
76 The International Arab Journal of Information Technology

Empirical Evaluation of Syntactic and Semantic

Defects Introduced by Refactoring Support

Wafa Basit
1
, Fakhar Lodhi

2
, and Usman Bhatti

3

1
Department of Computer Science, National University of Computer and Emerging Sciences, Pakistan

2
Department of Computer Science, GIFT University, Pakistan

3
Rmod Team, Inria Lille-Nord Europe, France

Abstract: Software maintenance is a major source of expense in software projects. A proper evolution process is a critical

ingredient in the cost-efficient development of high-quality software. A special case of software evolution is refactoring that

cannot change the external behaviour of the software system yet should improve the internal structure of the code. Hence,

there is always a need to verify after refactoring, whether it preserved behaviour or not. As formal approaches are hard to

employ, unit tests are considered the only safety net available after refactoring. Refactoring may change the expected interface

of the software therefore unit tests are also affected. The existing tools for refactoring do not adequately support unit test

adaptation. Also, refactoring tools and guidelines may introduce semantic and syntactic errors in the code. This paper

qualitatively and quantitatively analyses data from an empirical investigation involving 40 graduate students, performed

against a set of semantic and syntactic defects. Findings from the expert survey on refactoring support have also been shared.

The analysis in this paper shows that there are notable discrepancies between preferred and actual definitions of refactoring.

However, continued research efforts are essential to provide Guide Lines (GL) in the adaptation of the refactoring process to

take care of these discrepancies, thus improving the quality and efficiency of the software development.

Keywords: Refactoring, unit testing, pre-conditions, semantic defects, maintenance.

Received June 2, 2013; accepted March 29, 2014; published online March 8, 2015

1. Introduction

Software refactoring as a concept has been widely
accepted in the industry and is considered a practice
that can provide significant improvements in software
quality. However, during the entire history of software
development, automated refactoring techniques have
not been able to fully evolve to provide complete and
reliable support in all software development
paradigms. There are multiple reasons for the lack of
use of refactoring support. Some being deficient
usability, efficiency and reliability. The effects of
refactoring have to be analyzed to access the program
locations that require change. But, if the preconditions
are not adequately evaluated and the required
adaptations are not performed, refactoring not only
negatively affects the artifacts from the phases in the
development life cycle but also affects clients in the
production code. Nonetheless, many times the unit
tests which are specialized clients [3, 4] in the context
of refactoring are crippled due to the refactoring
process, leaving the developer with no way to verify
the behavior preservation after refactoring. The
research question answered in this paper is: Are the
professionals, academics and students satisfied with
certain features of refactoring support they are using
and what are the obstacles for software development
practitioners? This paper covers the following:

1. Evaluation of three commonly used refactoring
including Move Method (MM), Pull Up Method

(PUM) and Push Down Method (PDM) provided by
Eclipse, Netbeans, IntellijIDEA and JBuilder [14,
15, 19, 31].

2. Empirical investigation of fowler’s refactoring
guidelines involving 40 graduate students.

3. Discussion on the results from our expert survey on
refactoring support.

This study shall assist in pointing out directions for
future research within software refactoring and unit
testing.

2. Related Works

The outcome of a refactoring process should be
preserved behaviour, improved software quality and
consistency between the refectories code and other
software artefacts including documentation, design
documents, tests, etc., [24]. However, in practice in
addition to breaking the production code, the evolution
of the other artefacts is generally not taken into
account. Unit testing is a fundamental component of
the refactoring process. Fowler [16] is of the view that
every class should have a main function that tests the
class or separate test classes should be built that work
in a framework to make testing easier, which implies
that test code cannot be separated from the production
code. Therefore, any process affecting the production
code should readily adapt the associated clients and the
test code [11, 12, 23]. Zaidman et al. [32] are also of
the view that there is a need for tools and methods that

Empirical Evaluation of Syntactic and Semantic Defects Introduced by Refactoring Support 77

can help the co-evolution of source and test code. In
our earlier work [1, 2, 3, 4, 5, 17, 22] the state of art
and practice that addresses or should address client and

unit test adaptation while refactoring has been
discussed in detail the. It has been summarized in
Table 1.

Table 1. Summary of the work related to client and test code adaptation after refactoring.

Researcher Research Summary

Fowler [16]

• A widely adopted extensive catalog of 68 refactoring guidelines.

• Informal and inconsistent level of detail.

• Do not provide guidelines on the adaptation of unit tests. In most cases, steps on client adaptation are also missing.

Deursen et al. [11]
Presented a test taxonomy that categorizes refactoring based on their effect on test code. These are: compatible, backwards compatible, make backwards compatible and

incompatible.

Counsell et al. [6, 7, 8]

• Assessed the test taxonomy presented in [11].

• In our previous work [3] it has been shown that the categorization used by [6-8] has various loop holes.

• A refactoring dependency graph is developed for Fowler‘s catalogue [16] and a shorter list of compatible refactoring is suggested by excluding all the other refactoring that

may use those refactoring that break unit tests.

• This approach essentially rejects the use of many important refactoring that are necessary for improving the program structure.

Jiau et al. [20, 28]

• Test Driven Refactoring (TDR) [20] and Test-first Refactoring (TFR) [28] involve adaptation of associated unit tests before the refactoring process takes place.

• These approaches fit well in Extreme Programming paradigm but are not general enough to be used in all development environments where testing first is not always possible.

• Do not provide guidelines to adapt test code according to the targeted refactoring.

Soares et al. [29]

• Soares et al. [29] propose a technique for generating a set of unit tests that can be useful for detecting semantic errors after a sequence of object-oriented program refactoring.

• They have also evaluated the refactoring support provided by Eclipse, IntelliJ IDEA, JBuilder, NetBeans. They observe that program refactoring in IDEs are commonly

implemented in an ad hoc way and the semantic aspects of behavior are several times not preserved.

Basit et al. [1, 2, 3, 4, 5, 22]

In [3] a mutually exclusive categorization of refactoring guidelines has been presented based on the impact of refactoring on clients and unit tests. In [2] the problems with

Fowler’s refactoring catalog and java refactoring tools including Net Beans, Eclipse, Intellij IDEA and JBuilder have been discussed. These tools introduce semantic errors in the

refectories code. It has also been shown that the quality of the unit tests is also deteriorated if existing approaches for refactoring are used. In order to prove the effectiveness of

extended refactoring guidelines, the results from an experiment have also been shared. In [1] the extended refactoring guidelines for pull up method have been presented. The

semantic issues that can be introduced due to this refactoring have been discussed through examples. Test Adaptation Plug-in for Eclipse (TAPE) [22] makes easier for the

developer to organize the unit tests along the changes in the refectories code. In [5] it has been demonstrated with the help of various examples that unit test is a specialized client

in the context of refactoring. The formal specification of the extended refactoring guidelines and an adaptation framework is presented in [4].

Daniel et al. [9]
Proposed an approach to check whether refactoring tools introduce compilation errors or not. This work ignores detection of semantic errors that could be introduced through

existing refactoring tools.

TestCareAssistant [26]
This tool is implemented as a Java prototype that provides automated guidance to developers for repairing test compilation errors caused due to changes such as adding, removing

or changing types of parameters and return values of methods.

ReAssert [10]
Reassert repairs assertions in test code by traversing the failure trace. It performs dynamic and static analysis to suggest repairs to developers. Again this tool does not help in

fixing the semantic errors introduced through refactoring

CatchUp! [18]
Catch-up! adapts clients of the evolving Application Programming Interfaces (API‘s). This tool takes care of only compilation errors that can appear in the clients due to a subset

of refactoring performed on any API, and therefore ignore the semantic errors that could be caused due to refactoring process.

Kaba [28]
KABA also includes all clients in the refactoring process. It guarantees preservation of behaviour for the clients either through static analysis or all test runs (dynamic analysis)

for any input.

Reba [13]
ReBA instead of adapting the clients of the evolving API, creates compatibility layers between new library APIs and old clients .This layer is created in the form of an adapted

version that supports both versions of the API.

3. Comparative Analysis of Refactoring

Tools and Guidelines

Before code transformation takes place, an early check

should be performed to evaluate preconditions of the

refactoring; if all preconditions are satisfied,

refactoring mechanics are executed. These mechanics

include Guide Lines (GL) for restructuring and

corrective transformations required to preserve

externally observable behaviour of the program.

However, there are gaps between the definitions and

the actual implementation of refactoring.

Fowler’s refactoring catalog [16] is widely used

both in the industry and academia for training and

pedagogical purposes. Based on Fowler’s GL many

refactoring tools for Java have been developed

including the most commonly used: Eclipse, IntelliJ

IDEA, JBuilder and NetBeans etc., [14, 15, 19, 31].

These tools do not completely address the issues

related to behaviour preservation including client/test

adaptation. One of the reasons is lack of refactoring GL

that include all necessary pre and post conditions for

the preservation of program behaviour [3]. Fowler’s

refactoring GL (FGL) give a good starting point to

developers in order to re-factor a program but lack

focus on various aspects of behaviour preservation.

Using these GL [16] refactoring process can not only

flag semantic but also syntactic violations in the code.

Syntactic errors are cheap to fix but identification and

resolution of semantic violations is hectic as well as

expensive [5]. The missing detail in the refactoring GL

is also inherited by various refactoring tools for Java

[5]. Therefore, Fowler’s catalog is also included in this

analysis. Because, with the help of extended

refactoring GL, existing tools can be improved and

new tools can be developed that preserve program

behaviour. In this section, a few semantic as well as

syntactic defects that are introduced by refactoring

tools in various locations throughout the software

system have been defined and demonstrated.

Three commonly used refactoring: PUM, PDM and

MM [16] have been discussed. PUM refactoring is

used by software designers to generalize and eliminate

the duplicate code present in subclasses, as a result the

cohesion of the super class is increased and the

coupling of the subclasses is reduced. Similarly, PDM

increases cohesion of the subclasses by specializing

certain behaviour of a super class that is relevant only

for some of its subclasses. MM is used for moving

features between classes such that coupling in the

system is loosened [16]. These refactoring are most

commonly used refactoring. The automated support for

these refactoring is provided by almost all commonly

used Java refactoring tools [14, 15, 19, 31]. But, the

precondition evaluation and adaptation is implemented

in an Ad-Hoc way ignoring many aspects of behaviour

preservation. Table 2 highlights the semantic as well as

syntactic errors that could appear in the refactored code

by performing these refactoring either manually

through GL or with the use of refactoring tools.

78 The International Arab Journal of Information Technology

Table 2. Comparative analysis of refactoring tools and GL.

 Tools GL

Preconditions Eclipse NetBeans IntelliJ JBuilder FGL

Invalid Access to Super

Object

PUM × × � � ×

MM × N/A × � ×

PDM × × � � ×

Overriding Wrongly

Enabled

PUM × × × � ×

MM × N/A � � ×

PDM × × × � ×

Invalid Access to

Duplicate Variable

PUM � � � � ×

MM × N/A � � ×

PDM � � � � ×

Constructor

PUM × × � � ×

MM × N/A � � ×

PDM × � � ×

Main Method

PUM × × � � ×

MM × N/A × � ×

PDM × � � ×

Checks Due to Static

Import

PUM × × × × ×

MM × N/A × × ×

PDM × × × × ×

Relocating Test Code

PUM × × × × ×

MM × N/A × × ×

PDM × × × × ×

Appropriate

Replacement of Calls to

Candidate Method in

Clients/ Unit Tests

PUM × × × × ×

MM × N/A × × ×

PDM × × × × ×

� means the system warns the developer but allows to continue.

× means the system does not recognize the issue.

� means the system recognizes the issue and handles it appropriately.

3.1. Invalid Access to Super Object

In object oriented programming, access to parent

class’s methods is a common practice. The super

object in Java gives child classes access to parent’s

overridden constructors and methods. But movement

of methods up and above in the inheritance hierarchy

can create a semantic violation which will not be

flagged by the compiler. For example, if a refactoring

is performed using Fowler’s GL, where method foo is

implemented in class A and class B, in each class the

method foo returns a different value. Before

refactoring, the clients of method m get return value

equal to ‘23’ (by calling method in class B) but, after

refactoring the same method returns ‘43’(by calling

method in class A). This simple scenario highlights the

fact that by ignoring the context sensitive constructs

like Super, semantic errors can be injected in the

production and test code.

Table 3. Behaviour altered due to invalid access to super object.

 Before Refactoring After Refactoring

MM

Class A{ int foo() { return 43; }}

Class B { int foo(){ return 23; }}

Class C extends B{ int m(){ super.foo();

}}

Class D extends A{ int n(){

super.foo()+1; }}

// n() returns 44

Class A{ int foo(){ return 43; }}

Class B { int foo(){ return 23; }}

Class C extends B{ int m(){ super.foo();}

int n(){ super.foo()+1; }}

Class D extends A{ }

// n() returns 24

PUM

Class A{ int foo(){ return 43; }}

Class B extends A{ int foo(){ return 23;

}}

Class C extends B{ int n(){ super.foo();

}}

// n() returns 23

class A{ int foo(){ return 43; }}

class B extends A{ int foo(){ return 23; }int

n(){ super.foo(); }}

class C extends B{}

// n() returns 43

PDM

Class A{ int foo(){ return 43; } }

Class B extends A{ int foo(){ return 23;

}

int n(){ super.foo(); }}

Class C extends B{}

// n() returns 43

Class A{ int foo(){ return 43; }}

Class B extends A{ int foo(){ return 23; }

}

Class C extends B{ int n(){ super.foo(); }}

// n() returns 23

Also, if the calls to super are not replaced by
appropriate method calls, the program shall not
compile, specifically when the call to a non existing
method is made using super object in the pulled up
method. The refactoring support provided by
commonly used tools including NetBeans [31] and
Eclipse [14] do not take care of this aspect while
refactoring. Similarly MM and PDM can also
introduce semantic and syntactic errors if the
preconditions related to presence of calls to Super
object are not evaluated as shown in Table 3 above.

3.2. False Overriding

The code below highlights a problem of false
overriding that can be caused if the inheritance
hierarchy of the target class for candidate method is
not completely analyzed for uniqueness. Generally, the
tools check for the uniqueness of the method in the
target class but, do not take into account its ancestor
classes. The movement of the method may result in
false overriding if any of the ancestors has a method
with the same signature as that of the candidate
method. The scenarios for three refactoring are given
in Table 4.

Table 4. Scenarios showing invalid overriding after refactoring.

 Before Refactoring After Refactoring

MM

Class Calculator{

 int Add(int a,int b){ return a+b; }

 int multiply(int a,int b){ return a*b; }}

Class Pay { int multiply(int p,int s){ return

2* p *s;}}

Class Pay_Calc extends Calculator{ }

Class Client{

 int CalculatePay(){

 Calculator c= new Pay_Calc();

 return c.multiply(2000,5);

 }}

 // CalculatePay() returns 10000

Class Calculator{

 int Add(int a,int b){ return a+b; }

 int multiply(int a,int b){ return a*b; }}

Class Pay { }

Class Pay_Calc extends Calculator{

int multiply(int p,int s){ return 2* p *s; }}

Class Client{

 int CalculatePay(){

 Calculator c= new Pay_Calc();

 return c.multiply(2000,5); }}

 // CalculatePay() returns 20000

PUM

Class Employee{ int getPay(){ return 43;

}}

Class Regular extends Employee{

 int getPay(int grd){ return grd *23; }

}

Class Engineer extends Regular{

 int getPay(){ return 60; }}

Class Client{

 int CalculatePay(){

 Employee emp=new Regular();

 return emp.getPay();

 }} // CalculatePay() returns 43

Class Employee{ int getPay(){ return 43; }

}

Class Regular extends Employee{

 int getPay(int grd){ return grd *23; }

 int getPay(){ return 60; }

}

Class Engineer extends Regular{ }

Class Client{

 int CalculatePay(){

 Employee emp=new Regular();

 return emp.getPay();

 }} // CalculatePay() returns 60

PDM

Class Employee{ int getPay(){ return

43; } }

Class Regular extends Employee{

 int getPay(int grd){ return grd

*23; }

 int getPay(){ return 60; }}

Class Engineer extends Regular{ }

Class Client{

 int CalculatePay(){

 Employee emp=new Regular();

 return emp.getPay();

 }} // CalculatePay() returns 60

Class Employee{ int getPay(){ return

43; } }

Class Regular extends Employee {

 int getPay(int grd){ return grd

*23;}}

Class Engineer extends Regular{

 int getPay(){ return 60; }}

Class Client{

 int CalculatePay(){

 Employee emp=new Regular();

 return emp.getPay();

 }} // CalculatePay() returns 43

3.3. Invalid Access to a Duplicate Field

Generally refactoring tools check for the uniqueness of
the candidate method in the target class prior to
refactoring. The fields from the source class are either
accessed through source object in the target class or are
moved to the target class after the method is moved.
But, in case of duplicate fields both in the source and

Empirical Evaluation of Syntactic and Semantic Defects Introduced by Refactoring Support 79

target, developer may not get a compiler error,
resulting in invalid software behaviour. In Table 5,
before and after states of the refactored code have been
demonstrated each showing different results after
refactoring.

Table 5. Scenarios showing invalid access to a duplicate field in the
target class.

 Before Refactoring After Refactoring

MM

Class Comparator{

 int adjust=2;

 int getMax(int a,int b){ return

Math.max(a,b) + adjust ;}}

Class Adder{

 int adjust=1;

 int add(int a,int b){ return a+b + adjust;}

 int getMin(int a,int b){ return

Math.min(a,b)-adjust;}

} // getMin(2,4) returns 1

Class Comparator{

 int adjust=2;

 int getMax(int a,int b){ return

Math.max(a,b) + adjust; }

 int getMin(int a,int b){ return

Math.min(a,b)-adjust;}}

Class Adder{

 int adjust=1;

 int add(int a,int b){ return a+b + adjust;

}

} // getMin(2,4) returns 0

PUM

Class Parent{

 int attribute=1;

 int pmethod(){ return attribute; }}

Class Child extends Parent{

 int attribute=2;

 int cmethod(){ return attribute +1; }

} // cmethod() returns 3

Class Parent{

 int attribute=1;

 int pmethod(){ return attribute; }

 int cmethod(){ return attribute +1; }}

Class Child extends Parent{

 int attribute=2;

} // cmethod() returns 2

PDM

Class Parent{

 int attribute=1;

 int pmethod(){ return attribute; }

 int cmethod(){ return attribute +1; }}

Class Child extends Parent{

 int attribute=2;}

 // cmethod() returns 2

Class Parent{

 int attribute=1;

 int pmethod(){ return attribute; }}

Class Child extends Parent{

 int attribute=2;

 int cmethod(){ return attribute +1; }}

 // cmethod() returns 3

3.4. Static Import

Static import is a feature provided by Java
Development Kit (JDK) which allows unqualified
access to static members without inheriting from the
type containing the static members. Refactoring can
introduce semantic errors in the code if this feature has
been used as demonstrated in the following examples
in Table 6. Before PUM refactoring, the method
getEmployeeNo returns “4”, whereas after valueOf
method is pulled up to the Employee class the method
returns ‘5’, clearly a semantic error. This happens
because the getEmployeeNo method in the Employee
class was making an unqualified access to valueOf
method of Java.lang.String but after a method with the
same name is pulled up to Employee class;
getEmployeeNo method calls the local valueOf method
which returns “5”. Similarly, MM and PDM
refactoring in these scenarios alter the externally
observable software behaviour.

Table 6. Scenarios showing invalid use of function when using

Static Import.

 Before Refactoring After Refactoring

MM

class Employee{

static String getEmployeeNo(int i) {

return valueOf(i) ; }}

class Pay { static String valueOf(int

pay) { return pay * 3;}}

// getEmployeeNo(4) returns 4

class Employee{

static String getEmployeeNo(int i) {

return valueOf(i) ;}

static String valueOf(int pay) {return pay

* 3;}}

class Pay {} // getEmployeeNo(4)

returns 12

PUM

class Employee{

static String getEmployeeNo(int i) {

return valueOf(i) ;}}

class RegularEmployee extends

Employee{

static String valueOf(int i) { return i +1;

}

} // getEmployeeNo(4) returns 4

class Employee{

static String getEmployeeNo(int i) { return

valueOf(i) ;}

static String valueOf(int i) { return i

+1;}}

class RegularEmployee extends

Employee{}

// getEmployeeNo(4) returns 5

PDM

class Employee{

static String getEmployeeNo(int i) {

return valueOf(i) ; }

static String valueOf(int i) { return i

+1;}}

class RegularEmployee extends

Employee{

} // getEmployeeNo(4) returns 5

class Employee{

static String getEmployeeNo(int i) {

return valueOf(i) ; }}

class RegularEmployee extends

Employee{

static String valueOf(int i) { return i +1; }

} // getEmployeeNo(4) returns 4

3.5. Main Method

A method is generally moved to another class if it is

the right home for it. For example, FixEngine()

logically belongs to the Engine class, if it is not there

it should be moved. Whereas, a main method is an

entry point to the software system, it does not exhibit

the behaviour of its owner class. Moving a main

method can lead to runtime exception where the IDE

may not be able to detect the entry point unless altered

by the developer.

3.6. Constructor

A constructor is a specialized method that initializes
the data members of the class, creates an object and
has the same name as that of the class. If a method is
moved to any other class, it loses its meaning; it
becomes an ordinary method that initializes a set of
variables. It is not principally correct to move, pull up
or push down a constructor. It can be seen in Table 2
that a few tools allow such operations on constructor,
resulting in invalid or broken clients or unit tests.

3.7. Incorrect Replacement of Calls

JBuilder and IntelliJ IDEA [15, 19] in few cases
syntactically adapt the clients and unit tests after
refactoring, such that externally observable behaviour
is preserved but, the overall quality of the system
deteriorates. For instance, the purpose of MM is to
decrease the coupling and increase cohesion of the
overall system including source and target classes. But,
these refactoring tools for Java instead of removing the
association of source with client use the target class’s
object in the source class to call the moved method.
Which actually keep the clients coupled with the
source, even after the refactoring. In this manner
externally observable behaviour is preserved but this is
definitely not improvement in the internal structure of
the software system. In order to perform MM using
these tools, the target object is either sent as a
parameter of the candidate method or in the other case
target class’s object is declared in the source class.
Here, the consequences of the later scenario are
discussed.
Ideally, along the movement of method to the target,

its corresponding test code should also be moved to the
target’s test class, by doing so, the association between
the target and test source can be removed. None of the
tools including JBuilder, Eclipse and IntelliJ IDEA
take care of these aspects of refactoring (NetBeans
does not support MM). As a consequence the Coupling
Between Objects (CBO) is increased. This observation
can be proven through the use of CBO metric.

Numberoflinks

Numberofcla
CBO =

sses

By putting values in Equation 1 from Figure 4, with N
number of clients of source class and assuming one test
class for source and target CBO becomes.

(1)

80 The International Arab Journal of Information Technology

(4 + 2) (4 +) (3 +) (3 +)

(4 +) (4 +) (4 +) (4 +)

N N N N

N N
O

N
CB

N
= > > ≥

By putting values in Equation 2 with N=2, number of
clients for source class and assuming one test class for
source and target each, Equation 2 takes form of
Equation 3.

8 6 5 5
> >

6 6 6 6
CBO = ≥

Looking at the Equation 3 it can be seen that
refactoring tools lead to the worst CBO. Fowler’s
approach is better but as it does not take into account
the test code restructuring phenomenon, association
between target and source test is created resulting in
increased coupling. Last but not the least it is
suggested that the code refactoring should be followed
by test restructuring also. Here, it is important to note
that the intent of MM refactoring is to reduce the CBO
in the overall software system. On the contrary
coupling is increased instead of decreasing or
remaining stable if existing tools are used. Also, by
using Fowler’s GL for MM the CBO metric value
increases because it misses steps related to test code
restructuring due to which the target is made wrongly
associated to source test as shown in Figure 1.

Before Existing Java Tools Fowler’s Ideal

Figure 1. A comparative view of a subsystem after MM refactoring

using different approaches.

Additionally, in the case of PUM refactoring if the
child objects are not replaced by the parent object in
the clients, the violation of good design principles
would occur resulting in unnecessary association and
therefore high coupling. However, with PDM,
incorrect replacement of parent object may end up in
parent accessing the children in the client classes,
which is not a valid relationship.

3.8. Relocating Test Code

Refactoring and unit tests go together. Whether, a

refactoring was behaviour preserving is usually

confirmed through the use of unit tests.

However, in practice it is not always possible,

because there are certain refactoring that change the

software interface and therefore clients accessing this

interface are affected including the unit tests [21, 22,

30]. The existing literature and the refactoring support

do not differentiate between an ordinary client and the

unit tests.
Consequently, the additional adaptations required

by unit tests after refactoring are not supported by the
refactoring tools. As can be seen in Figure 2-b, after
method m1 is pulled up to the parent class, the test
methods for method m1 remains in the child classes
resulting in duplicated test code. Similarly, when a
method is moved from a source to target class, and the
test code is not moved from source’s test to the
target’s test, this leads to indirect testing. Also, in case
of PDM, when the test code is not moved to its right
home it leads to an invalid association between the
child classes and the parent’s test class.

a) Software system before PUM refactoring.

b) Software system after PUM refactoring (Existing approaches).

c) Software system after PUM refactoring (improved GL).

Figure 2. comparison of refactoring approaches applied on m1().

Therefore, every step in refactoring should be
succeeded by appropriate adaptation in the test code
to avoid deterioration of test code quality resulting in
test smells.

4. Empirical Evaluation

In this section, results from a controlled experiment
involving 40 graduate students have been reported.
This experiment was performed to judge the loop holes
in Fowler’s refactoring GL. According to Fowler,
refactoring are based on “human intuition” [16], but in
reality every human is different and so is everyone’s
intuition. Every phase of refactoring starting from
detection of bad smells to actual refactoring process
requires rigorous support and GL. As discussed in
earlier sections, in spite of available automated support
and an extensive catalog of refactoring, mistakes can
still occur.

(2)

(3)

Empirical Evaluation of Syntactic and Semantic Defects Introduced by Refactoring Support 81

4.1. Experiment Settings

In order to prove our claim and check the effectiveness

of the extended GL, an experiment involving 40

graduate students was conducted with a major in

software engineering. It was a prerequisite to have

adequate knowledge of Java language to participate in

the exercise. 55% students had industrial experience

above 3 years, 45% students had experience ranging

from 0-2 years. 10 students were without any industrial

development experience but they were included in our

experiment because these students had done their

graduate level final year projects using Java and they

had the expertise required to perform this exercise.

Prior to the experiment the students had attended 3

lectures on refactoring as a part of their Advanced

Software Engineering course. A four hours session was

conducted to analyze the student’s capability to re-

factor using Fowler’s GL. The code for a Pay Roll

System was used for refactoring experiment. There

were 16 classes in total in this system, 8 classes in the

production code and a parallel hierarchy of 8 test

classes developed in JUnit. The size metrics are given

in Table 7.

Table 7. Size metrics for pay roll system.

Lines of Code Methods Classes

Production Code 402 19 8

Test Code 241 12 8

Complete Code 643 31 16

The code was shared with the students two days
prior to the experiment. The experiment was
conducted in a four hours session. In the first hour,
students were explained the domain and the task they
had to perform. Each step of the GL was also
explained to ensure that all students understand every
step. The next three hours were divided into two equal
halves. They were given two problems one by one.
The problems were of average complexity that
students could understand in the given amount of

time. The defects had been distributed in different
locations, so that the identification of one does not
affect the other. Students were required to refer to
every step of refactoring with the appropriate step
number in the Fowler’s GL in their solutions. If they
did any step without using the GL, they explicitly
specified. They were provided with the unit tests
along production code.

4.2. Hypotheses

In this paper results for MM, PUM and PDM
refactoring have been shared. The hypotheses of this
study are based on the following proposition:

• P: There is no need to augment Fowler’s GL.
• P´: Fowler’s GL should be extended. Find below the
alternate hypotheses.

• H01: Core refactoring cannot be performed
successfully by most students with existing
refactoring GL.

• H11: Semantic errors shall be introduced by most
students if the existing refactoring GL are used.

• H21: Test code restructuring cannot be done
successfully by most students using existing
refactoring GL.

• H31: Client adaptation cannot be done successfully
by most students using existing refactoring GL.

Alternate hypotheses for failure rate greater or equal to
50% are accepted. It can be inferred from the results as
shown in Table 8 that in most cases the developers
were not able to detect the semantic errors introduced
due to refactoring. In spite of the small sized project
(only 402 lines of code) and limited time. All students
performed the core refactoring steps correctly. But
most of the subjects did not check the preconditions
required for avoiding semantic defects and also did not
properly adapted unit tests. The results show that, steps
on prevention of semantic defects and test code
restructuring should be added to existing refactoring
GL.

Table 8. Results from the refactoring experiment.

 Tasks Success Failure Failure Rate (%age) Hypotheses

 MM PUM PDM MM PUM PDM MM PUM PDM MM PUM PDM

H01 Core Refactoring (CR) 40 40 40 0 0 0 0 0 0 R R R

H11

Replaced Super Object with Appropriate Code (RSO) 18 15 10 22 25 30 55 52.5 75 A A A

Overriding not Wrongly Enabled (OE) 1 3 7 39 37 33 97.5 92.5 82.5 A A A

Did not Access the Duplicate Variable (DV) 25 10 15 15 30 25 37.5 75 62.5 R A A

H21
Relocating Test Code (RTC) 15 13 17 25 27 23 62.5 67.5 57.5 A A A

Test Code Adaptation (TCA) 20 19 15 20 21 25 50 52.5 62.5 A A A

H31 Appropriate Replacement of Method Calls in Clients (RC) 24 5 30 16 35 10 40 87.5 25 R A R

4.3. Threats to Validity

As in any empirical study, the external validity of this

experiment is limited by the choice of study subject.

Pay Roll System was used because it was a small sized

system, its source and test code were available and it

had quite a number of opportunities for refactoring.

Similarly, the subjects of the case study are

heterogeneous (students with no industrial experience

and students with 3-6 years of professional

experiment).

This could confound the findings, as for example

students with no experience may behave very different

from industrial developers. As regarding to internal

validity one has to be aware that with a single case

study it is not possible to infer whether or not Fowler’s

GL should be augmented. However, additional

82 The International Arab Journal of Information Technology

research in larger and different contexts is needed to

ensure that our results are indeed true.

5. An Expert Survey on Practices

Associated with Refactoring and Unit

Testing

In order to, get the expert opinions on our findings

regarding refactoring tools a controlled survey was

conducted. There were in total 28 questions,

distributed into three categories: Demographics (6),

refactoring (15) and unit testing (7). A final question

asked for feedback on the survey. Before giving it to

respondents, the questionnaire was validated by 4

experts and a few amendments were made based on

their suggestions. The survey was designed as a

cross-sectional and controlled survey. To ensure the

integrity of the results, participation tokens were

created for selected individuals. They belonged to

technologically advanced countries and their profiles

showed that they had contributed in the research or

development of refactoring and unit testing support.
Respondents provided their opinion by selecting one

of the options from 5-likert scale of answers against
each question. The 5-scale options represent: Strongly
agree, agree, neutral, disagree and strongly disagree.
38 experts in refactoring domain were consulted. Most
of the respondents used Java for development. 76%
respondents used Eclipse, 39% respondents used other
tools and 18% respondents performed refactoring
manually. 42% respondents worked in software
development organizations of all sizes, where as others
were involved in research and development activities
at universities. 74% participants had an advanced or
expert level of refactoring knowledge. 58%
respondents had above 5 years of IT experience. Unit
testing was performed mostly by 66% and sometimes
by 32% respondents. The data from the survey was
analyzed to answer several research questions. The
results are summarized in the Table 9.

Table 9. Results from survey questions on performance of
refactoring tools.

Refactoring Tools
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

No

Response

Introduce Syntactic

Errors in the Unit Tests
7.89% 26.32% 10.53% 23.68% 21.05% 10.53%

Introduce Semantic

Errors in the Unit Tests
2.63% 39.47% 28.95% 10.53% 7.89% 10.53%

Introduce Semantic

Errors in the Clients
10.53% 39.47% 18.42% 7.89% 10.53% 13.16%

Introduce Semantic

Errors in Refactored

Code

7.89% 21.05% 21.05% 21.05% 21.05% 7.89%

Deteriorate the Software

Quality
0.00% 5.26% 18.4% 23.6% 42.11% 10.53%

Introduce Test Smells in

the Unit Tests
5.26% 18.42% 21.05% 23.68% 10.53% 21.05%

Do not Support Unit

Tests Reorganization
26.32% 44.74% 10.53% 5.26% 0.00% 13.16%

Do Not Fix Syntactic

Errors in the Unit Tests
10.53% 18.42% 34.21% 10.53% 15.79% 10.53%

The analysis shows that, in general, respondents
agree to most of the issues identified in the survey and
hence desire improvement. While confirming many
unidentified issues with the experts, our findings also
highlight gaps between required and existing tool

characteristics. It can be seen from the results that there
is more agreement from the respondents regarding
issues related to unit test reorganization and adaptation.
Very few participants agreed that the refactoring tools
deteriorate quality, but it has been shown that this is
indeed true. The figures indicate that there is need for
extensive research in this area. Additionally, the results
for research questions related to semantic defect
introduction in clients, refactored code and unit tests
also show that there is a huge room for improvement.

6. Conclusions

Refactoring is a structured and disciplined process of

code transformation. Software maintenance, such as

refactoring should ideally improve software quality

[27]. But on the contrary the existing support for

refactoring may introduce semantic errors as well as

bad smells in the production and test code. In this

paper, three refactoring including MM, PUM and PUM

refactoring have been analyzed. Additional steps have

been suggested that should be included in these

refactoring. In order to, judge the effectiveness of these

GL an experiment using 40 graduate students was

setup. The results of the study are promising and have

leaded us towards extension of other refactoring GL as

well. The findings of this paper have been strengthened

by conducting a controlled expert survey. Most of the

respondents have appreciated the identified problems.

The results from this analysis have been used to extend

the Eclipse refactoring plug-in. Preliminary

information about TAPEcan be found in [22].

References

[1] Basit W. and Lodhi F., “Preservation of

Externally Observable Behavior after Pull Up

Method Refactoring,” in Proceedings of ICCIT,

pp. 309-314, 2012.

[2] Basit W., Lodhi F., and Bhatti M., “Evaluating

Extended Refactoring Guidelines,” in

Proceedings of the 36
th
 Annual Computer

Software and Applications Conference

Workshops, Izmir, pp. 260-265, 2012.

[3] Basit W., Lodhi F., and Bhatti M., “Extending

Refactoring Guidelines to Perform Client and

Test Code Adaptation,” in Proceedings of 11
th

International Conference on XP, Norway, pp. 1-
13, 2010.

[4] Basit W., Lodhi F., and Bhatti M., “Formal

Specification of Extended Refactoring

Guidelines,” in Proceedings of International

Conference on Emerging Technologies,

Islamabad, pp. 353-358, 2012.

[5] Basit W., Lodhi F., and Bhatti M., “Unit Test: A

Specialized Client in Refactoring,” in

Proceedings of the 7
th
 International Conference

on Software Paradigm Trends, Rome, pp. 285-

290, 2012.

Empirical Evaluation of Syntactic and Semantic Defects Introduced by Refactoring Support 83

[6] Counsell S., “Is the Need to Follow Chains a

Possible Deterrent to Certain Refactorings and an

Inducement to Others?,” in Proceedings of the

2
nd
 International Conference on Research

Challenges in Information Science, Marrakech,

pp. 111-122, 2008.

[7] Counsell S., Hierons R., Najjar R., Loizou G.,

and Hassoun Y., “The Effectiveness of

Refactoring Based on a Compatibility Testing

Taxonomy and a Dependency Graph,” in

Proceedings of Testing: Academic and Industrial

Conference, Windsor, pp. 181-192, 2006.

[8] Counsell S., Swift S., and Hierons R., “A Test

Taxonomy Applied to the Mechanics of Java

Refactorings,” Advances in Computer and

Information Sciences and Engineering, Springer

Netherlands, 2007.

[9] Daniel B., Gvero T., and Marinov D., “On Test

Repair using Symbolic Execution,” in

Proceedings of the 19
th
 International Symposium

on Software Testing and Analysis, Trento, pp.

207-218 2010.

[10] Daniel B., Jagannath V., Dig D., and Marinov D.,

“Reassert: Suggesting Repairs for Broken Unit

Tests,” in Proceedings of the 24
th
 IEEE/ACM

International Conference on Automated Software

Engineering, Auckland, pp. 433-444, 2009.

[11] Deursen A. and Moonen L., “The Video Store

Revisited-Thoughts on Refactoring and Testing,”

in Proceedings of the 3
rd
 International

Conference on Extreme Programming and

Flexible Processes in Software Engineering,

Italy, pp.71-76 2002.

[12] Deursen A., Moonen L., Bergh A., and Kok G.,

“Refactoring Test Code,” in Proceedings of the

2
nd
 International Conference on Extreme

Programming and Flexible Processes in

Software Engineering, pp. 1-4, 2001.

[13] Dig D., Negara S., Mohindra V., and Johnson R.,

“Refactoring Aware Binary Adaptation of

Evolving Libraries,” in Proceedings of the 13
th

International Conference on Software

Engineering, Germany, pp. 441-450, 2008.

[14] Eclipse Project., available at:

http://www.eclipse.org, last visited 2011.

[15] Embarcadero Technologies., available at:

http://www.codegear.com/br/products/jbuilder,

last visited 2011.

[16] Fowler M., Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.

[17] George B. and William L., “An Initial

Investigation of Test Driven Development in

Industry,” in Proceedings of the ACM

Symposium on Applied SAC, pp. 1135-1139,

2003.

[18] Henkel J. and Diwan A., “CatchUp!: Capturing

and Replaying Refactorings to Support API

Evolution,” in Proceedings of the 27
th

International Conference on Software

Engineering ICSE’05, pp. 274-283, 2005.

[19] Jet Brains., Intellij idea, available at:

http://www.intellij.com/idea/, last visited 2011.

[20] Jiau H. and Chen J., “Test Code Differencing for

Test-Driven Refactoring Automation,” ACM

SIGSOFT Software Engineering Notes, vol. 34,

no. 1, pp. 1-10, 2009.

[21] JUnit., available at: http://www.junit.org, last

visited 2015.

[22] Kiran L., Lodhi F., and Basit W., “Test Code

Adaptation Plugin for Eclipse,” available at:

http://www.agilealliance.org/files/session_pdfs/T

APE.pdf, last visited 2012.

[23] Link J. and Frohlich P., “Unit Testing in Java:

How Tests Drive The Code,” available at:

http://booksite.elsevier.com/samplechapters/9781

558608689/01Preface_and_contents.pdf, last

visited 2003.

[24] Mens T. and Tourwe T., “A Survey of Software

Refactoring,” IEEE Transaction Software

Engneering, vol. 30, no. 2, pp. 126-139, 2004.

[25] Meszaros G. and Fowler M., XUnit Patterns:

Refactoring Test Code, Addison-Wesley, 2007.

[26] MirzaAghaei M., Pastore F., and Pezz M.,

“Automatically Repairing Test Cases for

Evolving Method Declarations,” in Proceedings

of IEEE International Conference on Software

Maintenance ICSM, Timisoara, pp.1-5, 2010.

[27] Misra S. and Cafer F., “Estimating Quality of

JavaScript,” the International Arab Journal of

Information Technology, vol. 9, no. 6, pp. 535-

543, 2012.

[28] Pipka J., “Refactoring in a Test First-World,”

avilable at: http://cf.agilealliance.org/articles/

system/article/file/967/file.pdf, last visited 2002.

[29] Soares G., Gheyi R., Massoni T., Corn´elio M.,

and Cavalcanti D., “Generating Unit Tests for

Checking Refactoring Safety,” available at:

http://www.lbd.dcc.ufmg.br/colecoes/sblp/2009/0

14.pdf, last visited 2009.

[30] Streckenbach M. and Snelting G., “Refactoring

Class Hierarchies with Kaba,” ACM SIGPLAN

Notices-OOPSLA '04, vol. 39, no. 10, pp. 315-

330, 2004.

[31] Sun Microsystems, Netbeans ide., available at:

http://www.netbeans.org/, last visited 2011.

[32] Zaidman A., Rompaey B., Demeyer S., and

Deursen A., “Mining Software Repositories to

Study Co-Evolution of Production and Test

Code,” in Proceedings of the 1
st
 International

Conference on Software Testing, Lillehammer,

pp. 220-229, 2008.

84 The International Arab Journal of Information Technology

Wafa Basit is a PhD candidate in the Department of

Computer Science at the National University of

Computer and Emerging Sciences, Pakistan. Her

research interests include empirical software

engineering, formal aspects of software evolution and

maintenance. She believes that the software industry

does not provide adequate training to individuals so

that they can apply latest techniques to reduce the

development effort and improve software quality. She

is committed to contribute in the area of software

refactoring such that there is enough literature and

guidelines for the developers to properly refactor the

software.

Fakhar Lodhi is a professor and

dean at GIFT university, Pakistan.

Over the last 25 years, he has spent

his time evenly in the industry and

academia. He has been linked with

some of the leading software houses

in Pakistan in various capacities and

his industrial experience spans almost all aspects

including design and architecture, project management,

and setting-up and running software houses. His areas

of interest include offshore development processes,

software metrics, object oriented methods, and

teaching of software engineering.

Usman Bhatti is co-founder and

technical lead at Synectique, France.

He obtained his PhD from France

and held the position of Assistant

Professor at NUCES, Pakistan

before returning to France in the

RMod research team in INRIA for

post-doctorate. His research interests include software

understanding, maintenance, visualization, and

software refactoring. Currently, he leads software

development at Synectique, a startup offering

dedicated tools for software analysis. Usman Bhatti

strongly believes that the gulf between academic and

industrial world should shrink so that academic world

gets to work on real problems and industrial world gets

its difficult problems solved.

