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Abstract: Optimizing threshold value of wavelet coefficient is an important task in speckle noise reduction in the wavelet 
domain. Without proper selection of threshold value image information may be lost, which is unwanted. In this paper we 
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1. Introduction 

Image denoising is one of the most significant and 
fundamental tasks for image preprocessing. The aim of 
the image denoising algorithm is to reduce the noise 
level as well as preserving the important image 
features or information. Speckle is a particular kind of 
multiplicative noise which occurs in images obtained 
by coherent imaging systems like ultrasound. It tends 
to degrade the resolution and contrast of ultrasound 
images, thus may lead to eliminate some useful and 
important diagnostic information. In the recent years 
there has been a fair amount of research on wavelet 
thresholding for signal denoising because wavelet 
provides appropriate basis for separating noise signal 
from image signal. The main challenge of this method 
is to find an optimum threshold value because a small 
threshold value will pass all the noisy coefficients and 
hence the resultant denoised signal may still be noisy. 
On the other hand, a large threshold value makes more 
number of coefficients as zero which leads to smooth 
signal and destroys details and image may produce blur 
and artifacts. Many wavelet based thresholding 
techniques like hard thresholding, soft thresholding, 
VisuShrink, SureShrink, BayesShrink and Bayes 
thresholding [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16] have 
proved better efficiency in image processing. Bayes 
thresholding is selected by maximum likelihood 
estimation. 

Fisher Discriminant Analysis (FDA) [2] has been 
widely applied in pattern recognition and 
classification. For that it is sometime necessary for 
finding threshold value. In papers [2, 15]  FDA  is used  

for selecting optimum threshold value for pattern 
recognition and classification. In [17] wavelet based 
denoising preprocessing with FDA scheme is proposed 
for fault diagnosis. In this paper we proposed FDA 
based thresholding method for denoising speckle noise 
of different images. Figure 1 shows a simple flow 
diagram of our system. 

 

Figure 1. Block diagram of the proposed FDA technique for 

accurate speckle noise reduction and the best edge preservation 

approach for ultrasound image. 

The paper is organized as follows: In section 2, we 
define the ultrasound speckle suppression problem by 
outlining the speckle noise model and the FDA. 
Section 3 describes wavelet transformation and 
wavelet shrinkage. Section 4 the numerical 
implementation scheme of the proposed FDA optimal 
threshold method is presented. Section 5 presents the 
evaluation criteria for checking the filter performance. 
Section 6 compares the performance of the proposed 
method with other existing speckle noise reduction 
methods. 

2. Theoretical Background 

2.1. Speckle Noise Model 

Denote by a noisy observation I(x, y) (i.e., the recorded 

ultrasound image) of the Two-Dimensional (2D) 

function f(x,y) (i.e., the noise-free image that has to be 

recovered) and by ηm(x,y) and ηa(x,y) the corrupting 
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multiplicative and additive speckle noise components, 

respectively. One can write: 
 

  m aI(x, y) = f(x, y) × η (x, y) + η (x, y)                   (1) 
 

Generally, the effect of the additive component of the 

speckle in ultrasound images is less significant than the 

effect of the multiplicative component. Thus, ignoring 

the term ηa(x, y), one can rewrite Equation 1 as: 
 

      mI(x, y) = f(x, y) × η (x, y)               (2) 
 

To transform the multiplicative noise model into an 

additive one, we apply the logarithmic function on 

both sides of Equation 2. 

 

2.2. Fisher Discriminant Analysis 
 

FDA locates directions efficient for discrimination by 

yielding the maximum ratio of between-class scatter to 

within-class scatter. For each image Fisher Linear 

Discriminant (FLD) finds a projection orientation of 

intensity by which two classes (object and background) 

are well separated. For any image, there is a set X 

including N intensity. 

                    X = { C1, C2} = { x1, x2, …, xn}                       
                                         n1 + n2 = N   

Where n1 and n2 are cardinality of subset C1 and 

subset C2 respectively. If we form a linear 

combination of the components of xi. We obtain: 
                  

    
T

i iy = w x                  (4) 
 

Of all the possible lines we would like to select the one 

that maximizes the separability of the scalars.  In order 

to find a good projection vector, we need to define a 

measure of separation. The mean vector of each class 

in x space and y space is:  

                 
i i

i

1
µ = xx Îω

N
∑                          (5) 

And  

        T T
i ii i

i i

1 1
µ = y = W x =W µyÎω xÎω

N N
∑ ∑ɶ                           

 

We can then choose the distance between the projected 

means as our objective function: 
  

T
1 2 1 2J(W) = µ - µ = W (µ - µ )ɶ ɶ            (7) 

 

However, the distance between projected means is not 

a good measure since, it does not account for the 

standard deviation within classes. Fisher suggested 

maximizing the difference between the means, 

normalized by a measure of the within-class scatter. 

For each class we define the scatter, an equivalent of 

the variance, as: 
                                       

         
2 2
i ii

s = (y - µ )yÎω∑ɶ ɶ                        

Where the quantity 
2 2

1 2( S S )+ɶ ɶ is called the within-
class scatter of the projected examples. The FLD is 
defined as the linear function WTx that maximizes the 
criterion function: 

                             

2

1 2
2 2

1 2

µ - µ
J(W ) =

S + S

ɶ ɶ

ɶ ɶ

 

Therefore, we are looking for a projection examples 
from the same class are projected very close to each 
other and, at the same time, the projected means are as 
farther apart as possible. To find the optimum W, first 
we define a measure of the scatter in feature space x: 

                   T
i i ii

s = (x - µ )(x - µ )xÎω∑                    (10) 
      

S1 + S2=SW                             (11)   

Where SW is called the within class scatter matrix. The 
scatter of the projection y can then be expressed as a 
function of the scatter matrix in feature space x: 
       

   
2 2 T T 2
i i ii i

T T T
i i ii

s = (y - µ ) = (W x -W µ )yÎω xÎω

= W (x - µ )(x - µ ) W = W S WxÎω

∑ ∑

∑

ɶ ɶ                         

 

                            
2 w

2 T
1 =

2
S +  W SS W   ɶ ɶ                              (13) 

Similarly, the difference between the projected means 
can be expressed in terms of the means in the original 
feature space: 

                     
2 T T 2

1 2 1 2

T T T
1 2 1 2 B

         ( µ - µ ) = (W µ -W µ )

=W ( µ - µ )( µ - µ ) W =W S W

ɶ ɶ     

The matrix SB is called the between class scatter. Note 
that, since SB is the outer product of two vectors, its 
rank is at most one.  We can finally express the fisher 
criterion in terms of SW and SB as: 

                                
T

B
T

W

W S W
J(W ) =

W S W

  

To find the maximum of J(W) we derive and equate to 
zero: 

           

T
B

T
w W

T T
B WT T

W B

T T
W B B W

W S Wd d
[J(W)] = = 0Þ

d dw W S W

d W S W d W S W
W S W - W S W = 0Þ

dw dw

W S W 2S W - W S W 2S W = 0

 
 
 

            

      

                

 

Dividing by  T
WW S W : 

 

       

T T
W B

B WT T
W W

B W

-1
W B

W S W W S W
S W - S W = 0Þ

W S W W S W

                  S W - JS W = 0Þ

                 S S W - JW = 0

   
   
   

                    

                            

Solving the generalized eigen value problem yields 
JWWSS BW =−1 : 

                             
T

* -1B
W 1 2T

W

W S W
W = argm ax S (µ - µ )

W S W

 
 
 

 
               

This is knows as FLD. 
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3. Wavelet Technique 

3.1. Wavelet Transform 

2D scaling and wavelet functions are used for wavelet 
transformation. The scaled and translated basis 
functions are: 

     j / 2 j j
j,m ,nf (x , y) = 2 f(2 x - m, 2 y - n)             

i j / 2 i j j
ju,m,nψ (x, y) = 2 ψ (2 x - m, 2 y - n)            

Where: i={H,V,D}. 

The Discrete Wavelet Transform (DWT) of function 
f(x, y) of size M×N then:  

         
M -1 N -1

f 0 j ,m,n0x=0 y =0

1
W (j , m, n) = f(x, y)f (x, y)

MN
∑ ∑           

           
M -1 N -1i i

ψ j,m,n
x =0 y =0

1
W (j, m, n) = f(x, y)ψ (x, y)

MN
∑ ∑                

Where: i={H,V,D}. 

We get four subband coefficient values from image for 

applying DWT. Those subbands are Approximation 

and Detail, Detail includes horizontal, vertical, 

diagonal. If we want to get the previous data then have 

to perform the inverse operation. The Inverse Discrete 

Wavelet Transform (IDWT) is: 

               f 0 j ,m,n0m n

¥ i i
ψ j,m,n

i =H,V ,D j = j m n0

1
f(x, y) = W (j , m, n)f (x, y)

MN

1
+ W (j, m, n)ψ (x, y)

MN

∑ ∑

∑ ∑ ∑ ∑

             

After execution of IDWT data will come back previous 

state and construct the original data. 
 

 

Figure 2. Two-level decomposition of Lena image. 

 

3.2. Wavelet Shrinkage 

Let W(.) and W-1(.) denote the forward and inverse 

wavelet transform operators. Let D(., λ) denote the 

thresholding operator with threshold λ. The practice of 

thresholding denoising consists of the following three 

steps: 

• Step 1: Y=W(x)  

• Step 2: Z=D(Y, λ)  

• Step 3: (Z)
1

Wx
−

=ˆ  

Hard thresholding and soft thresholding are only 
different in step 2. 

3.2.1. Hard Thresholding 
 

In the case of hard thresholding: 

                          Y if Y > λ
D(Y , λ)º

0 otherw ise





       

 

3.2.2. Soft Thresholding 
 

In the case of soft thresholding, or Wavelet shrinkage: 

                       sign(Y)( Y - λ) if Y > λ
D(Y,λ)º

0 otherwise





                  

3.2.3. Bayes Shrink 
 

The observation model is Y = X + V, with X and V 

independent of each other, hence: 
 

         
2 2 2

Y Xσ = σ + σ               (26) 

Where the noise variance σ2
 is estimated from the 

subband HH1 by the robust median estimator [14]: 
 

ij

ij 1

Median( Y )
, Y subband HH

0.6745
σ = ∈            (27) 

 

And 2
Yσ  is the variance of Y. Since, Y is modeled as 

zero-mean, 2
Yσ  can be found empirically by: 

     
n2 2

Y ij
i, j =1

1
σ̂ = Y

n
∑                         (28) 

Where n×n is the size of the subband under 

consideration. Thus: 

   
2

B X
X

σ̂
ˆ ˆT ( σ ) =

σ̂

                         

Where: 2 2
X Yˆ ˆ ˆσ = max(σ - σ , 0)         

                              

4. Proposed Method 

4.1. Objective Function 
 

Firstly discrete wavelet transform is applied on an 

image for creating the subband coefficient. An image 

is f(x, y) and the size of image is M×N then DWT is: 

                ψ

MN

M -1 N -1i i
ψ j,m,n

x =0 y =0

1
W (j, m, n) = f(x, y) (x, y)∑ ∑         

Where: i= {H,V,D} 

 
A3 H3 

H2 
 

H1 V3 D3 

V2 D2  

V1 D1 

Figure 3. Subbands of the 2D orthogonal wavelet transform. 

Where (H1, V1, D1); (H2, V2, D2) and (H3, V3, 

D3) are 1, 2 and 3 scale wavelet coefficient subband 

respectively. Individually each coefficient is denoted 

by ni. Total number of coefficient N = n0 + n1 + n2 + … 

 (21) 

 (22) 

 (23) 

  (24) 

(25) 

(30) 

(29) 

(19) 

(20) 
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+ nM. Now, we have to calculate each coefficient 

probability using below this equation: 

                                 i
i i

n
P = ; P 0

N
          

Where:
M

1i
i = 0

P =∑  

Suppose that the coefficients are divided into two 

classes C1 and C2 by a fixed value t; C1 is the set of 

coefficients with levels [0, 1, ..., L], and the rest of 

coefficients belong to C2. C1 and C2 normally 

correspond to the object class and the back ground one, 

or vice versa. Then, the probabilities of the two classes 

are given by within: 
 

    

L

1 i
i = 0

W ( L ) = P∑        

  
2 1W ( L ) = 1 - W ( L )  

The mean coefficients of the two classes can be 

defined as: 

 

L
i

1
i = 0

1

i P
µ =

W
∑                    

                                  M
i

2
i = L +1

2

iP
µ =

W
∑  

Corresponding class variances are given by: 

   

1

2
L2 i

1
i = 0

1

( i - µ ) P
σ =

W
∑        

    
2

M2 2 i
2

i = L + 1
2

( i - µ ) P
σ =

W
∑  

 

The within-class variance can be defined [12]: 
 

                   2 2 2
W 1 1 2 2σ = W σ + W σ                       

 

As we have seen in section 2.2, the FLD seeks 

directions efficient for discrimination by yielding the 

maximum ratio of between-class scatter to within-class 

scatter. Thus, Based on the function defined by 

Equation 9 the following criterion as objective function 

to evaluate the separability of the threshold at level L. 

2
1 2

2
W

(µ (L) - µ (L))
ρ(L) =

σ

 

Where: 2

2 2 2
W 1 1 2σ = W σ + W σ  

From Equation 33 we shall get FDA thresholding value 

T between two classes as follows. T can be used for 

separating two classes but, if we want to apply 

threshold value T for noise reduction then this type of 

thresholding can not be efficient for noise reduction. 

These situations we can overcome by applying the 

standard deviation and mean value ratio of the 

coefficient of any subband of the wavelet. Here we 

proposed the proper threshold value estimation method 

for speckle noise reduction in the wavelet domain. So, 

this method is given below. 

If the discrete wavelet transform of function is ξ (x, 
y) and the image size is F×H then the mean value of 

the wavelet coefficient is: 

                            i
c

1
µ = ξ (x , y )

F × H
∑                         

Where: i ={H,V,D} 

And the standard deviation of the wavelet coefficient 

is: 

                      

F 1 H 1 2

x 0 y 0
c

[ ( x , y ) ]c

F H

ξ µ
σ

− −

= =
∑ ∑ −

=
×

 

For the large FDA threshold value T huge amount of 

diagnostic information is lost. To remove this 

limitation we use mathematical operations between 

mean and standard deviation of wavelet coefficients 

with respect to FDA threshold value to obtain an 

optimal threshold value. The proposed optimal 

threshold value is: 
         

o p t i m a l

c

c

T
T =

σ

µ

            

Where:

 

σc > 0
µc

 

Now, we get optimal threshold value from Equation 36 

using FDA for speckle noise reduction of ultrasound 

images. We know ),( yxiξ  is the discrete wavelet 

coefficient and optimal threshold value is Toptimal. 

Optimal threshold operation on wavelet coefficient is 

shown below: 

                          If i

optim alξ (x , y) < T     i={H,V,D} 

                               then  i
ξ (x , y ) = 0   

                            End 
 

Table 1. For Liver ultrasound image. 

Method SNR EPF MSE 

FDA thresholding (T) 13.3880 0.1745 7.2077 

FDA optimal thresholding (Toptimal) 17.7252 0.6972 2.2166 

 

We use “Lena” image for testing the performance 

between FDA thresholding and FDA optimal 

thresholding. From Table 1 we see that FDA optimal 

thresholding exhibits better performance than FDA 

thresholding. Here we show the histogram comparison 

and efficiency of those threshold values.  

From Figure 4, we see that Figure 4-b lost its 

structural view but, Figure 4-c has a structural view 

with respect to original image. We observe that FDA 

optimal threshold show the better performance for 

edge preservation over existing FDA threshold. Very 

small amount of error occurred in the filtered image for 

FDA optimal thresholding technique and enhance the 

image clearly. From these measurements, we can 

comment that FDA optimal threshold performance 

significantly better than FDA threshold. 
 

(39) 

(36) 

(31) 

(35) 

(38) 

(32) 

(33) 

(34) 

(37) 
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   a) Original Lena image.            b) After FDA thresholding. 

 
c) After FDA optimal thresholding. 

Figure 4. Histogram of Lena image with FDA thresholding 

operation. 

4.2. Algorithm 
 

Following steps describe the proposed algorithm for 
image denoising: 
 

1. Let maxp=0, be the maximum value of the objective 

function. 
2. For k =0 to Maximum of coefficient value.  
3. Compute the objective function value corresponding 

to the coefficient value k: 

                                 I f  max < ρ(k)ρ           

                                           then ρmax = ρ(k)  

                                                    T= k 
                                    End 

4. The optimal threshold value estimation for 

denoising in wavelet field: 

o p t i m a l

c

c

T
T =

σ

µ

 

Where: σc > 0
µc

 

5. Wavelet coefficient is denoted by Wc and Optimal 

threshold value performance is: 

                                 If Wc< Toptimal 
                                    then Wc=0 
                                End 

 

5. Evaluation Criteria 
 

We observe the performance by apply Signal to Noise 

Ratio (SNR), Mean Square Error (MSE) and Edge 

Preservation Factor (EPF) parameter [14].            

Signal to Noise Ratio (SNR):  

              
2M N

x =1 y =1 d
2M N

x =1 y =1 d

(I (x, y) - I(x, y))
SNR = -10log10

(I (x, y))

∑ ∑

∑ ∑

 
 
 

  

The edge preservation ability of the filter is compared 

by EPF and is computed using EPF:  

       d d

2 2
d d

(∆ I - ∆ I )(∆ I - ∆ I )
E PF =

(∆ I - ∆ I ) (∆ I - ∆ I )

∑

∑
        

Where ∆I and ∆Id are the high pass filtered versions of 

images I and Id, obtained with a 3×3 pixel standard 

approximation of the Laplacian operator. The larger 

value of EPF means more ability to preserve edges. 

MSE:   

           
2M -1 N -1

x =0 y =0 d

1
MSE = (I(x, y) - I (x, y))

M × N
∑ ∑

 
  

     (42)   

Where the image size is M × N. x means row, y means 

column, I means original image and Id  means filtered 

image. 

 

6. Experimental Result 

The proposed algorithm has been applied to 2D 

ultrasound image with have been corrupted by 

multiplicative noise (speckle noise of variance 0.004). 

The computation is carried out on MATLAB 

7.12.0.635(R2011a) in a Core 2 duo 2.33GHz and 1GB 

RAM desktop having a Windows operating system. 

We choose four images (e.g., Cameraman, Lena, 

Kidney, Liver) for testing the performance of the 

proposed algorithm. Our proposed algorithm is 

compared with existing method which is shown in 

Tables 2 and 3 and Figures 8, 9 and 10 respectively.  
 

Table 2. For cameraman and lena images. 

Method 
Cameraman Lena 

SNR EPF MSE SNR EPF MSE 

Wavelet Hard 

Threshold 
24.0790 0.3781 6.8536 22.3069 0.2273 5.8765 

Wavelet  Soft 

Threshold 
24.3232 0.4052 6.4791 22.8611 0.2892 5.1722 

Bayesian 

Threshold 
25.3662 0.5122 5.0974 23.8748 0.4370 4.0986 

FDA 

Denoising 
27.9296 0.7129 2.9955 26.5587 0.6949 2.9883 

 
Table 3. For ultrasound kidney and liver images 

Method 
Kidney Liver 

SNR EPF MSE SNR EPF MSE 

Wavelet Hard 

Threshold 
8.5828 0.2554 4.7968 14.6471 0.3443 4.9520 

Wavelet Soft 

Threshold 
8.5253 0.2532 4.8029 14.6147 0.3636 4.9625 

Bayesian 

Threshold 
8.5949 0.3471 4.5668 14.6950 0.4622 4.8874 

FDA 

Denoising 
11.1302 0.5934 2.7511 17.7252 0.6972 2.2166 

 

Experimental numerical results show the improved 

speckle noise reduction capabilities of the proposed 

FDA optimal threshold based filtering compared to the 

classical methods. From Tables 2 and 3, we see that 

our proposed filter effectively and properly remove 

speckle noise from ultrasound images because a small 

amount of error is occurred in the filter image and the 

proposed method is shown the mentionable edge 

preservation. 

Histogram of the wavelet coefficient is given below: 
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1 scale horizontal 1 scale vertical 1 scale diagonal 

   
2 scale horizontal 2 scale vertical 2 scale diagonal 

  

a) Histogram of Cameraman image. 

1 scale horizontal 1 scale vertical 1 scale diagonal 

 
2 scale horizontal 2 scale vertical 2 scale diagonal 

  

b) Histogram of Lena image. 

1 scale horizontal 1 scale vertical 1 scale diagonal 

2 scale horizantal 2 scale vertical 2 scale diagonal 

 

c) Histogram of Kidney image. 

1 scale horizantal 1 scale vertical 1 scale diagonal 

2 scale horizantal 2 scale vertical 2 scale diagonal 

 

d) Histogram of Liver image. 

Figure 5. Histogram of the wavelet coefficients of four test images.  

Figure 5 mainly depicts the coefficient variation of 

the wavelet domains by the histograms. We observe 

from these histograms that the coefficient variation of 

the diagonal subband is always smaller than other 

Detail. Diagonal subbands are more sensitive for 

optimal threshold value estimation and noise analysis 

or reduction.   

Probability density curve of original image and filter 

image is given below: 

 
    Original image     Filter image 

  
a) Probability density curves of Cameraman image. 

       Original image       Filter image 

  

b) Probability density curves of Lena image. 

Original image   Filter image 

  
c) Probability density curves of Kidney image. 

   Original image    Filter image 

  
d) Probability density curves of Liver image. 

Figure 6. Probability density curves of four test images. 

 

We can see that from the probability density curves 

Figure 6 of original and filter images, very small 

change between two curves. So, we can say that a 

small amount of information is lost and very small 

amount of error is occurred in the filter image. 

Naturally filter image is so structural that means the 

edge preservation and smoothness of the filter image is 

really good with respect to original image. 

Mean and variance curves of two classes (e.g. 

between class scatter, within class scatter) only for 

diagonal (D) subbands are given below. 
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Figure 7. Mean and variance curve of diagonal coefficient of 

Cameraman image.  
 

Figure 7 is used for measuring the central tendency 
to the natural or original structure of the filtered data of 
between class scatter and within class scatter using 
mean value and variance.  

Visual quality comparison is given below for 2 
levels: 
 

  
a) Lena noisy image. b) Hard Thresholding. 

  

c) Soft Thres2holding. d) BayesShrink. 

  

e) Bayesian Thresholding. f) FDA Denoising. 

Figure 8. Visual comparison of Lena image after execution some 

existing state-of-the-art filters and our proposed filter on Lena 
noisy image. 

  

a) Kidney ultrasound noisy image. b) Hard Thresholding. 

  

c) Soft Thresholding. d) BayesShrink. 

  

   e) Bayesian Thresholding.   f) FDA Denoising. 

Figure 9. Visual comparison of Kidney ultrasound image after 

execution some existing state-of-the-art filters and our proposed 

filter on Kidney ultrasound noisy image. 

 

  

a) Liver ultrasound noisy image. b) Hard Thresholding. 

  

c) Soft Thresholding. d) BayesShrink. 

  

e) Bayesian Thresholding. f) FDA Denoising. 

Figure 10. Visual comparison of Liver ultrasound image after 

execution some existing state-of-the-art filters and our proposed 

filter on Liver ultrasound noisy image. 

 

From Figures 8, 9, and 10, proposed filtered image 
visual quality is absolutely good because our proposed 
algorithm shows better performance for speckle noise 
reduction. From the observation of the proposed 
filtered image, we see that it is so smooth and enhance 
over existing despeckle methods images and its has no 
any checker board and blurring effect in the 

 

a) Mean curves of Cameraman image for the first level diagonal. 

 

b) Variance curves of Cameraman image for the first level diagonal. 

 

c) Mean curves of Cameraman image for the second level diagonal. 

 

d) Variance curves of Cameraman image for the second level diagonal. 
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homogeneous regions but preserve edges  significantly 
without destroying vital information of the image. 

 

7. Conclusions 

We have proposed an effective method for speckle 
denoising via wavelet transformation using FDA 
proposed optimal threshold value. Our method exhibits 
better performance in comparison to existing methods 
for speckle noise reduction, edge preservation, visual 
quality and mean squared error. Our proposed method 
is especially effective for highly inhomogeneous image 
and can be used widely for speckle noise reduction of 
speckle affected images.  
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