
The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005 291

Genetic-Neural Approach versus Classical
Approach for Arabic Character Recognition Using

Freeman Chain Features Extraction
Raed Abu Zitar

College of Information Technology, Philadelphia University, Jordan

Abstract: This article presents a hybrid technique for the recognition of typed Arabic characters. Due to its curved and
continuous nature, Arabic text has to go through words segmentation, character segmentation, feature extraction, and finally
character recognition. In this work, Freeman Chain (FC) technique [20, 21] is used to generate a chain for every segmented
character. This chain represents the extracted features. Moreover, two approaches are presented for the classification process.
In the first approach, we use a classical sequential weighing algorithm that finds the closest available “Standard Character
Template” to the extracted chain. In the second approach, we use Learning Vector Quantization (LVQ) (specifically LVQ3)
technique for classifying the same chain. To improve the performance of that LVQ, the Genetic Algorithm (GA) [11, 23] is
invoked for some additional training. We call our neural network with the GA “GALVQ3”. For further robustness testing of
both approaches, we add some artificial noise to the extracted chains and repeat simulations. In general, LVQ techniques
provide higher classification rate even for cases where noise and partial observations exist. As a result, the GALVQ3 classifier
is compact, online, robust, and feasible from hardware point of view.

Keywords: Arabic character recognition, neural networks, Freeman chain, feature extraction, LVQ.

Received June 6, 2004; accepted October 4, 2004

1. Introduction
Arabic character recognition is one of the most
challenging topics in character recognition. The fact
that an Arabic character is written differently
according to its position in the word makes its
recognition a difficult task. For example, the Arabic
letter below:

Looks different if it is written at the beginning, at the
middle, or even at the end of the word. Moreover,
Arabic characters have different types and large
number of curvatures, holes, and dots which make
them even harder to recognize. Different applications
nowadays require automatic and precise recognition
for printed or hand written characters. Even personal
applications require prompt identification of text as
preliminary stage for subsequent crucial decisions.
What we propose in this project is a method beyond
handling well written, clear words and picking them up
from a look up table. We propose a Genetic/Neural-
Based system that can detect images with minimum
effort and with fewer amount of data size. A system
that has shorter processing time as it is based on
parallel architectures. It also should be immune against
unexpected levels of noise and tolerant against
variations in input images. This system should have the
attributes of an intelligent system that can make

decisions under vague and uncertain observations.
Moreover, it has to be compact and hardware
realizable. The fact that Arabic letters have holes and
dots within the characters requires special pre-
processing techniques. These techniques include
segmentation of pages into lines, segmentation of lines
into words (sub-words), and words into characters. The
characters then need to be coded in an efficient way
utilizing the fact that what is being dealt with is only
text and not all details of the image are really
necessary. Previous techniques, such as horizontal and
vertical projections have weakness in extracting some
features of Arabic characters [1, 2].

This is due to the overlapping dots, and holes that
increase segmentation error. In this work, we use a
method called Freeman Chain (FC) to generate a chain
coding (the feature) by detecting only the boundaries
of the isolated character [35]. However, classification
is implemented by two methods; one is basically based
on a look-up table and the other is basically based on
the application of artificial neural networks. The look
up table method uses some intelligent search
techniques based on frequency analysis that minimizes
the number of iterations needed to search for a pattern.
On the other hand, the second method uses neural
networks. Neural networks are artificial intelligence
paradigms that mimic neurons in living creature's
brains [3, 18]. There are many types of neural
networks, but what we are concerned about here is the

292 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

classification ability based on extracted features. For
instance, Self-Organizing Map (SOM) [25] is a
suitable kind of neural networks for this application. It
is an unsupervised learning technique that utilizes
apparent and hidden features of some pattern to
classify it into a unique class. It uses competitive
learning techniques for the classification process.
Adding another linear layer of supervised learning
makes up an architecture equivalent to the LVQ, which
is the network that we are using. The linear layer
sharpens the classification between classes and helps in
reducing errors.

However, if we switch back to the feature extraction
method that we are using, which is FC, we find that
although it can be modified to handle noise added to
the letters like alterations in fonts, extra ink, lack of
ink, or variations in thickness, it is still sensitive to
letter size or different curvatures in the characters. This
problem can be overcome by using normalization and
enhancement added to that technique.

With the addition of neural networks we will have a
classifier that can tolerate the effects of different types
of noise. In this paper we will deal with well-typed
letters using some standard and fixed font. In future we
hope that we will be able to extend it to hand-written
characters. We should keep in mind that recognition of
hand-written characters is a real challenging problem.
The diversity of styles makes it difficult to unify the
extracted features of some characters in one class. In
all cases, it is a well-known fact that no matter what is
the classification technique, the segmentation method
has to be reliable, especially for characters. At the
classification stage, it is required to develop more
efficient feature extraction technique that can discover
similarities among similar characters typed under
different conditions, and still distinguish them as a
unique class. As a matter of fact, the more successful
the feature extraction stage, the easier the classification
process will be [36]. With proper extraction methods,
the dots and holes problem could be converted into
assisting factor in the classification process. Neural
networks have shown great success in classification
applications even if the input features were noisy and
deceiving [33, 37, 38].
Adequate research has been accomplished with Arabic
character recognition.

Amin A. et al. [35] suggested methods based on the
morphology of the printed Arabic text, using vertical
histograms for segmentation. Refat Ramsis et al. [2]
used threshold criterion in segmentation of characters
with Accumulation Invariant Moment (AIM) in
building classifiers. Others used free-like decision trees
on extracted features that covered number of points in
the character, the relative position of dots to the main
stroke, and the number of secondary strokes and slopes
of secondary components [39]. Next, we will present
our segmentation technique of the words and then we
will present our approach for isolating characters

before we extract their features with FC. In later stage,
those features are used in the classification using both
our classical and the GALVQ3 methods. In 1961,
Freeman H. [20, 21] proposed and implemented a
scheme in order to encode efficiently any contour-like
map. The first assumption is that for any digitized
binary picture, each pixel has eight neighboring pixels
at the outside boundary. The coding method is to select
from any closed curve any pixel at the outside
boundary, then to move counter clock wise around the
boundary of the curve extracting the neighboring
direction of each pixel moved to. At each step the
neighboring direction of each pixel is registered to
form successively a chain of directions named as FC.
The directions, that are shown in Figure 1-a, are given
numbering as follows; 0 for upper left, 1 for left, 2 for
lower left, 3 for lower, 4 for lower right, 5 for right, 6
for upper right, and 7 for upper. Figure 1-b shows an
example of a binary picture and its associated FC.

2. Segmentation and Chains Extraction
The first step is the line segmentation of the text. The
TIF file that contains the Arabic text is processed here
by first separating lines from each other according to
some threshold. Threshold has been determined by
experiments. After separating the TIF Line (TL), the
line can be processed by FC method. The FC works by
starting at the first black pixel from left to right
beginning with first blank line to last blank line. If a
black pixel is found, Freeman counter-tracing-
mechanism starts to move around the body of segment
quantizing, at each step, the direction of the next
neighboring point. This continues until moving around
mechanism reaches the starting pixel. This process
ends up with an FC of a word or sub-word. The next
step is implementing the following successively:

1. Partial Character Segment Formation (PCS) which
basically separates frames of characters.

2. Freeman chain extraction for an isolated character.
3. Relative position of the rectangular frame

containing PCS.
FC chains we are looking for are actually the partial
segments of the separated characters (PCS’s). The FC
method requires much less storage and processing time
than any segmentation technique since we detect only
the borders of the characters. An example of TL
segmentation is shown in Figure 2. It is a text
containing two graphical Text Line segments (TL’s).
First TL contains 14 PCS’s (a PCS could be a
character, dot, hole, part of a word, word, or any
isolated frame of continuous characters), each PCS
gives a FC and is enclosed by a small rectangle whose
upper left corner and right bottom corner are also
computed from pixels numbers according to location
on screen (see Textual Line 1). It is worthy to notice
that the overlapping problem, the dots and holes

Genetic-Neural Approach versus Classical Approach for Arabic Character Recognition Using Freeman Chain.… 293

problem are taken care by using our technique. The
dots and holes will have their own chains, while any
two overlapped characters will have their own FC’s as
long as they are separated by blank. Figure 3 shows
examples of a single word consisting of 5 FC’s (and
not PCS’s); FC1, FC2, and FC3 are regular characters,
in addition to a dot (FC4), a hole (FC5). Here, there are
two overlapping characters (between FC3 and FC1) (i.
e., their vertical projections overlap). Other
segmentation techniques such as the horizontal-vertical
[30] projections do not handle this problem properly as
the projections usually do not reflect separations
between characters. Smoothing technique can be
implemented to enhance the features of the extracted
chain. Any bent in the body of the character can be
ignored if some odd or minor numbers for directions
appeared in the sequence of the chain.

The Arabic characters are converted into straight
vertical or horizontal lines. The heuristics we used are
the result of many experiments on Arabic characters.
These heuristics can be considered as general rules for
almost any type and style of any set of characters.
Finally, the extracted FC’s are re-coded in pairs of
(direction, length). This process shortens the
representation and provides a better view at the FC,
besides having much less storage and processing time.

As mentioned earlier, the process of isolating the
characters and finding their FC’s comes after having
separated the PCS for every TL. However, the FC of a
word or sub-word is first found, the PCS are generated,
and then FC’s for every single isolated character
(within the PCS) are computed. To implement
character isolation, that part of the chain with long
straight lines in any of the horizontal directions (1 for
left and 5 for right) is traced. These two directions lie
in the direction of the baseline and form the place of
characters concatenation. Character isolation execution
will depend on the presence of long sets of opposite 1
and 5 directions. To implement character isolation, two
conditions must be satisfied:

1. They must be long enough to indicate the end of a
single character

2. Their positions must be near the base line within 3
pixels.

If these two conditions were satisfied, character
isolation is implemented.

FC = [223344566670101]
(a) (b)

Figure 1. Freeman chains and their directional encoding.

Figure 2. A Sample graphical text.

Figure 3. Overlapped PCS’s with non-overlapping FC’s.

3. The Problem of Dots and Holes
Before showing an example of isolating and
constructing FC’s, we have to explain the process of
chains extraction of dots and holes that exists
extensively in Arabic words. Dots and holes are
important features within the body of their own
characters. They must be identified and related to their
own characters. This will be done through the use of
two descriptive and quantitative parameters listed in
word segmentation. These are the upper left corner and
the lower right corner of the rectangular box enclosing
the FC of the dot or of the hole under consideration.
These positions are to be compared with the respective
positions of other non-dots FC’s so they lie on their
ranges. For example, the FC of the dot corresponding
to the first word of Figure 2:

Have the positions (55,613), (65,624) which are very
related to positions (26,538), (72,627) of the FC of the
same word without a dot. The position of the dot s
below the lower right corner of that word which
implies that this dot belongs to the first character of the
word and that will be used in the classification of that
character. Note that dots do not come by themselves,
the are parts of other characters.

The following is an example of FC encoding and
smoothing enhancement for an Arabic word that forms
by itself a PC (since it contains a frame of Arabic
characters).

The FC (without dots) for the Arabic word:

is given by:
23233233245435443344334334332111111111110112
22333344455555555555555555555557456456555555
55555555555765656554433555455564555555555555
56555551076777777777776711077677011123332343
54354354432112011111111211012110107766577777
76000011001111111121212233335544544333221111
11100777777707770111133322344443444434321111
1111111110077777706770707077007711

294 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

The smoothed and paired FC of the same word
(without dots) Paired Freeman Chain (PFC) (direction,
length) is:

2(1)3(13)4(8)3(3)1(16)3(10)5(94)7(24)1(4)3(14)1(23)
7(21)1(19)3(6)5(6)3(9)1(10)
7(14)1(4)3(14)1(16)7(23)1(2).

Notice that the fived FC’s always starts with 5 (left to
right) as a standard for the start of chain extraction for
the isolated characters. If the PFC of this word is
fractured into isolated characters to form Fived Paired
Freeman Chains (FPFC’s), then we will have 4 FPFC’s
as follows:

FPFC of ن“ ” without dot:
5(27)7(24)1(4)3(14)1(23)3(10)

FPFC of “ع”:
5(23)7(31)1(19)3(6)5(6)3(9)1(10)3(16)

FPFC of “ب ” without dot:
5(20)7(30)1(4)3(14)1(16)3(16)

FPFC of “د”:
5(24)7(39)1(2)2(1)3(13)4(8)3(3)1(16)3(14)

Keep in mind that the FPFC’s belong to isolated
characters with chains formation starting from left to
right (the 5 direction) opposite to the direction of
writing in Arabic. As mentioned earlier, the FPFC’s
are accompanied with two numbered position numbers
for the upper left pixel and the lower right pixel of the
rectangle containing the isolated character. This part
will be declared clearly in simulations.

4. Our Classical Classification Algorithm
The last step in the proposed character recognition is
the classification. Every isolated character (unknown
FPFC) now is recognized according to the following
algorithm:

1. Access the existing set of references of FPFC’s (call
it Ri). Look for matches with the sequence of
directions (ignoring the length of direction).
Established a matching list of all Ri references that
does match.

2. Repeat next step (labeled a) number of times equal
to number of directions in the unknown FPFC: (a)
The value of each length number for current
direction in the unknown FPFC is quantized module
10 as an r value. Then a scan for its presence with
that range is compared with the references of the
established matching list of the FPFC Ri. If
matching occurs then a counter (counter (r)) for that
range for that reference is incremented.

3. A weighted sum wsi is obtained for every reference
FPFC by multiplying the sums of step (2a) by their r
values so we will have:

wsi = wsi + r . count (r).

4. The resulted wsi are sorted in descending order. And
the highest reference is taken as the decision class.

5. In case, of similar FPFC’s dots and holes are used
for classification decision with simple if-then
statements.

Table 1. All possible Arabic characters with their codes.

5. Simulations and Results
The recognition system and its algorithm outlined
above have been tested through a number of textual
inputs. The system proves to reconstruct almost more
than 90% of the characters in each textual line.
However, there are some misrecognition states
especially with those complicated characters such as
the character:

Each character, here, has been given a special code, see
Table 1. The result of the classification is the code of
the character and its associated position (upper left and
lower right corners) on the screen. Table 1 shows the
possible 53 character shapes in Arabic and their codes
used in our simulations. The following experimented
textual lines and their character recognition results are
shown. Please, note that we are using the codes shown
in Table 1. Also, the positions shown in the output
table for each textual line indicate the upper left and
the lower right coordinates of the pixels that form a
rectangular boundary around the isolated character.
The “*” sign indicates a misclassification.

5.1. Textual Line 1
This line contains the following three words. Each
consists of two or three characters.

The system has recognized all seven characters. It
outputs every identified character as output code in
addition to the four relative positions of the character.

Genetic-Neural Approach versus Classical Approach for Arabic Character Recognition Using Freeman Chain.… 295

PositionsCode
(1, 902) (68, 948)31
(1, 863) (68, 902)8
(6, 50) (39, 84)21
(6, 29) (39, 50)15

(6, 4) (39, 29)4
(9, 444) (57, 480)12
(9, 402) (57, 444)6

5.2. Textual Line 2

In this line, the system has recognized 7 out of 9
characters. The output as follows:

PositionsCode
(1, 468) (35, 505)7
(1, 428) (35, 468)6
(1, 390) (35, 410)4.16
(5, 58) (52, 101)21
(5, 2) (52, 58)28 *
(5, 868) (51, 906)12
(5, 839) (51, 868)21
(5, 799) (51, 839)5

(*) Stands for misrecognized character. It is noticed
that the misrecognition comes from the multi holes
character and any neighboring character from the small
group of characters.

The same misrecognition situation happens here
where the small characters have been mixed with their
neighboring characters. Small characters need to be
supplied with further parameters to enhance their
classification accuracy. These parameters may include
their relative positions to the base line and the size of
their enclosing box.

The FC approach solves the problem of dots and
holes in addition to the overlapping problem between
two different segments and words. This is because FC
technique traces segments along their boundaries and
they are separate as long as one white pixel separate
them. Our approach solves the problem of aligning the
dots and holes relative to their original characters by
recording the coordinate of each segment whether it is
a dot, a hole, or a real segment. This technique proved
to be useful in the recognition stage where the size of
the enclosing box was used to identify the one dot, two
dots, large hole and small hole. Also, the size can be
used in enhancing the recognition of the character “Ç “

(in English: Alef). This character has a relatively long
height (more than 30 pixels) and small width (less than
16). One problem we have is that there are still some
difficulties in the character isolation process within a
segment, specially with group of small characters such
as:

Moreover, the technique used in recognizing dots,
holes and “|“ might be extended to include the
positioning of the isolated characters relative to the
base line. This condition will isolate those characters
that lie below the base line such as:

In a separate group from those that lies above base line
such as:

Consequently, the use of the enclosing rectangular box
and its dimension will enhance the character
recognition process. Some characters have more height
than width such as:

With the previously mentioned technique we may
isolate them in a separate group. Other close characters
such as:

May be isolated with such techniques. However, these
added conditions and methods require more
experimentation and “isolation threshold”
determination.

Our system has recognized typed Arabic characters
with rate more than 90%. The remaining 10% is due to
many factors such as noise accumulated by the scanner
and sensitivity. In addition to the curves, dots, holes,
and overlapping of the Arabic characters that makes
the isolation stage more difficult than other stages.

Experiments with the last three text lines gave better
recognition rate than previous ones. We used higher
quality scanners, and repeated the usage of this
classical algorithm until less error rates were achieved.
Those experiments show recognition rates of 94%. We
believe that if better segmentation techniques were
used to avoid the problem of overlapping between
characters, higher recognition rates may be achieved.
For example, if we look at the words below:

It is clear that there is some overlapping between the
characters of the same word. Much more enhanced

296 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

character segmentation is required to avoid such
problem.

From the previous simulations we may conclude
that the proposed system can be used for other
languages that are not cursive such as English and is
expected to give higher recognition rates. Our method
is general and can be implemented on any single
character set whatever the style, font, and size of that
set.

Figure 4 shows a flow chart that summarizes the
whole process of segmentation, isolation and
classification for the classical recognition system.

Figure 4. Outline of text segmentation and classification.

6. Neural Network Recognition Approach
The Neural Network (NN) is a fast, parallel, and
compact approach for processing the extracted features
of the isolated characters. It has the potential of being
implemented with hardware [14]. This could be a
major advantage against digital computer-based
classification algorithms. The Self Organizing Map
(SOM), which could be viewed as the first stage of
LVQ, does internal representation of the data
classifying them into different corners of the template
space. A second stage (a linear activation and
supervised stage) minimizes classification error by fine
tuning the clustering boundaries between clusters of
different classes.

Figure 5 shows diagram of an LVQ neural network
architecture. The ability of neural networks to
overcome noise and tolerate short, odd and abrupt
fluctuations in input data makes it always preferable
for recognition tasks. For the purpose of fair
comparisons between what we called our classical
method and the artificial intelligence inspired methods
(i. e., NN), we used the same extracted features for the
same examples in testing an SOM classifier. Our
neural-based method is based on the LVQ3 neural
network. The first stage of it consists of an SOM. The
SOM was originally proposed by Kohonen [15, 25]. It
is an unsupervised learning technique that has the
ability to learn from examples and extract statistical
properties of the examples presented during training.
The input itself is used to stimulate the SOM to
classify it into classes according to embedded features
within input vector itself. In a way, this feature map is
analogous to the spatial organization of sensory
processing areas in the brain. For instance, let mi(t) be
denoted as the weights of the ith neuron in an SOM
during time instant t, the weights of SOM then are
updated according to the following simple formula:

mi (t + 1) = mi (t) + hci (t) [x (t) – mi (t)] (1)

hci(t) is the so called neighborhood kernel, which
determines the size of the neighborhood of the ith
neuron within which are all neighboring neurons will
be updated in response to the present feature vector
x(t). Initially, the neighborhood is large. As training
goes on, the size of the neighborhood shrinks. This
process is called “clustering” process.

Figure 5. Diagram of an LVQ neural network.

Clustering converges when no neighboring neurons
get their weights updated. With the LVQ, in general,
for some input vector x(t) a code yc is formed such that
c = arg mini {|| x - yi ||}. Specifically, for LVQ3
method, that we used, Kohonen [19, 25] suggests that
if yi and yj are weights of neurons associated with
different classes then yi and yj code words are updated
according to the following:

yi (t + 1) = yi (t) – k (t) [x (t) – yi (t)] (2)
yj (t + 1) = yj (t) + k (t) [x (t) – yj (t)] (3)

On the other hand, if both yi and yj belong to the
same class as x(t), and x(t) fall in a window centered at
the cluster boundary of these two classes, then

yk (t + 1) = yk (t) + e . k (t) [x (t) -yk (t)],
k belongs to {i, j}, 0.1 < e < 0.5 (4)

END

Convert TIF image file into
textual lines (TL's)

Start

Form Paired Freeman
Chains (PFC'S)

Form Fived PFC'S (FPFC's)

Segment FPFC's into
smaller FC'S

Use FC's in recognition
algorithm

Print Closest template Code
and character relative
position on screen

Genetic-Neural Approach versus Classical Approach for Arabic Character Recognition Using Freeman Chain.… 297

where k(t) is time-varying learning rate, and the
optimal value of e depends on the size of the window,
being smaller for narrower windows. This algorithm is
self stabilizing and optimal placement of the yi does
not change in continual training.

The learning process starts using the above
mentioned LVQ3 technique. For this application, we
started by creating 53 templates for all possible
character shapes of font 12 and regular type writing.
These templates are the reference templates. The
position of each isolated character is found but is not
included in template. We used an SOM of (4x20)
grids. In that sense, we had enough neurons to cover
the possible 53 classes with 27 classes more. The extra
27 classes give more freedom for the SOM in
distributing its output all over the space having more
separations between adjacent neurons. In addition to
that, we used a linear-activation layer of 53 neurons
where each neuron is associated with a code number.
This code number is the target for that linear
supervised layer. By the end of successful training
phases, only one distinct neuron will go on when the
LVQ3 is subjected to a specific Fived-Paired-Freeman-
Chains (FPFC) input. Each neuron (at output layer)
represents a class (out of 53). It should be noted that
the SOM classifies input vectors into sub-classes,
while the supervised layer takes the output of the SOM
and combines those subclasses into one class. If it is
happened, and a neuron went on for more than one
class, learning continues until a total one-to-one
mapping between a set of 53 neurons and the input
space of the reference FPFC’s is established. Initially
the LVQ3 algorithm is used in training. However, the
Genetic Algorithm (GA) is called to take over training
of the supervised layer (the output layer) when the
error (mean square error) of the LVQ3 algorithm
reaches a flat neighborhood. The LVQ3 is turned off
and the GA presumes the learning process until the
error level reaches the preset criterion. For many
FPFC’s references, the output of LVQ3 reached the
preset criterion. However, when all the training set (53
codes) is used in one patch, the GA is needed to finish
the training job. In that case, the LVQ3 could not be
without the help of the GA. It should be noted that the
output layer is a single layer supervised neural network
and a global training algorithm such as the GA is
needed to escape local minima. The GA in its simplest
form consists of three basic operations: reproduction,
crossover, and mutation [11, 23]. The basic building
block in the GA is the “string”; which is a sequence of
bits representing variables of the search space. The bits
themselves form the genotype and their decoded values
are the phenotype. All GA operations are implemented
over a finite population of strings. As search process
goes on, the average fitness for the population of
strings is expected to increase. Fitness is measured
using some objective functions that are related to the

criterion needed to be optimized. Figure 7 shows the
blocks of the basic operations of the standard GA.

The criteria that the GA optimizes here is the RMS
(Root Mean Square) error between the targets that are
the assigned labels for every class and the binary input
patterns that represents the subclasses generated by the
SOM layer (inside the LVQ3) network. As indicated
earlier, the LVQ3 network is actually an SOM network
followed by some linear activation supervised layer.
The GA trains only the supervised layer which is the
output layer for the total GALVQ3 network (the name
of our NN). The SOM network had 80 neurons, and the
supervised layer had 53 neurons (equal to the number
of classes). The learning rate of the SOM started with a
value of 1.0 and kept going down until reached value
close to 0.01. The GA had a population of 200 strings,
probability of crossover of 0.6, and probability of
mutation of 0.01. However, when the standard
deviation of the RMS error showed signs of mature
convergence, the probabilities of mutation and
crossover were modified considerably. This was done
to stir the pool of the strings toward new more
recombination. We used a deterministic criterion of
selection in the reproduction phase of the GA [11, 23].
Figure 6 shows GALVQ3 (LVQ3 GA supported)
learning error versus learning cycles. The plots of the
total RMS error for both techniques show how the
GALVQ3 method manages to reach lower error values
for the same problem. The GALVQ3 is a heuristic
algorithm that contains some random operators
implemented by the GA. That is why its plot has a
fluctuating nature compared to the only LVQ3 plot.
The GA in the GALVQ3 kept disturbing the saturation
of the error levels in a manner that pushed the search
process to move toward lower levels of error. After
completion of the learning stage for the 53 reference
FPFC’s, we repeated the simulations done on textual
line 1, textual line 2, textual line 3, textual line 4,
textual line 5, textual line 6, textual line 7. Moreover,
experiments were done on 500 characters picked
randomly from different resources. Out of around 500
characters, the GALVQ3 recognized around 485
making up 97% classification rate. The input to the
GALVQ3 was the FPFC of the isolated character
followed by any FPFC’s for dots or holes part of that
character. One bit of 1 is also added if the dot was up,
or a bit of 0 is added if the dot was down. The output
of the GALVQ3 was only the number of the only
active neuron (numbered from 1 to 53) triggered by the
input FPFC. Those neurons are attached to the constant
characters codes that are shown in Table 1. The major
problem with the GALVQ3 is that it requires a fixed
length input vector for all FPFC’s used as input. We
had to assume a maximum length of 40 for every
FPFC. If the actual length of the FPFC was less than
40, the FPFC was padded by 0’s until length becomes
40. This padding process was implemented during
learning and retrieval.

298 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

Figure 6. The RMS error plots for both LVQ3 and GALVQ3.

Figure 7. Basic standard GA operations.

7. Conclusions and Discussions
This character recognition system as a whole is
compared to other systems. Amin proposed several
systems. The best Character Recognition rate (CR)
achieved was 95.4% [31]. Badi [32] used structural
features, just as [31]. However, unlike Amin, who used
a nearest-neighbor classification technique, Badi used
a decision tree technique. Badi’s system gave a CR of
90%. El-Wakil in [10] applied his mechanism to
isolated characters utilized structural features in a

chain code, but unlike our work, used a nearest-
neighbor method for classification. His method yielded
a CR (identical to ours) of 93%. The best CR claimed
for any work in on-line Arabic Character Recognition
is the 99.6% stated in [29]. This work also used
structural features and a decision tree for classification.
The system was applied to the recognition of
characters as well as mathematical formulae [18].
Others used Fourier-based descriptors [16, 17, 24] to
precisely reflect the curved nature of Arabic characters
and got good results of around 95.5% recognition rate.
In summary, we can also claim that the (preliminary)
CR rate achieved with our system is among the best
reported, but still can be improved significantly.
However, it is crucial that we reach that high CR rate
without sacrificing too much the simplicity of the
system, nor indeed, its real time nature.

In summary, we have demonstrated in this work a
comprehensive comparison between two methods for
Arabic character recognition. These two methods can
be extended to any type of characters. The character
recognition is first implemented using a classical
approach that uses a deterministic weighing algorithm
for selecting the closest template according to a FC
feature. The second approach uses an LVQ3 neural
network assisted with Genetic Algorithm (GA). We
called the second approach “GALVQ3”. The two
approaches do only the classification process while the
features extraction mechanism is similar for both of
them. Testing with noisy inputs is implemented with
both approaches. Four types of noise were added
independently to each of the 53 features templates and
the noisy templates were fed to the two classifiers. The
neural network classifier (GALVQ3) has outperformed
the classical approach classifier described in section 4.
The GALVQ3 has a self organizing ability to respond
to different inputs and to converge toward a unique
class. The “supervised” layer that comes after the SOM
layer in the GALVQ3 is trained with the GA. The GA
is known as a global optimizer that has the ability to
“dig” deep into the search space of the weights of the
supervised layer and discover optimal solutions. The
SOM layer in the GALVQ3 self-organizes its output
into subclasses. The supervised layer in the GALVQ3
wraps up associated subclasses into one distinct and
labeled class. Training the supervised layer with GA is
proved to be faster and better than training it with
gradient descent methods. That is depicted in results
shown in this work. On the other hand, typed Arabic
characters are still special due to the fact that they have
curvy nature and there are more holes and dots in this
language than any other major language. With FC
method, the curves of its characters can be converted
into an informative sequence of numbers. By
enhancing the segmentation process and further
repetition of training for the GALVQ3, it was possible
to increase the correct recognition. Supplementary
features may be used, such as Zernike Moments [27]

END

Establish initial population of
chromosomes randomly

Start

Evaluate fitness for each
chromosome

Select chromosomes for mating
(reproduction) according to

Crossover (partial swapping of
chromosomes) with some

Mutate (flip 0 to 1 or 1 to 0
according to some probability)

Yes

No
No Is the average

fitness acceptable?

Is number of
chromosomes

reproduced equal
 to population size?

Learning iterations

To
ta

l
R

M
S

er
ro

r

Genetic-Neural Approach versus Classical Approach for Arabic Character Recognition Using Freeman Chain.… 299

can be added, or using different encoding, translation,
scaling, and rotations will help in providing richer
feature vectors for isolated characters [34]. Future
work will definitely include using hybrids of these
methods in the on-line recognition of hand written
Arabic symbols [28]. This is our ultimate goal, as most
recent research is focused more on hand written
characters rather than simply printed ones.

Finally, the character recognition part is an
important step toward automating documents
processing and providing time-critical information. AI
techniques such as neural networks show a great
potential in future industrial applications that support
information capturing and document analysis and
recognition. It is not going to be long before an
intelligent “characters-recognizer” is used as
supplementary part in banks, post offices, hospitals,
and government agencies.

References
[1] Abu Zitar R. and Al-Fahed A. M., “Performance

Evaluation of Genetic Algorithms and
Evolutionary Programming in Optimization and
Machine Learning,” Cybernetics and System an
International Journal, vol. 33, no. 1, 2002.

[2] Abu Zitar R. and Hassoun M. H.,
“Neurocontrollers Trained with Rule Extracted
by a Genetic Assisted Reinforcement Learning
System,” IEEE Transactions on Neural
Networks, vol. 6, no. 4, pp. 859-879, July 1995.

[3] Amin A. and Mari J. F., “Machine Recognition
and Correction of Printed Arabic Text,” IEEE
Transactions on Systems Man and Cybernetics,
vol. 19, no. 5, September 1989.

[4] Amin A., Kaced A., Haton J., and Mohr R.,
“Hand Written Arabic Character Recognition by
the I.R.A.C. System,” in Proceedings of the 5th

International Conference on Character
Recognition, Miami, FL, pp. 729-731, 1980.

[5] Badi K. and Shimura M., “Machine Recognition
of Arabic Cursive Scripts,” Transactions of the
Institute of Electronics & Communications
Engineers, Japan, vol. 15, 1982.

[6] Bailey R. and Srinath M., “Orthogonal Moment
Features for Use with Parametric and Non-
Parametric Classifiers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol.
18, no. 4, 1996.

[7] Belkasim S. O., Shridhar M., and Ahmadi M.,
“Shape Recognition Using Zernike Moment
Invariants,” in Proceedings of the Asilomar
Conference on Circuits, vol. 1, pp. 161-171,
1989.

[8] Belkasim S. O., Shridhar M., and Ahmadi M.,
“Pattern Recognition with Moment Invariants: A
Comparative Study and New Results,” Pattern

Recognition, vol. 24, no. 12, pp. 1117-1138,
1991.

[9] Bouhlila K., Hamrouni M. K., and Ellouze N.,
“Method of Segmentation of Arabic Text Image
into Characters,” in Proceedings of the First
Kuwait Computer Conference, Conference
Proceedings, pp. 442-446, March 1989.

[10] Carver M., Analog VLSI and Neural Systems,
Addison-Wesley Publishing Company, 1990.

[11] Davis L., Handbook of Genetic Algorithms, Van
Nostrad, Reinhold, New York, 1991.

[12] Desai M. and Cheng H., “Pattern Recognition by
Local Radial Moments,” in Proceedings of the
International Conference on Pattern
Recognition, pp. 168-172, 1994.

[13] DiZenzo S., DelBuono M., Meucci M., and
Spirito A., “Optical Recognition of Hand-Printed
Characters of any Size, Position, and
Orientation,” IBM Journal of Research and
Development, vol. 36, no. 3, pp. 487-501, 1992.

[14] El-Desouky A., Salem M., and Arafat H., “A
Handwritten Arabic Character Recognition
Technique for Machine Reader,” International
Journal for Mini Microcomputer, vol. 14, no. 2,
pp. 57-61, 1992.

[15] El-Emami S., “Machine Learning of Handwritten
and Type Written Arabic Characters,” PhD
Thesis, University of Reading, UK, 1988.

[16] El-Sheikh T. S., “Recognition of Handwritten
Arabic Mathematical Formulas,” in Proceedings
of the UK IT 1990 Conference, Southampton,
London, UK, pp. 344-351, 1990.

[17] El-Sheikh T. S. and El-Taweel S. G., “Real-time
Arabic Handwritten Character Recognition,” in
Proceedings of the 3rd International Conference
on Image Processing and its Applications, IEE.
London, UK, pp. 212-216 1989.

[18] El-Wakil M. S. and Shoukry A. A., “On-line
Recognition of Hand Written Isolated
Characters,” Pattern Recognition, vol. 22, no. 2,
pp. 97-105, 1989.

[19] Eisenstein B. and Vaccaro R., “Feature
Extraction by System Identification,” IEEE
Transactions on Systems, Man, and Cybernetics,
vol. SMC 12, no. 1, pp. 42-50, 1982.

[20] Freeman H., Analysis of Line Drawings, Digital,
Image Processing and Analysis, NATO Summer
School, in Simon J. S. and Rosenfeld A. (Eds),
Nordof, 1977.

[21] Freeman H., “On the Encoding of Arbitrary
Geometric Configuration,” IRE Transactions
Electronic Computers, no. 2, pp. 260-268, 1961.

[22] Fukushima K. and Wake N., “Handwritten
Alphanumeric Character Recognition by the
Neocognitron,” IEEE Transactions Neural
Networks, vol. 2, no. 3, pp. 355-365, 1991.

300 The International Arab Journal of Information Technology, Vol. 2, No. 4, October 2005

[23] Goldberg D. E., Genetic Algorithms in Search
Optimization, and Machine Learning, Reading,
MA, Addison-Willey, 1989.

[24] Granlund G. H., “Fourier Preprocessing for Hand
Print Character Recognition,” IEEE Transactions
on Computers, February 1972.

[25] Hassoun M. H., Fundamentals of Artificial
Neural Networks, MIT Press, Cambridge, 1995.

[26] Jefferies C., Code Recognition and Set Selection
with Neural Networks, Boston, Birkhauser, 1991.

[27] Kauppinen H., Seppanen T., and Pietikainen M.,
“An Experimental Comparison of Autoregressive
and Fourier-Based Descriptors in 2D Shape
Classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 2,
pp. 201-207, 1995.

[28] Khotanzad A. and Hong Y. H., “Invariant Image
Recognition by Zernike Moments,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 5, 1990.

[29] Kohonen T., Self- Organization and Associative
Memory, Series in Information Sciences 8,
Springer-Verlag, 1983.

[30] Kohonen T., “Self-organizing Maps:
Optimization Approaches,” in Kohonen T.,
Makisara K., Simula O., and Kanga J. (Eds),
Artificial Neural Networks, IEEE, New York, pp.
1147-1156, 1996.

[31] Kosko B., “Neural Networks for Signal
Processing,” PhD Dissertation, University of
Reading, UK, Englewood Cliffs, NJ, Characters,
1988.

[32] Nishimura M. and Van der Spiegel J., “Pattern
Recognition Based on Orientation and Linestops
Using an Orientation Sensor and Multilayered.
Neural Network,” in Proceedings of SPIE’95,
1995.

[33] Perantonis S. J. and Lisboa P J. G., “Translation,
Rotation, and Scale Invariant Pattern Recognition
by High-Order Neural Networks and Moment
Classifiers,” IEEE Transactions on Neural
Networks, vol. 3, no. 2, 1992.

[34] Persoon E., “Shape Discrimination Using Fourier
Descriptors,” IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC 7, no. 3, 1977.

[35] Ramsis R., El-Dabi S., and Kam A., “Arabic
Character Recognition System: A Statistical
Approach for Recognizing Cursive Typewritten
Text,” Pattern Recognition, vol. 23, no. 5, pp.
485-495, 1990.

[36] Rumelhart D. E., McClelland J. L., and the PDP
Research Group, Parallel Distributed
Processing: Exploration in the Microstructure of
Cognition, vol. 1, MIT Press, Cambridge, Mass.,
1986.

[37] Sanossian H. Y., “An Arabic Character
Recognition System Using Neural Network,” in
Proceedings of the IEE Workshop on Neural

Networks for Signal Processing, pp. 340-348.
1996.

[38] Simon J. C., “Uncertainty versus Computational
Complexity,” in Johnson J. H., McKee S., and
Vella (Eds), Artificial Intelligence in
Mathematics, Oxford University Press, 1994.

[39] Wang D. and Xie W., “Invariant Image
Recognition by Neural Networks and Modified
Moment Invariants,” in Proceedings of SPIE’96,
1996.

Raed Abu Zitar obtained his BSc in
electrical engineering from the
University of Jordan in 1988, his
MSc in computer engineering from
North Carolina A&T State
University in 1989, and his PhD in
computer engineering from Wayne

State University, Detroit, Michigan, USA in 1993.
Currently he is an associate professor at the
Department of Software Engineering, Faculty of IT
and in the capacity of the Dean of Scientific Research
and Graduate Studies, Philadelphia University,
Amman, Jordan. His research interests are in neural
networks, signal processing, robotics, genetic
algorithms, and machine learning.

