
550 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

Solving the n-Queens Problem Using a Tuned

Hybrid Imperialist Competitive Algorithm

Ellips Masehian
1
, Hossein Akbaripour

1
, and Nasrin Mohabbati-Kalejahi

2

1
Industrial Engineering Department, Tarbiat Modares University, Iran

2
Faculty of Industrial Engineering, Amirkabir University of Technology, Iran

Abstract: The n-queens problem is a classical combinatorial optimization problem which has been proved to be NP-hard. The

goal is to place n non-attacking queens on an n×n chessboard. In this paper, the Imperialist Competitive Algorithm (ICA),

which is a recent evolutionary metaheuristic method, has been applied for solving the n-queens problem. As another variation,

the ICA was combined with a local search method, resulting the Hybrid ICA (HICA). Since, the parameters of heuristic and

metaheuristic algorithms have a great influence on the performance of the search, parameter tuning is used for handling the

problems in an efficient manner. Hence, a TOPSIS-based parameters tuning is proposed, which not only considers the number

of Fitness Function Evaluations (FFE), but also aims to minimize the running time of the presented heuristics. In order to,

investigate the performance of the suggested approach, a computational analysis on the n-queens problem was performed.

Extensive experimental results showed that the proposed HICA outperformed the basic ICA in terms of average runtimes and

average number of FFE. The developed algorithms were also compared to the Cooperative PSO (CPSO) algorithm, which is

currently the best algorithm in the literature for finding the first valid solution to the n-queens problem, and the results showed

that the HICA dominates the CPSO by evaluating the fitness function fewer times.

Keywords: n-queens problem, ICA, local search, parameter tuning, TOPSIS method.

Received May 20, 2012; accepted May 13, 2013; published online March 13, 2014

1. Introduction

The n-queens problem is a classical combinatorial

optimization problem in Artificial Intelligence [7]. The

objective of the problem is to place n non-attacking

queens on an n×n chessboard by considering the chess

rules. Although, the problem itself has an

uncomplicated structure, it has been broadly utilized to

develop new intelligent problem solving approaches.

Despite the fact that the n-queens problem is often

studied as a ‘mathematical recreation’, it has found

several real-world applications such as practical task

scheduling and assignment, computer resource

management (deadlock prevention and register

allocation), VLSI testing, traffic control,

communication system design, robot placement for

maximum sensor coverage, permutation problems,

parallel memory storage schemes, complete mapping

problems, constraint satisfaction, and other physics,

computer science and industrial applications [19]. The

variety of these applications indicates the reason of the

wide interest on this well-known problem.

The earliest paper on the general n-queens problem

was presented by Lionnet [14], and the first proof of

the possibility of placing n non-attacking queens on an

n×n chessboard is credited to Pauls [17]. A thorough

review on the problem and its applications is presented

in [4]. The n-queens problem belongs to the class of

Constraint Satisfaction Problems (CSP), and is known

as an NP-hard problem [10].

There are three variants of the n-queens problem [1]:

Finding all solutions of a given n×n chessboard,

generating one or more, but not all solutions, and

finding only one valid solution. In the first variant,

finding all solutions may be possible for small sizes,

but the number of feasible solutions increases

exponentially with the problem size, such that the

largest instance solved to date is for n = 26 with a total

number of 2.23×10
16

 solutions, calculated within 271

days on parallel supercomputers in [20]. A solution

to the 8-queens problem (out of 92 solutions) is

illustrated in Figure 1, with the permutation presented

as (5, 1, 8, 4, 2, 7, 3, 6).

Figure 1. A solution to the 8-queens problem.

According to the extensive bibliography of n-queens

problems in [13] many mathematical and statistical

techniques, heuristic and metaheuristic algorithms, both

exact and approximate, have been proposed for solving

the problem [7, 15, 18].

Solving the n-Queens Problem Using a Tuned Hybrid Imperialist Competitive Algorithm 551

The main advantage of metaheuristics compared to

exact methods is their ability in handling large-scale

instances in a reasonable time [23], but at the expense

of losing a guarantee for achieving the optimal

solution. Therefore, due to the NP-hardness of the n-

queens problem, metaheuristic techniques are

appropriate choices for solving it.

In designing met heuristics two criteria are

important that create two different classes of

algorithms: Exploitation (intensification) versus

exploration (diversification) [21]. The first class is the

algorithms which are able to intensify the search in

local regions. They are called Single-solution based

metaheuristic (S- metaheuristic), and improve a single

solution in solving an optimization problem.

Population based metaheuristic (P-metaheuristic) are

the second class, which explore the search space and

introduce diversity in found solutions. Simulated

Annealing (SA) and Tabu Search (TS) are examples of

S-metaheuristic, and Genetic Algorithm (GA),

Differential Evolution Algorithm (DEA) and Ant

Colony Optimization (ACO) are examples of P-met

heuristics, which have been used for solving n-queens

problem in the literature. For instance, Homaifar et al.

[8] determined how well the operators of GA handled

very difficult combinatorial and constraint satisfaction

problems such as the n-queens problem. Results are

presented for n<200. Also, three metaheuristic

algorithms (SA, TS and GA) are used to solve the n-

queens problem by Martinjak and Golub [15]. They

presented test results and upper bound complexity for

the problem. Many problem instances with large

dimensions are solved and the efficiencies of

algorithms are compared.

Dirakkhunakon and Suansook [6] compare the

results of the classical SA algorithm with Iterative

Improvement Simulated Annealing (IISA) algorithm

for the n-queens problem. The numerical results show

that the modified scheme provides better results than

the classical algorithm. Khan et al. [12] proposed a

solution for the n-queens problem based on ACO. The

proposed solution is applied to 8-queens problem and

they supposed that it can very easily be extended to the

generalized form of the problem for large values of n.

Their paper contains detailed discussion of the problem

background and complexity, ACO and experimental

graphs.

In this paper, the Imperialist Competitive Algorithm

(ICA) evolutionary method developed in 2007 is

applied for the first time to solve the third variant of

the n-queens problem, that is, to find the first

encountered valid solution. Also, the ICA was

combined with a local search, resulting in the Hybrid

ICA (HICA) method. Because heuristics are parameter

sensitive for finding the best solution, a parameter

tuning approach based on the TOPSIS method is

proposed to obtain the optimal set of parameters. It

follows two goals of reducing the number of Fitness

Function Evaluation (FFE) and runtime for solving the

problem. Using the tuned parameters, HICA

outperformed the original ICA in terms of average

runtimes and average number of FFE.

The rest of the paper is organized as follows:

Section 2 presents the basic ICA and its components

for solving n-queens problem, section 3 presents the

details of the HICA method, and section 4 provides

TOPSIS-based parameter tuning. The numerical results

of Design of Experiments to find the best setting of

alternative parameters, as well as comparison between

the performance of basic ICA and the suggested HICA

for various sizes of the problem are presented in

section 5. Finally, conclusions are in section 6.

2. The Basic Imperialist Competitive

Algorithm

The ICA was first introduced by Atashpaz-Gargari and

Lucas [3] as an Evolutionary Computation method

based on a social-political evolution. The ICA begins

with generating an initial population of ‘countries’

(counterparts of chromosomes in GAs or particles in

PSO). Then, according to a fitness function value,

some of the best countries are determined as

‘imperialists’, and remaining ones as the ‘colonies’ of

these imperialists, which altogether form some

‘empires’.

Assimilation and Revolution are the two main

operators of this algorithm: The colonies of each

empire get closer to its imperialist by the assimilation

operator (a concept akin to the recombination operator

in other evolutionary algorithms), and random changes

happen to the colonies according to the Revolution

operator (a concept akin to the mutation operator in

other evolutionary algorithms) which may modify the

position of colonies in the search space. These

operators may improve the solutions of the problem

and increase the power of the colonies to take the

control of the empire. If so, they swap their positions

with their imperialists.

Imperialistic competition among these empires is

another part of the ICA, which forms the basis of this

evolutionary algorithm. During this competition,

powerful empires survive and take possession of the

colonies of weaker empires. This procedure eliminates

all the imperialists except for one, which yields the

final solution. The details of the algorithm’s steps

tailored for the n-queens problem are described below.

2.1. Generating Initial Empires

In the n-queens problem, each country is represented

by a solution encoded in the form of a permutation

[π(1), π(2),..., π(n)], in which the value of π(i) indicates

the row number and i specifies the column number of a

queen on the chessboard as shown in Figure 1.

Through this scheme, we can easily generate initial

552 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

solutions with no two queens on the same row or

column, letting the conflicts occur merely along the

diagonals of the chessboard.

The algorithm starts by producing a population of

countries, which for the sake of improving the quality

of initial solutions, a large number of them are created

and then sorted in order of their objective function

values to form the initial population with a desired

size. From this new list, a number (say N) of them with

the highest qualities are considered as imperialists, and

the remaining solutions are sequentially assigned to the

imperialists as their colonies. In our problem the value

of a solution is equal to the number of queen attacks

(conflicts) and so lower values mean higher quality.

As an example, assuming that the sorted initial

population of size 16 with N = 3 imperialists is: [1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], the

resulting three empires with their imperialists shown in

bold will be {[1, 4, 7, 10, 13, 16]; [2, 5, 8, 11, 14]; [3,

6, 9, 12, 15]}.

2.2. Assimilation Within an Empire

In the real political world, imperialists try to promote

the life standards of their colonies by assimilating and

absorbing them. In the ICA, this fact is simulated by

moving each colony toward its respective imperialist.

For the assimilation phase, we have utilized two types

of Crossover operators: The Partially Matched

Crossover (PMX) and Order Crossover (OX).

In PMX operator, two genotypes (solution

encodings) are selected as parents, and two crossover

positions are picked randomly along the solutions.

Then, all chromosomes of Parent A lying between

these two points are exchanged with the chromosomes

of Parent B at the same positions, and vice versa.

For example, for the 8-queens strings in Figure 2,

taking the Parents A and B, the two crossover limits

are fixed at 4
th
 and 6

th
positions, and the dark area

indicates the pairs which must undergo exchange. As a

result, in both parents, the following swaps take place:

7↔4, 3↔1, and 8↔2, which create two new children.

Now, in our method, the first parent is permanently

assumed to be the imperialist solution, and the second

parent rotates among all colonies. Thus, the generated

offspring will somewhat inherit the nature and power

of their imperialist parent, which can be interpreted as

a kind of assimilation.

Figure 2. An example of parents and children in the PMX.

In the OX method, one offspring is generated from

two parents. First a substring from the Parent A (which

is an imperialist) is selected randomly and an offspring

is produced by copying the substring into its

corresponding position. Then, these selected elements

are deleted from the Parent B (a colony). The resulting

sequence contains the elements that the offspring

needs. The crossover is finished by placing the

remaining elements into the vacant positions of the

offspring from left to right, according to the order of

their appearance in the Parent B. This procedure is

demonstrated in Figure 3.

Figure 3. OX operator illustration.

Regardless of the type of applied crossover, the next

generation will be selected from the best solutions of

the pool, with the size of the population maintained.

2.3. Revolution Within an Empire

The Revolution operator brings about radical changes

in a colony in hope for a better fitness value and also

diversifying the population. This unary operator is

applied to colonies with a constant rate Revolution

Rate (RR) and acts like the mutation operator in GAs.

In our method the Revolution operator is

implemented by randomly swapping the values of

chromosomes at one or two positions. The colony is

updated if a better fitness value is obtained. Figure 4

shows an example of this operator for the 8-queens

problem.

Figure 4: An example of the revolution operator.

2.4. Power Struggle

While moving toward the imperialist, a colony may

achieve a position with lower cost (or equivalently,

higher power) than its imperialist. In such a case, the

imperialist will be toppled and superseded by that

colony. The colony becomes the new imperialist

starting from the next iteration. This act is similar to

shifting the best global experience (gbest) in the swarm

from a particle to another particle in the PSO method.

2.5. Imperialistic Competition

Through the imperialistic competition step, weaker

empires lose their power further by losing their

colonies, and powerful empires become more powerful

by owning new colonies.

The total power of an empire is calculated by adding

the power (i.e., fitness function value) of the

imperialist country to a percentage of the mean power

of its colonies. Mathematically:

Parent A: 8 7 2 5 1 4 6 3

Parent B: 2 5 8 7 4 1 3 6
Offspring: 2 8 7 5 1 4 3 6

Parent A: 2 4 6 7 3 8 5 1
Parent B: 8 5 3 4 1 2 7 6

Child 1: 8 7 6 4 1 2 5 3

Child 2: 2 5 1 7 3 8 4 6

Colony (state 0): 8 7 2 5 1 4 6 3
Colony (state 1): 8 7 3 5 1 4 6 2

Solving the n-Queens Problem Using a Tuned Hybrid Imperialist Competitive Algorithm 553

 1

in
j

i i i
ji

ξ
P(E) = P(I) + P(C)

n =
∑

in which P(Ei) is the power of Empire i, P(Ii) is the

power of the Imperialist country of Empire i, P(C
j

i) is

the power of the j-th colony of Empire i, ni is the

number of colonies in Empire i, and 0 < ξ < 1 is a

constant determining the importance and impact of the

colonies in each empire. We found ξ = 0.1 a proper

value as suggested by Nazari-Shirkouhi et al. [16].

For a minimization problem, the normalized total

power of Empire i is obtained by subtracting the lowest

power among all empires from its power, as in

Equation 2. Note that a high power corresponds to a

low cost:

{ }NP(E) = P(E) - min P(E)i i ii

Thus, the normalized total power of the weakest

empire will be zero, and for others, a positive value.

The Possession Probability (PP) of each Empire is

based on its total power and should be calculated at the

start of the imperialistic competition step, according to

Equation 3, in which N is the total number of empires:

i
i N

j
j =1

NP(E)
PP =

NP(E)∑

The PP is used to update the distribution of the

colonies among the empires. For each empire i, by

subtracting a uniform random number randi ∈ U(0, 1)

from its PPi, a new vector is formed, defined as:

 D = [PP1 − rand1, PP2 − rand2, ..., PPN − randN] (4)

In the vector D, the empire that has the least value

among others loses its weakest colony, which is

reassigned to the most powerful empire.

The Assimilation, Revolution, and Imperialistic

Competition steps are repeated until the weakest

empire loses all of its colonies, in which case it is

discarded and its imperialist becomes a colony of the

most powerful empire.

In our n-queens problem, the stopping criterion is

satisfied when there are no conflicts (attacks) among

the queens.

3. The Hybrid ICA

As described earlier, the ICA utilizes random numbers

in almost all of its steps: Initial population creation,

assimilation, revolution, and imperialistic competition.

This randomness can be quite effective in diversifying

the solutions and adequately exploring the search

space. However, we noticed that this fact weakens the

algorithm’s ability to intensify its search around a good

solution, which leads to a slow convergence to a

suboptimal solution.
As a result, we decided to add a local search

component to the ICA and reinforce its intensification

ability. This local search is applied on a solution to
improve it as much as possible (i.e., until reaching a
local optimum) through a neighborhood generation and
selection procedure.

A common method for generating neighbors of a
given solution is Random Swap, which exchanges the
places of two randomly-selected queens. This action
may or may not decrease the number of conflicts
among queens. So, to make the neighborhood
generation more goal-directed, we propose a new
variant of the swap operator, called Effective Swap,
which acts more intelligently than the Random Swap
since, it selects the exchange rows by also considering
the number of attacks rather than just choosing them
randomly. The following details illustrate the function
of this new operator.

The Effective Swap operator starts with counting

the number of conflicts on the main diagonal of the

chessboard. If this number is nonzero, it marks that

diagonal for further operations. Otherwise, it proceeds

with the sub diagonals immediately above and below

the main diagonal. Conflict counting is repeated for

these diagonals too, and if no conflicts are found, it

proceeds with farther sub diagonals parallel to the main

diagonal. In case that still no conflicts are identified,

the above procedure is repeated for the secondary

diagonal and its parallel sub diagonals until a

conflicting diagonal is found and marked for further

operations.

Next, suppose that the marked diagonal has m

conflicts. Then, the operator performs m-1 Random

Swaps, such that in each swap, one of the queens is

selected from the conflicting queens, and the other is a

randomly-selected queen not causing any conflict in

the marked diagonal. It is worthy to note that

performing an Effective Swap does not guarantee an

improvement in the fitness function; however, as

indicated by our extensive experiments it reduces the

number of conflicts far better than the Random Swap

operator.

As an example of Effective Swap, consider a

configuration of 8-queens displayed in Figure 5-a,

where there are m=2 conflicting queens on the marked

main diagonal, namely π(1) and π(8), of which one

queen is selected randomly, e.g., π(8). Now, another

queen which does not cause conflicts in this diagonal is

randomly selected, e.g., π(7), and the selected rows are

swapped by π(7) ↔ π(8), as shown in Figure 5-b.

After applying an Effective Swap, a neighbor

solution is generated, and we check whether any

improvement has occurred in the fitness function or

not. If yes, then this neighbor solution is kept;

otherwise, a new one is generated. This procedure

iterates until a stopping criterion is satisfied.

The stopping criterion contains a parameter T to

control the depth of the local search, set by:

 T = k · n (5)

(3)

(1)

(2)

554 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

a) Before applying the Effective

Swap on the chessboard.

b) After applying the Effective

 Swap on the chessboard.

Figure 5. Applying an effective swap as a neighborhood generation

method.

Where k is a constant and n is the size of the problem.

After each iteration of the local search, the value of T

is updated by:

 T = 0.99 · T (6)

The local search procedure iterates until T reaches a

lower bound like Tmin. On the other hand, the n-queens

problem has multiple optimal solutions (with a fitness

function value of zero, meaning no conflicts), and the

number of these solutions increases exponentially as n

grows. Therefore, if the local search is given more time

to transform an initial solution, it can converge to an

optimal solution much faster. For this purpose,

whenever the newly generated neighbor causes an

improvement in the fitness function value, a rewarding

mechanism is enforced to update the T by:

 T = 1.01 · T (7)

Note that, the 1.01 coefficient delays the convergence

and causes the search to deeply exploit seemingly good

solutions. As a result, such a dynamic definition of T

causes an effective search of the space, as the

algorithm spends more time on exploring an

appropriate solution, and less time on non-promising

ones.

We name the ICA with the abovementioned local

search procedure as “HICA”. Figure 6 shows the

flowchart of the HICA.

The HICA has another advantage over the basic

ICA: As noticed in Equation 4, the empire having the

largest value in the vector D will possess the weakest

colony of the weakest empire. On the other hand, we

know that the most powerful empire (e.g., E*) has the

largest PP index calculated in Equation 3. But, since

the vector D is obtained by subtracting random

numbers from the PPi indices, there is no guarantee

that the E* will still be selected for accommodating the

weakest colony.

Although, we used the Equation 4 for our basic ICA

to keep the authenticity of the algorithm presented by

Atashpaz-Gargari and Lucas [3] we discarded the

random number subtraction in Equation 4 in the HICA

and used the following vector D instead:

D = [PP1, PP2, ..., PPN] (8)

Figure 6. Flowchart of the HICA.

4. Parameter Tuning

As stated before, the parameters of metaheuristic

algorithms have a significant effect on the efficiency

and effectiveness of the search for a particular

problem. There may be many options for these factors

No

No

No

Yes

Yes

Compute the total cost of all empires

Pick the weakest colony from the weakest empire and

give it to the strongest empire

Yes

Exchange the positions of that colony

and the imperialist

Move the colonies to their relevant

imperialist

Initialize the empires

Begin

Is there a colony in an empire that

dominates its imperialist?

Is there an empire with no

colonies?

Eliminate this empire

Stopping condition

satisfied?

Unite similar empires

I =1

I ≤ Pop_size

 No

I =I +1

S = Country (I)

Substitute S with its best neighbor S′ using the

Effective Swap and repeat until T < Tmin

Is the cost of S′ = 0?

No

Yes

Yes

Output

Solving the n-Queens Problem Using a Tuned Hybrid Imperialist Competitive Algorithm 555

for a given problem. Therefore, using an appropriate

approach like parameter tuning in order to find the best

choice from many alternatives can produce better

solutions for the given problem. In this section, some

levels of the parameters for the ICA and HICA are

introduced. There are two goals in solving the n-

queens problem by the proposed algorithms: Reducing

the number of FFE and reducing the runtime. The

TOPSIS method is used to cope with both objectives at

the same time. Finally, the results of the TOPSIS-based

parameter tuning are displayed for both algorithms.

4.1. Parameters Levels in ICA

Four factors are considered as the most important
parameters in the two algorithms. The first is the initial
population which is randomly generated and then 10
solutions are considered as initial solutions, divided
into empires and colonies. It’s possible levels are {100,
300}. The second is the crossover type in two levels
{PMX, OX}. Third is the RR presented in four levels
{0.3, 0.4, 0.5, 0.6}, and the fourth parameter (k) is
used only in the HICA with the levels {1, 5, 10, 20}.

4.2. TOPSIS

Hwang and Yoon [9] developed the TOPSIS to assess
alternatives prior to multiple-attribute decision making.
In the TOPSIS, the distance to the ideal solution and
negative-ideal solution according to each alternative is
considered, and then the best alternative is selected
which is the nearest one to the ideal solution and the
farthest one from the negative-ideal solution. The
TOPSIS structure for aggregating the more important
objectives in solving the n-queens problem can be
explained as follows [22]:

a. Alternative Performance Matrix Creation: The
structure of the alternative performance matrix can
be expressed as follows:

 FFE Runtime

11 211

12 222

...

1 2

x xR

x xR
D

x xRm m m

=

In the proposed problem, the number of FFE and
runtime are the objectives (Xj, j = 1, 2) which are
related to alternative performances. Possible
alternatives (run experiments) are denoted as Ri, i = 1,
..., m; and xij is the performance of Ri with respect to
the objective Xj.

b. Normalization of the Performance Matrix: For this
purpose, the transformation Equation 10 is used, in
which pij represents the normalized performance of
Ri with respect to the objective Xj. The matrix form
of pij is represented as P, with i = 1, 2, ..., m and j =
1, 2.

x ij

P = p , p =ij ij 2m x iji =1∑

c. Multiplying the Performance Matrix by its Related

Weights: Each column of the matrix P is multiplied

by weights associated with each objective FFE

(wFFE) and runtime (wT). The weighted

performance matrix V is obtained as follows:

FFE 11 T 12 11 12

FFE 21 T 22 21 22

FFE m1 T m2 m1 m2

w p w p v v

w p w p v v
V = =

...

w p w p v v

in which vij represents the weighted normalized
performance of Ri with respect to Xj for i = 1, 2, …,
m and j = 1, 2.

d. Determination of Ideal and Negative-Ideal

Solutions: The ideal value set V
+
 and the negative-

ideal value set V
−
 are determined in Equations 12

and 13 for minimizing both objectives

simultaneously, in which J′ = { j = 1, 2 | vij, a smaller

response is desired}:

(){ } { }+ + +

V = minv | j J , i = 1, 2, ..., m = v ,v1 2ij
′∈

(){ } { }- - -

V = maxv | j J , i = 1, 2, ..., m = v ,v1 2ij
′∈

e. Calculation of Separation Measures: The separation
of each alternative from the ideal solution (Si

+

), as
well as the separation of each alternative from the
negative-ideal solution (Si

−

) is given as follows:

()
22

1j

S v vi ij j
=

+ += −∑ , ()
22

1

j

S v vi ij j
=

− −= −∑

f. Calculation of Relative Closeness to the Ideal
Solution and Ranking the Preference Order: The
relative closeness Ci

to the ideal solution can be
expressed as follows:

S iCi
S Si i

−
= + −+

Where Ci
lies between 0 and 1. The closer Ci is to 1,

the higher is the priority of the i-th run experiment.
Because of the multiple levels of each parameter, is

iC calculated as the mean of relative closeness to the
ideal solution for each parameter per level.
Numerical results of using the TOPSIS for the n-
queens problem with tuned parameter are presented
in the next section.

5. Experimental Results

It is clear from the Table 1 that the first two parameters

have 2 levels and last two factors have 4 levels. Thus, it

is required 2 × 2 × 4 × 4 = 64 experiments for the full

factorial design. But, considering the computational cost

and time and based on statistical theories, there is no

need to test all the combinations of factors. Therefore,

the Taguchi method is used to design the experiments.

The number of degrees of freedom should be calculated

in order to, select an appropriate Taguchi orthogonal

array. By considering 1 degree of freedom for the first

(9)

 (10)

(12)

(13)

(15)

(14)

 (11)

556 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

two parameters, 3 degrees of freedom for the last two

factors and 1 degree of freedom for the total mean, there

should be at least (2 × 1) + (2 × 3) + 1 = 9 experimental

runs. As a result, L16 (2
2
× 4

2
) is chosen as the orthogonal

array. The relative closeness to the ideal solution (Ci)

are calculated for each experiment as Table 1.

Table 1. Taguchi orthogonal array L16 (2
2 × 42).

No.
Initial

Population Size

Crossover

Type

Mutation

Rate
k Ci

1 1 1 1 1 0.89

2 1 1 1 2 0.61

3 2 2 1 3 0.31

4 2 2 1 4 0.00

5 1 2 2 1 0.88

6 1 2 2 2 0.45

7 2 1 2 3 0.31

8 2 1 2 4 0.40

9 2 1 3 1 1.00

10 2 1 3 2 0.69

11 1 2 3 3 0.41

12 1 2 3 4 0.24

13 2 2 4 1 0.77

14 2 2 4 2 0.56

15 1 1 4 3 0.38

16 1 1 4 4 0.40

C
1C =0.53

2C =0.51

1C =0.58

2C =0.48

1C =0.60

2C =0.62

3C =0.59

4C =0.53

1C =0.89

2C =0.58

3C =0.35

4C =0.26

For choosing the best level of each parameter, we

should find the Ci that is closer to 1. As can be inferred

from the Table 1, the parameters of the algorithms

were set as follows: Initial population size = 100,

Crossover type = PMX, RR = 0.4 and k = 1 (in (5)).

The algorithms with tuned parameters were coded in

Matlab
®
 and run on an Intel

™
 Core i7 2.00 GHz CPU

with 4.00 GB of RAM.

Tables 2 and 3 show the experimental results of

solving the n-queens problem at different sizes.

Considering the randomness of the methods, each

instance was run 10 times, and the mean and the

Standard Deviation (SD) of runtimes and two other

performance criteria, the FFE and Normalized

Convergence Curve Area (NCCA), are reported.

The FFE criterion measures the total number of FFE

during the whole search, and NCCA. The convergence

curve plots the best-found fitness function value at each

iteration, until the final solution is reached. In the n-

queens problem, this curve shows how the algorithm

reduces the number of conflicts during its execution till

it becomes zero. Figure 7 shows convergence curves of

the ICA for various sizes of the problem: n = 50, 100,

200 and 300. The number of conflicts and iterations are

displayed along the vertical and horizontal axes,

respectively. As can be seen, initial numbers of

conflicts were about half the sizes of the problems, and

larger problems took much more iterations to converge

than smaller instances.

Table 2. Average results of 10 runs of the ICA for various sizes of
the n-queens problem.

n
FFE

NCCA
Runtime (s)

Min Max Avg. Avg. SD

8 17 330 159 0.36 0.05 0.06

10 150 2315 785 2.17 0.14 0.13

25 1550 10880 6500 5.40 2.15 1.06

50 12215 116150 4402 10.95 26.48 17.43

100 105870 542720 280014 22.28 348.51 162.39

200 1022990 1882564 1558751 50.15 3284.22 303.54

300 2754111 4258966 3859979 143.51 21650.58 573.81

Table 3. Average results of 10 runs of the HICA for various sizes
of the n-queens problem.

n
FFE

NCCA
Runtime (s)

Min Max Avg. Avg. SD

8 0 445 96.3 2.20 0.05 0.05

10 21 940 408.3 11.33 0.14 0.11

30 184 5038 1657.6 13.74 0.67 0.62

50 323 5882 2327.6 11.61 1.20 1.03

75 525 5708 2265.2 11.21 1.28 0.88

100 1374 7006 2932.7 8.81 1.98 1.29

200 6060 9405 8893.6 13.70 9.38 1.10

300 10805 14624 12302.6 12.79 19.60 2.74

500 13717 24906 20962.4 16.47 148.74 29.82

750 23279 42164 33767.5 13.65 616.17 254.26

1000 31701 74877 43272.4 15.80 984.13 301.12

2000 79984 101571 89827.1 21.93 7023.87 545.54

N

u
m

b
er

 o
f

co
n
fl

ic
ts

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

Number of iterations

n=50

n=100

n=200

n=300

 Number of iterations

Figure 7. Convergence curves for the ICA run on n = 50, 100, 200,

and 300 queens.

Inspired by the behavior of the convergence curve,

we designed a new performance criterion to compare

the basic and HICA methods: The NCCA. In fact, by

calculating the area under a convergence cure we can

infer how fast a method reduces the number of

conflicts. A relatively small area implies that the

algorithm succeeded in reducing the number of

conflicts at its early iterations. The NCCA measures

the area under the convergence curve with the number

of conflicts plotted along the vertical axis and the

number of FFE along the horizontal axis; but since for

large problem sizes the area becomes too large, we

divided it to a factor of n
2
and eliminated the impact of

problem size, obtaining a normalized value.

Table 2 shows that the ICA spent about 6 hours of

computation averagely for the 300-queens problem,

Solving the n-Queens Problem Using a Tuned Hybrid Imperialist Competitive Algorithm 557

and so we stopped solving larger instances. On the

other hand, the HICA performed surprisingly well and

could find a solution to the 2000-queens problem in

less than 2 hours. The number of FFE in the HICA

method was also significantly less than that of the

basic ICA method. For the NCCA criterion the

behaviors are a bit different: For small sizes the ICA

converges to a low number of conflicts faster than the

powerful HICA method, but then for n > 100 the HICA

regains its superiority (with smaller NCCA index).

This fact is due to the impact of the implemented local

search on the algorithm’s speed.

Figure 8 illustrates the superimposed convergences

of the two algorithms, which are plotted for n = 100 by

considering the best run in terms of convergence speed

out of 10 runs. Note, that here the horizontal axis

shows the number of FFE’s (and not iterations) since

the local search component in the HICA executes some

additional iterations which should not be compared to

the main iterations of ICA.

 N

u
m

b
er

 o
f

co
n
fl

ic
ts

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

Number of Fitness Function Evaluations (FFE)

HICA (NCCA=0.86)

ICA (NCCA=1.12)

 Number of Fitness Function Evaluation (FFE)

Figure 8. A comparison of convergence curves for basic and hybrid

ICAs on n = 100 queens.

5.1. Comparisons

In order to evaluate the efficiency of the presented

HICA method, we compared it with an algorithm that

had produced the best known results in finding the first

solution to the n-queens problem. This method is called

Cooperative PSO (CPSO) and is introduced in [2] for

solving permutation problems, including the n-queens

problem. Compared to the PSO method [11], the CPSO

uses parallel searching to reduce calculation time.

For solving the n-queens problem by using the

CPSO, an initial random population of particles is

generated, where each particle has initial information

about the locations of n-queens on an n × n chessboard.

Each particle of the population is divided into n equal

sub-swarms, and then each sub-swarm is changed into

one sub-particle. Sub-particles use the standard PSO to

update their velocities and positions according to the

best local experience of each sub-particle and the best

position for each particle among all particles.

Through a number of experiments, Amooshahi et al.

[2] compared the CPSO with implementations of

standard PSO, SA, TS and GA algorithms reported in

[15] and outperformed all those met heuristics in terms

of the number of FFE. The results of average FFE

values obtained by our proposed HICA and the CPSO

algorithms are reported in Table 4 and plotted in

Figure 9. It was observed that the HICA always

evaluated the fitness function fewer times than the

CPSO.

Table 4. Average number of FFEs for HICA and CPSO.

n HICA CPSO Improvement (%)

8 96.3 225.8 57.4

10 408.3 540.5 24.5

30 1657.6 2020.5 18.0

50 2327.6 2764.2 15.8

75 2265.2 3661.6 38.1

100 2932.7 5063.6 42.1

200 8893.6 9184.5 3.2

300 12302.6 14559.6 15.5

500 20962.4 23799.6 11.9

750 33767.5 34765.2 2.9

1000 43272.4 47299.8 8.5

2000 89827.1 95235.9 5.7

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

8 10 30 50 75 100 200 300 500 750 1000 2000

HICA CPSO

Figure 9. Comparison of the number of FFE versus the problem size

for the HICA and CPSO methods.

6. Conclusions

In this paper the ICA, which is a recent evolutionary
method, is used for finding the first encountered
solution to the n-queens problem. For improving the
performance of the algorithm a local search is
incorporated into the algorithm, which we call HICA.
Due to the effect of the initial factors of metaheuristic
on effectiveness of the algorithms, TOPSIS-based
parameter tuning is proposed to select the best set of
parameters for the algorithm. Experimental result
showed that the HICA is able to find the solution for a
given number of queens faster than the basic ICA and
can solve large instances through smaller numbers of
FFE. The HICA was also compared to the best
algorithm in the literature for solving this specific
problem (i.e., CPSO), and outperformed it in terms of
the number of FFE.

As a future work, the RR can be considered as an
adaptive parameter such that in initial iterations it takes
a relatively large value and decreases as the search
proceeds. The decreasing rate would be dynamic and
would depend on some information obtained from the

558 The International Arab Journal of Information Technology, Vol. 11, No. 6, November 2014

course of the search. As a result, more diversification
of solutions in the earlier iterations can be expected,
which may lead to faster convergence. Another
enhancement could be performing a landscape analysis
for the n-queens problem, which probably can explain
the reason of the significant improvement caused by
hybridizing the ICA with a simple local search
compared to the basic ICA.

References

[1] Abramson B. and Yung M., “Divide and Conquer

under Global Constraints: A Solution to the n-

Queens Problem,” Journal of Parallel and

Distributed Computing, vol. 6, no. 3, pp. 649-

662, 1989.

[2] Amooshahi A., Joudaki M., Imani M., and

Mazhari N., “Presenting a New Method Based on

Cooperative PSO to Solve Permutation

Problems: A Case Study of n-Queen Problem,” in

Proceedings of the 3
rd

 International Conference

on Electronics Computer Technology,

Kanyakumari, India, vol. 4, pp. 218-222, 2011.

[3] Atashpaz-Gargari E. and Lucas C., “Imperialist

Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic

Competition,” in Proceedings of IEEE Congress

on Evolutionary Computation, Singapore, pp.

4661-4667, 2007.

[4] Bell J. and Stevens B., “A Survey of Known

Results and Research Areas for n-Queens,”

Discrete Mathematics, vol. 309, no. 1, pp. 1-31,

2009.

[5] Campos V., Laguna M., and Mart R., “Context-

Independent Scatter Search and Tabu Search for

Permutation Problems,” INFORMS Journal on

Computing, vol. 17, no. 1, pp. 111-122, 2005.

[6] Dirakkhunakon S. and Suansook Y., “Simulated

Annealing with Iterative Improvement,” in

Proceedings of International Conference on

Signal Processing Systems, Singapore, pp. 302-

306, 2009.

[7] Draa A., Meshoul S., Talbi H., and Batouche M.,

“A Quantum-Inspired Differential Evolution

Algorithm for Solving the n-Queens Problem,”

the International Arab Journal of Information

Technology, vol. 7, no. 1, pp. 21-27, 2010.

[8] Homaifar A., Turner J., and Ali S., “The n-

Queens Problem and Genetic Algorithms,” in

Proceedings of IEEE Southeastcon, Birmingham,

USA, vol. 1, pp. 262-267, 1992.

[9] Hwang C. and Yoon K., Multiple Attribute

Decision Making-Method and Applications, A

State-of-the-Art Survey, Springer-Verlag, New

York, USA, 1981.

[10] Jagota A., “Optimization by Reduction to

Maximum Clique,” in Proceedings of IEEE

International Conference on Neural Networks,

San Francisco, USA, vol. 3, pp. 1526-1531,

1993.

[11] Kennedy J. and Eberhart R., “Particle Swarm

Optimization,” in Proceedings of IEEE

International Conference on Neural Networks,

Perth, Australia, vol. 4, pp. 1942-1948, 1995.

[12] Khan S., Bilal M., Sharif M., Sajid M., and Baig

R., “Solution of n-Queen Problem Using ACO,”

in Proceedings of the 13
th
 IEEE International

Multi-Topic Conference, Islamabad, Pakistan, pp.

1-5, 2009.

[13] Kosters W., “n-Queens Bibliography,” available

at: http://www.liacs.nl/~kosters/ nqueens/, last

visited 2012.

[14] Lionnet F., NouvellesAnnales de Mathématiques,

available at : http://archive.numdam.org/

ARCHIVE/NAM/NAM_1869_2_8_/NAM_1869

_2_8__529_0/NAM_1869_2_8__529_0.pdf, last

visited1869.

[15] Martinjak I. and Golub M., “Comparison of

Heuristic Algorithms for the n-Queen Problem,”

in Proceedings of the 29
th
 International.

Conference on Information Technology

Interfaces, Cavtat, Croatia, pp. 759-764, 2007.

[16] Nazari-Shirkouhi S., Eivazy H., Ghodsi R.,

Rezaie K., and Atashpaz-Gargari E., “Solving the

Integrated Product Mix-Outsourcing Problem

Using the Imperialist Competitive Algorithm,”

Expert Systems with Applications: An

International Journal, vol. 37, no. 12, pp. 7615-

7626, 2010.

[17] Pauls E., “Das Maximalproblem Der Damen Auf

Dem Schachbrete, II, Deutsche Schachzeitung,”

Organ fur das Gesammte Schachleben, vol. 29,

no. 9, pp. 257-267, 1874.

[18] Rivin I. and Zabih R., “A Dynamic Programming

Solution to the n-Queens Problem,” Information

Processing Letters, vol. 41, no. 5, pp. 253-256,

1992.

[19] San-Segundo P., “New Decision Rules for Exact

Search in n-Queens,” Journal of Global

Optimization, vol. 51, no. 3, pp. 497-514, 2011.

[20] Sloane N., “The Online Encyclopedia of Integer

Sequences,” available at:

http://oeis.org/A000170, last visited 2012.

[21] Talbi E., Metaheuristics from Design to

Implementation, John Wiley & Sons, USA, 2009.

[22] Tong L., Wang C., and Chen H., “Optimization

of Multiple Responses Using Principal

Component Analysis and Technique for Order

Preference by Similarity to Ideal Solution,”

International Journal of Advance Manufacturing

and Technology, vol. 27, no. 3-4, pp. 407-414,

2005.

[23] Yang X., Nature-Inspired Metaheuristic

Algorithms, Luniver Press, UK, 2010.

Solving the n-Queens Problem Using a Tuned Hybrid Imperialist Competitive Algorithm 559

Ellips Masehian is an assistant

professor at the Faculty of

Engineering, Tarbiat Modares

University, Iran. He received his

BSc and MSc degrees in industrial

engineering, both from Iran

University of Science and

Technology, Tehran, with honors, and a PhD degree

from Tarbiat Modares University in 2004. His research

is focused on applications of heuristic, metaheuristic

and intelligent methods to combinatorial optimization,

as well as single and multiple robot motion planning

problems. He has served in Editorial Boards of a

number of journals as member, reviewer, and guest

editor, and has been in steering and program

committees of many international conferences.

Hossein Akbaripour received his

BSc degree in engineering in 2010

from the University of Tabriz and a

MSc degree in industrial engineering

in 2012 from Tarbiat Modares

University. He has ranked first in

both undergraduate and graduate

levels. He is currently a PhD. student at Sharif

University of Technology, Iran. He has authored a

number of journal and conference papers in the fields

of combinatorial optimization and heuristic and

metaheuristic algorithms.

Nasrin Mohabbati-Kalejahi
received her BSc in industrial

engineering from University of

Tabriz, Iran, in 2010 and her MSc in

industrial engineering from

Amirkabir University of Technology,

Iran, in 2013 with a thesis titled

“Transportation scheduling in supply

chain environment with considering the maximum

supply of demand”. Her research interests include

applied operation research, mathematical

programming, sequencing and scheduling, heuristic

and metaheuristic algorithms, and supply chain

management.

