that high CR rate 
without sacrificing too much the simplicity of the 
system, nor indeed, its real time nature.

In summary, we have demonstrated in this work a 
comprehensive comparison between two methods for 
Arabic character recognition. These two methods can 
be extended to any type of characters. The character 
recognition is first implemented using a classical 
approach that uses a deterministic weighing algorithm 
for selecting the closest template according to a FC
feature. The second approach uses an LVQ3 neural 
network assisted with Genetic Algorithm (GA). We 
called the second approach “GALVQ3”. The two 
approaches do only the classification process while the 
features extraction mechanism is similar for both of 
them. Testing with noisy inputs is implemented with 
both approaches. Four types of noise were added 
independently to each of the 53 features templates and 
the noisy templates were fed to the two classifiers. The 
neural network classifier (GALVQ3) has outperformed 
the classical approach classifier described in section 4. 
The GALVQ3 has a self organizing ability to respond 
to different inputs and to converge toward a unique 
class. The “supervised” layer that comes after the SOM 
layer in the GALVQ3 is trained with the GA. The GA 
is known as a global optimizer that has the ability to 
“dig” deep into the search space of the weights of the 
supervised layer and discover optimal solutions. The 
SOM layer in the GALVQ3 self-organizes its output 
into subclasses. The supervised layer in the GALVQ3 
wraps up associated subclasses into one distinct and 
labeled class. Training the supervised layer with GA is 
proved to be faster and better than training it with 
gradient descent methods. That is depicted in results 
shown in this work. On the other hand, typed Arabic 
characters are still special due to the fact that they have 
curvy nature and there are more holes and dots in this 
language than any other major language. With FC 
method, the curves of its characters can be converted 
into an informative sequence of numbers. By 
enhancing the segmentation process and further 
repetition of training for the GALVQ3, it was possible 
to increase the correct recognition. Supplementary 
features may be used, such as Zernike Moments [27] 
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can be added, or using different encoding, translation, 
scaling, and rotations will help in providing richer 
feature vectors for isolated characters [34]. Future 
work will definitely include using hybrids of these 
methods in the on-line recognition of hand written 
Arabic symbols [28]. This is our ultimate goal, as most 
recent research is focused more on hand written 
characters rather than simply printed ones.

Finally, the character recognition part is an 
important step toward automating documents 
processing and providing time-critical information. AI 
techniques such as neural networks show a great
potential in future industrial applications that support 
information capturing and document analysis and 
recognition. It is not going to be long before an 
intelligent “characters-recognizer” is used as 
supplementary part in banks, post offices, hospitals, 
and government agencies.
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