
452 The International Arab Journal of Information Technology, Vol. 11, No. 5, September 2014

Mining Frequent User Query Patterns from XML

Query Streams

Tsui-Ping Chang

Department of Information Technology, Ling Tung University, Taiwan

Abstract: An XML query stream is a massive and unbounded sequence of queries that are continuously generated at a fast

speed from users over the Internet. Compared with traditional approaches of mining frequent user query patterns in static

XML query databases, pattern mining in XML query streams is more challenging since several extra requirements need to be

satisfied. In this paper, a mining algorithm is proposed to discover frequent user query patterns over an XML query stream.

Unlike most of existing algorithms, the proposed algorithm works based on a novel encoding scheme. Through the scheme,

only the leaf nodes of XML query trees are considered in the system and result in higher mining performance. The

performance of the proposed algorithm is tested and analyzed through a series of experiments. These experiment results show

that the XSM outperforms other algorithms in its execution time.

Keywords: Frequent XML query pattern, XML query stream mining, encoding scheme, database.

Received May 25, 2012; accepted March 23, 2013; published online February 26, 2014

1. Introduction

XML query stream mining [1, 4, 11] has become a

more and more attractive research area in recent years

due to XML [8] has become the de facto standard

language for information exchange over the Internet.

An XML query stream is a massive and unbounded

sequence of queries that are continuously generated

from users to query XML data over the Internet. Due to

this reason, as compared with traditional XML query

pattern mining [5, 10, 12] in static databases, pattern

mining in XML query streams has several

requirements that need to be satisfied. For example,

each user query in the XML query stream can be

examined at most one time, that is, multiple scans of

data source is infeasible.
An XML query stream [2, 3, 6, 13] comprises a

continuous sequence of user queries which can be
represented by multiple trees. Document data
represented in XML comprise a sequence of possibly
nested tags which can be expressed by a tree structure.
Since XML data can be modeled as a tree, XML user
queries are treated as trees. For example in Figures 1
and 2, they show an XML tree and its corresponding
XML query tree. As an example of the XML tree
depicted in Figure 1, an XML element enclosed within
a pair of an opening tag and a closing tag is denoted by
its tag name with a suffix number for distinguishing
itself from other elements with the same tag name.
Therefore, XML user queries (i. e., XPath [9])
typically specify patterns of selection predicates on
multiple elements that have some specified
tree-structured relationships. The primitive
tree-structured relationships are parent-child and
ancestor-descendant.

For example in Figure 2, it shows a query tree

which is modeled by the XPath expression: Book [title

= ‘XML’]/ allauthor/ author [.=’john’]. This expression

matches author elements that: Have the string value

“john”., are descendants of book elements that have a

child title element whose value is “XML”.
Mining frequent XML user query patterns may be

used to enhance the query performance of XML
streams. Frequent XML query patterns can be used to
design an index mechanism or cache the results of
these patterns to reduce the unnecessary computation
and thus enhance the query performance. Using
frequent XML query patterns, the features (i. e.,
contents and structures) of query results (i. e., the
fragments of XML data in steams) are discovered and
thus a suitable index mechanism can be designed. On
the other hand, frequent XML query patterns can be
used to support for storing a collection of XML data’s
fragments which are the answers of XML query
patterns into a cache.

book

title

XML author1

john

allauthor year

author2

chapter

jane

2000 head1
section1

head2 section2origins

Figure 1. An XML tree.

Several methods [1, 4, 11] have been proposed for

mining frequent user query patterns over an XML

query stream. XQSMinerI is a one pass algorithm to

find out frequent user query patterns from XML query

Mining Frequent User Query Patterns from XML Query Streams 453

streams. XQSMinerII provides some control over the

error bound in the estimate. XQSMinerI treats the

stream of XML query trees as a stream of batches. This

is because it is very expensive to enumerate frequent

query patterns for all of query trees in a stream. In

addition, XQSMinerII adopts the framework [6] and

operates with two parameters, support σ and error ε,

and processes the XML query stream in batch. The

incoming stream is conceptually divided into buckets

and in every batch it processes a number of buckets of

query trees, where the number of buckets is dependent

on the size of buffer. The local mining result of every

batch is integrated into a data structure DTS which is a

set of entries of potential frequent query patterns.

In this paper, an efficient algorithm (namely XSM)

is proposed to mine frequent query patterns from XML

query streams. XSM utilizes the framework [6] for

approximate frequency count of query patterns. In

XSM, an encoding scheme (namely XSCode) to

represent an XML tree with its corresponding user

query trees is proposed. XSCode is more

space-efficient since it preserves the structure

information of an XML query tree by only recording

the codes of its leaf nodes. Through these codes, the

frequent query patterns are enumerated efficiently from

an XML query stream in XSM.

book

title

XML

john

author1

allauthor

Figure 2. An XML query tree.

The rest of this paper is organized as follows: Section 2
illustrates a tree model of XML data. Section 3
describes the details of XSM. Section 4 shows the
experimental results, and section 5 illustrates the
conclusion and further work.

2. Preliminaries

• Definition 1: An XML query can be modeled as an
unordered tree T =<N, E>, where N is the node set,
and E is the edge set. Nodes n∈N represent the
elements, attributes, and string values in an XML
query, and edges e ∈ E represents the parent-child
relationships denoted by “/”.

• Definition 2: Given an XML query tree T = <N, E>
and an XML query rooted subtree ti = <Ni, Ei>. ti is
considered to be the i

th
 rooted subtree of T iff there

exists:

Root(ti) = Root(T)

Where Root(ti) and Root(T) are the functions which

return the root nodes of ti and T respectively.

Ni ⊆ N, Ei ⊆ E

• Definition 3: An XML query stream, XQS = <T1,
T2, ..., Tn>, where n is the length of current stream,
that is, the number of query trees seen so far.

• Definition 4: Given an XML query stream XQS, a

minimum support value σ ranging from (0, 1], and

an error parameter ε ranging from (0, 1], construct

an algorithm to produce a set of frequent XML

query trees ti f along with their estimated

frequencies on request. For any XML query tree ti,

let counttrue(ti) denote the true frequency of ti, and

count(ti) denote the estimated frequency of ti. The ti

produced has the following guarantees:

1. For any ti in the current stream, if counttrue(ti) ≥ σ

× n, then we have ti ∈ f.

2. For any ti that is considered to be frequent, we

have counttrue(ti) ≥ (σ – ε) × n.

3. For any ti, its estimated frequency count(ti) ≥

counttrue(ti) – ε × n.

Definition 1 defines an XML query as a tree.
Definition 2 defines an XML query rooted subtree.
Definition 3 illustrates an XML query stream XQS
which contains multiple XML query trees. Each query
tree in XQS represents a transaction associated with its
transaction ID. For example in Figure 3, the XML
query stream XQS = <T1, T2, …, T100, T101, T102, T103,
T104, T105, ..., T200>, where T1, T2, …, T100, T101, T102, T103,
T104, T105, ..., T200 are the user query trees and with their
transaction IDs 1, 2, …, 100, 101, 102, ..., 200
respectively. Also, the length of XQS is equal to 200.

3. Mining Frequent Query Pattern Over

XML Query Streams

3.1. XSCode

XSCode encodes the nodes of an XML tree in an xy
coordinate system where xy are the coordinates of the
two-dimensional space. The following symbols T, r, k,

p, l, fc, and nc are used to represent the nodes in an
XML tree. Symbol T represents an XML tree, r
indicates the root node in T, k represents a node in T, p

indicates the parent node of k, l represents the left
sibling node of k, fc denotes the first child node of k,
and nc represent the child node of k expect the first
child fc. The encoding rules are described for the nodes
in an XML tree T and listed as follows:

1. For an XML tree T, the root node r is set on the

origin whose coordinates x and y are (0, 0).

2. For any node k in the tree T, if k is the fc node of its

parent node p and p’s coordinates are (xp, yp), then

k’s coordinates are (xp + 1, yp + 1).

3. For any node k in the tree T, if k is the nc node of its

parent node p and its left sibling node l has m

descendant nodes with the coordinates (xl, yl). If m =

0 then k’s coordinates are (x1 + 1, y1), otherwise, k’s

coordinates are (xl + m, yl).

Note that, hereafter; the coordinates of an XML node

(1)

(2)

454 The International Arab Journal of Information Technology, Vol. 11, No. 5, September 2014

based on XSCode are namely xscode.

book

title

XML author

allauthor

book

title

XML author

allauthor

book

title

XML

allauthor

book

title allauthor

book

title

T100: T101:

T105:

T102: T103:

book

title

XML

T104:

……

……

Figure 3. The XML query stream XQS.

• Example 1: Consider the XML tree in Figure 1.

Suppose that all of nodes in the tree are encoded by

the rules of XSCode. The xscodes of these nodes are

shown in Figure 4. According to Rule 1, the root

node book in the XML tree in Figure 1 is set on the

origin and its xscode is (0, 0). According to Rule 2,

the nodes title, XML, author1, john, jane, 2000,

head1, origins, and head2 are the fc nodes of a node

in the tree and their xscodes are (1, 1), (2, 2), (3, 2),

(5, 3), (4, 3), (5, 2), (6, 2), (7, 3), and (8, 3)

respectively. Also, by Rule (3), the nodes allauthor,

year, chapter, author2, section1, and section2 are the

nc nodes of a node in the tree and their xscodes are

(2, 1), (4, 1), (5, 1), (4, 2), (7, 2), and (9, 3)

respectively.

0 1 2 3 4 5 6 7 8

0

1

2

3

Book

title allauthor

XML author1 author2

jane john

2000

year chapter

head1 section1

origins head2

(0, 0)

(1, 1) (2, 1)

(2, 2) (3, 2)

(4, 3)

(4, 2)

(4, 1)

(5, 3)

(5, 2)

(5, 1)

(6, 2) (7, 2)

(7, 3) (8, 3)

x

y

9

Section2

(9, 3)

Figure 4. The xscodes of the nodes in Figure 1.

Derived from the XSCode encoding rules, Lemmas

1 and 2 show the features of xscodes of an XML tree.

• Lemma 1: For any node f in an XML tree Ti, if f’s

xscode is (x, y), then the value of y is equal to the

level l of the node f in Ti.

• Proof: We prove the lemma by showing that the

value of y is equal to that of l. There are three cases,

depending on whether node f is the root, fc, or nc

node in Ti.

• Case 1: Suppose that node f is the root node in Ti.

According to Rule 1, the xscode of f is (0, 0). Thus,

the value of y is equal to 0. Also, since f is the root

node, f’s level l is equal to 0. As a result, the value

of y is equal to that of l.

• Case 2: Suppose that f is the fc node in Ti. Since f is
not the root node and with the level l, it has the

ancestor nodes p0, p1,.., pl-1, where pl-1 is f’s parent

node, pl-2 is pl-1’s parent node,…, and p0 is the root

node. According to Rule 1, the xscode of p0 is (0, 0).

Thus, yp0 is equal to 0. Also, according to Lemma 2,

p1’s xscode yp1 = yp0 + 1. Thus, yp1 = yp0 + 1 = 0 + 1

= 1. In consequence, p2’s xscode yp2 = yp1 + 1 = 1 +

1 = 2. Therefore, pl-1’s xscode ypl-1 = l - 1. Since f is

the child node of yp-1, f’s xscode y = ypl-1 + 1 = l – 1

+ 1 = l. As a result, the value of y is equal to that of

f’s level l.

• Case 3: Suppose that f is the nc node and thus has a

sibling node fc in Ti. According to Case 2, the fc’s

xscode yfc = l. In consequence, according to Rule 3,

f’s xscode y is equal to yfc. As a result, y = yfc = l and

the value of y is equal to that of f’s level l.

Based on Case 1, Case2, and Case 3, we thus prove

this lemma.

• Lemma 2: For any two nodes f1 and f2 in an XML

tree Ti with the xscodes (x1, y1) and (x2, y2)

respectively, if node f2 is a descendant node of f1,

then both of the values of x2 and y2 are bigger than

those of x1 and y1 respectively.

• Proof: We prove the lemma by showing that x2 > x1

and y2 > y1. There are two cases, depending on

whether node f2 is a child node or not of f1.

• Case 1: Suppose that node f2 is a child node of f1. If

f2 is the first child node of f1, according to Rule 2,

the xscode (x2, y2) of f2 is equal to (x1 + 1, y1 + 1);

otherwise, that is equal to (xs + m, ys), where (xs, ys)

is the xscode of f1’s first child node fs and fs has m

descendant nodes. Thus, if f2 is the first child node

of f1, x2 = x1 + 1 and y2 = y1 + 1 which result in x2 > x1

and y2 > y1 respectively. In addition, since x2 = xs + m,

y2 = ys, xs = x1 + 1, and ys = y1 + 1 which result in x2 >

= xs > x1 and y2 > ys > y1. As a result, x2 > x1 and y2 >

y1.

• Case 2: Suppose that node f2 is not a child node of f1

and has a parent node fa which is a child node of f1.

According to Case 1, node fa’s xscode xfa > xf1 and

yfa > yf1. Also, since f2’s xscode xf2 > xfa and yf2 > yfa,

they result xf2 > xf1 and yf2 > yf1.

Based on Case 1 and Case2, we thus prove this lemma.

3.2. Functions X-Path and X-Subtree

In algorithm XSM, the path and subtree information of

query trees in XML query streams are firstly

considered by functions X-Path and X-Subtree.

Symbols T, li, w, ε, β, Bcurrent, ti, ai, counti, errori,

siblingij, s-countij, and di are used in X-Path and

X-Subtree. Symbol T represents an XML query tree, li

indicates a leaf node of T, ti represents the nodes which

are stored in the system, ai indicates an ancestor node

of ti, counti indicates the frequencies of ti, errori shows

ti’s frequencies which are not recorded in the system,

siblingij indicates the sibling relationship between

nodes ti and tj, s-countij shows the frequencies of the

sibling relationship between ti and tj, and di shows a

descendant node of ti. On the other hand, symbol ε

denotes an error parameter. The incoming XML query

stream is conceptually divided into buckets of w= 





ε
1

Mining Frequent User Query Patterns from XML Query Streams 455

query trees. The buckets are labeled with bucket IDs

starting from 1. The current bucket ID is denoted as

Bcurrent, whose value is 





w

n . Also, the number of

buckets in the main memory for the XML query stream

is denoted as β. In function X-Path, the leaf nodes of

XML query trees are concerned to record the path

information of an XML query tree. If no node stored in

the system, the leaf nodes of an XML user query tree

are stored; otherwise, their xscodes are compared with

those of nodes ti. In addition, if counti＞β and Bcurrent＞

β in the system, the value of (Bcurrent - β) are set into

their variables errori. In function X-Subtree, the

relationship of a pair of leaf nodes of XML query trees

is considered to deal with the subtree information of an

XML query tree.

• Example 2: Suppose that all of the query trees T1,

T2, …, and T200 in an XML query stream in Figure 3

are sequential read and processed by function

X-Path. Also, suppose that query trees T1, T2, …, T99

have been processed by X-Path and result in the

stored nodes ti as shown in Figure 5. Suppose that

the error parameter ε is equal to 0.1 and the batch

size is equal to 100. Therefore, a bucket has 10

(1/ε=1/0.1) query trees, β is equal to 10 (





10

100 =10),

and Bcurrent is equal to 10 (





10

99
=10). Firstly, T100 is

read and Lines 7-11 are executed since the leaf node

XML of T100 is the same as the node t1. Therefore,

the value 1 is added into the variables count1 and

count3 of t1 and t3 respectively. Also, Lines 27-28 are

executed and the new node t5 is inserted between t4

and t2 since the leaf node author is a parent of t2.

Then, T101 is read and the value of Bcurrent is changed

to 11 (i. e.,






10

101 =11). Therefore, Lines 8-9 are

executed since the values of variables conut1 and

count5 of t1 and t5 (i. e., values 26 and 86

respectively) are bigger than that of β (i. e., the

value 10) and the value of Bcurrent (i. e., the value 11)

is bigger than that of β. As a result, the variables

error1 , error3, error4, and error5 of t1, t3, t4, and t5

respectively are set to value 1 (i.e., Bcurrent - β = 11

-10). In consequence, T102 is read and Lines 20-24

are executed since the leaf nodes title and allauthor

of T102 are the same as the nodes t3 and t4

respectively. Therefore, the value 1 is set into the

variables error3 and error4 of t3 and t4 respectively.

Then, T103 is read and Lines 21-25 are executed

since T103’s leaf node title is the ancestor of node t1.

Thus, the value of variable error3 of t3 is set by the

value 1.

Function X-Path (T, ε, size)

Input: An XML query tree T

Output: nodes ti

1 if there is no node stored in the system

2 store the nodes li as ti and set variables counti with 1

3 else

4 for each leaf node li of T

5 compare the li’s xscode with that of each ti

6 if li’s xscode is the same with that of ti then

7 if ((ti’s counti) ≥ β) and (Bcurrent>β) then

8 ti’s errori =Bcurrent – β

9 all of ti’s ancestor nodes ai‘s errori= Bcurrent – β

10 else

11 add 1 to counti of ti and all of ancestor nodes ai

12 else

13 if li is ti‘s ancestor and their xscodes do not

14 stratify Lemma 2, and ti has no ancestor ai

15 store the node li as a parent node pi of ti

16 set the value of counti of pi is the sum of that of

17 ti with value 1

18 if ((pi’s counti) ≥ β) and (Bcurrent>β) then

19 pi’s errori =Bcurrent – β

20 all of pi’s ancestor nodes ai‘s errori= Bcurrent – β

21 if li is an ancestor node of ti and ti has an

22 ancestor node ai which is the same as li

23 if ((ti’s counti) ≥ β) and (Bcurrent>β) then

24 ti’s errori =Bcurrent – β

25 all of ti’s ancestor nodes ai‘s errori= Bcurrent – β

26 else

27 add value 1 to counti of ai and all of ai’s

28 ancestor nodes

29 if li is an ancestor node of ti and all of ti’s

30 ancestor nodes ai are different from li

31 find a ai which is a child node of li

32 set node li as a parent node pi of ai’s parent

33 if li is a descendant node of ti

34 store node li into a new created node ci

35 set node ci as a child node of ti

36 add 1 to counti and all of ci’s ancestors

37 if li and ti have no ancestor-descendant

38 relationship

39 store li into a new created node in system

40 end if

41 end for

42 end if

43 return nodes ti

t1

XML

t2

john

t3

title

t4

allau

thor

count1: 25

error1: 0

count3: 33

error3: 0

count2: 85

error2: 0

count4: 90

error4: 0

Figure 5. The nodes ti after processing T1, T2,.., T99 in Figure 3 by

X-Path.

After reading T104, Lines 7-11 are executed and the

values of variables error1 and error3 of t1 and t3

respectively are added by value 1 since the leaf node

XML of T104 is the same as t1. Finally, T105 is read and

Lines 7-8 and 21-25 are executed. The values of

variables error1, error3 and error4 of t1, t3, and t4

respectively are set by the value 1 and result in Figure

6.

Also, suppose that all of query trees T1, T2, …, and

T200 in Figure 3 are sequential read and processed by

456 The International Arab Journal of Information Technology, Vol. 11, No. 5, September 2014

function X-Subtree. Suppose that the stored nodes ti is

shown in Figure 6 before executing X-Subtree. Firstly,

T100 is read and Lines 3-8 in function X-Subtree are

executed since the relationship between the leaf nodes

XML and author are not recorded in their

corresponding nodes t1 and t5. Thus, sibling15 is created

and the variable s-count15 is set to value 1. Then, T101 is

read and processed by Lines 3-8 and the variable

s-count15 between t1 and t5 is added by value 1 since it

is the same as T100. In consequence, T102 is read and

Lines 7-8 are executed since T2’s leaf nodes title and

allauthor are the ancestors of nodes t1 and t5

respectively. Thus, sibling34 between nodes t3 and t4 is

created. Also, the value of variable s-count34 is set by

the sum of value 1 and the value of di’s s-countij. This

is shown in Figure 7. In addition, T103 and T104 is read

and not to be processed since it has no a pair of leaf

nodes. Finally, T105 is read and then Lines 7-8 are

executed and results in Figure 8.

t1

XML

t2

john

t3

title

t5

author

count1: 26

error1: 1

count1: 34

error3: 1

count1: 85

error2: 0

count1: 86

error4: 1

t4

allau

thor

count1: 91

error4: 1

Figure 6. Nodes ti for Figure 3 after executing X-Path.

t1

XML

t2

john

t3

title

t5

author

count1: 26

error1: 1

count3: 34

error3: 1

count2: 85

error2: 0

count5: 86

error5: 1

t4

allau

thor

count4: 91

error4: 1

s-count15: 2

s-count34: 3

Figure 7. Nodes ti for T100, T101, and T102 in Figure 3 after

executing X-Subtree.

t1

XML

t2

john

t3

title

t5

author

count1: 26

error1: 1

count3: 34

error3: 1

count2: 85

error2: 0

count5: 86

error5: 1

t4

allau

thor

count4: 91

error4: 1

s-count15: 3

s-count34: 4

Figure 8. Nodes ti for Figure 3 after executing X-Subtree.

Function X-Subtree(T)

Input: An XML query tree T

Output: nodes ti

1 for each pair of leaf nods li and lj of T

2 if the sibling relationship between li and lj is not

3 stored

4 set the siblingij relationships between ti and tj

5 if there is no variable s-countij of the descendant

6 nodes di of ti and tj

7 set the variable s-countij between ti and tj with 1

8 else

9 set the variable s-countij between ti and tj with

10 the value which is the sum of the value of

11 variable s-countij of di with dj and value 1

12 else

13 add 1 to the s-countij variables between ti and tj

14 end if

15 end if

16 end for

17 return nodes ti

3.3. XSM

The following symbols ti, pi, (cx, cy), zi, temp_x, ct, fp,
and fs are used in algorithm XSM. ti indicates the node
which is stored in the system, pi represents ti’s parent
node, (cx, cy) represents the xscode in ti, zi indicates the
sibling node of ti, and temp_space represents a temp
space in the system. Symbol ctz indicates a subtree of
nodes ti and zi. In addition, symbol fp indicates a set of
frequent paths, while fs shows a set of frequent
subtrees.

Example 3: Suppose that XQS has the query trees T1,

T2, …, and T200 as shown in Figure 3 and a user issues

an request when the query tree T1, T2, .., T105 have

processed and sets σ = 0.3. Also suppose that the error

parameter ε is equal to 0.1 and the batch size is equal

to 100. Therefore, a bucket has 10 (1/ε=1/0.1) query

trees, β is equal to 10 (100

10

 
  

=10), and Bcurrent is equal to

10 (
99

10

 
  

=10). Firstly, after executing Lines 3-5, the

information of the XML query stream is shown in

Figure 8. Then, Figure 9 and 10 show the results after

executing algorithm XSM. Figure 9 shows the results

after executing Lines 5-12. In Figure 9, the values of

counti of ti are bigger than 31.5 (σ * i = 0.3 *

105=31.5). Finally, figure 10 presents sets fp and fs

after executing Lines 14-25.

t2

john

t3

title

t5

author

count3: 34

count1: 85

error2: 0

count5: 86

error4: 1

t4

allau

thor

count4: 91

error4: 1

Figure 9. The frequent query patterns for Figure 3 after executing

XSM.

book

title

book

author

allauthor

book

allauthor

book

author

allauthor

john

Figure 10. The frequent query patterns for Figure 3 after executing

XSM.

Mining Frequent User Query Patterns from XML Query Streams 457

Algorithm 1: XSM (XQS, ε, size, σ)

Input: The XML query stream XQS; The value of error
parameter ε; The size of batch size; Specified minimum
support σ;
Output: A set of frequent query patterns from XQS
1 Repeat
2 read a query tree Ti from XQS
3 X-Path(Ti, ε, size);
4 X-Subtree (Ti, ε, size);
5 if (ti‘s counti + ti’s errori) is small than Bcurrent

6 delete the node ti

7 delete all of ti’s ancestor nodes
8 end if
9 if a request issued from users
10 copy all information into temp_space
11 for each node ti in temp_space
12 if the value of counti is small than σ∗i
13 delete the node ti
14 delete ti’s sibling nodes
15 delete all of ti’s descendant nodes
16 end if
17 end for
18 /* generate frequent subtrees from temp_space; */
19 for each node ti with xscode (cx, cy) in temp_space
20 while cx > 0
21 add a path (pi, ti) into set fp
22 if ti has the sibling node zi
23 add the cross subtree ctz into set fs
24 end if
25 set pi is the parent of pi
26 end while
27 delete ti

28 delete ti’s sibling nodes
29 end for
30 end if
31 Until not eof(XQS)

3.4. Comparison

One reason confirms that XSM may outperform

XQSMinerI and XQSMinerII. XQSMinerI and

XQSMinerII construct a Dynamic Transaction

summary Structure (DTS) that summarizes the query

patterns seen so far and keeps track of the transaction

ID of each query pattern. Then, through tree-join

process (i.e., constructing data structure ECTree), the

single branch candidate subtrees are merged to produce

the frequent query patterns. As a result, in XQSMinerI

and XQSMinerII, more XML query trees are processed

on DTS and thus cost a lot of time to produce frequent

XML query patterns. In contrast, XSM encodes the

path and subtree information in an XML query tree’s

leaf node and results in a few nodes are recorded to be

tested. Therefore, the mining performance is enhanced.

4. Experimental Results and Analyses

In this section we are to appraise our algorithm XSM.

Two experiments in total have been conducted to

evaluate the performance of XSM. The two

experiments were carried out on the platform of

personal computer with P8 2.67 GHz dual core CPU

and about 4 GB of available physical memory space.

The operating system is Windows 7, and the programs

of the algorithm are implemented in C++ (and

complied by Dev-C++).

To simulate an XML query stream, we employ the

XMARK.DTD [7] as the DTDs to generate the query

trees. First of all, we translate the DTDs into DTD

trees. Secondly, we generate a query tree database

containing 90000 different queries. Finally, we

randomly select a number of queries (ranging from

10000 to 90000) from the previous step to form an

XML query stream. In consequence, in the two

experiments, parameters and their settings are listed in

Table 1. The parameter n denotes the number of XML

query trees in an XML query stream. Parameter ε

illustrates the maximum error in the system to mine the

frequent user query patterns. Parameter σ represents

the value of minimum support in the system, and the

parameter B denotes the batch size in the system.

Table 1. Simulation parameters and settings.

Parameters Descriptions Settings

n Number of XML query trees 20,000 ~ 90,000

ε Maximum error in the system 0.008 ~ 0.2

σ Minimum supports 1%~20%

B Size of batch in the system 2,000 ~ 8,000

The first experiment, with results shown in Figure

11, observes the execution time (Y-axis) of XSM for

different support levels under different batch size

(X-axis). The specified maximum error ε is set to 0.1 in

Figure 11. From Figure 11, we can infer that for XSM,

the execution time taken decreases drastically as the

batch size increases. The reduction in time taken is

even more pronounced when the batch size is 3000.

The reason is that for small batch sizes, the xsnodes in

the system are deleted frequently in the system. In

addition, using the higher support as the threshold to

prune away infrequent query patterns results in higher

performance and further reduces the execution time

taken. As a result, it is important to choose an

appropriate batch size for an XML query stream

mining algorithm. The performance will deteriorate

significantly if the batch size is too small.

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Batch size (x1000)

0.80% 1% 2% 4%

Figure 11. The execution time with varying batch size.

The second experiment, with results shown in

Figure 12, observes the execution time (Y-axis) of

XSM for different support levels under different

maximum error (X-axis). The specified number of

458 The International Arab Journal of Information Technology, Vol. 11, No. 5, September 2014

queries in the batch B is set to 4,000 in Figure 12.

From Figure 12, we can infer that for XSM, the

execution time taken decreases drastically as the

maximum error increases. The reduction in time taken

is even more pronounced when the maximum error is

0.05. The reason is that, the number of query trees is

deleted for high maximum error more than that for low

maximum error and results in less query trees’

information are preserved in the system.

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

0.01 0.05 0.1 0.15 0.2

E
xe

cu
ti

o
n

 t
im

e
 (

s)

Maximum error in the system

0.80% 1% 2% 4%

Figure 12. The execution time with varying maximum error.

5. Conclusions

In this paper, an efficient mining algorithm XSM is
proposed to discover frequent XML query patterns
from XML query streams. Unlike the existing
algorithms, a new idea by encoding XML query trees (i.
e., XSCode) is proposed and thus preserves the path
and subtree information of query trees. With this idea,
it became obvious that XSM is not capable of
maintaining all of the user queries and thus takes less
execution time and memory space to produce the
frequent XML query patterns. Our future work
includes expanding XML query patterns with
repeating-siblings, since XSM cannot mine the
frequent XML query patterns with sibling repetitions
from an XML query stream.

Reference

[1] Asai T., Abe K., Kawasoe S., Arimura H., and
Sakamoto H., “Online Algorithms for Mining
Semi-structured Data Stream,” in Proceedings of
the International Conference on Data Mining,
Maebashi, Japan , pp. 27-34, 2002.

[2] Auasu A., Babcock B., Babu S., McAlister J., and
Widom J., “Characterizing Memory
Requirements for Queries over Continuous Data
Streams,” in Proceedings of the 21

st
 ACM

SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, New York, USA,
pp. 221 - 232, 2002.

[3] Babcock B., Datar M., and Motwani R.,
“Sampling from a Moving Window over
Streaming Data,” in Proceedings of the 13

th

Annual ACM-SIAM Symposium on Discrete
Algorithms, Philadelphia, USA, pp. 633 - 634,
2002.

[4] Basci D. and Misra S., “Entropy as a Measure of

Quality of XML Schema Document,” the

International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 75 - 83, 2011.

[5] Gu M., Hwang J., and Ryu K., “Frequent XML

Query Pattern Mining based on FP-TRee,” in

Proceedings of the 18
th
 International Conference

on Database and Expert Systems Applications,

Regensburg, Germany, pp. 555-559, 2007.

[6] Manku G. and Motwani R., “Approximate

Frequency Counts over Data Streams,” in

Proceedings of the 28
th
 International Conference

on Very Large Data Base, Hong Kong, China, pp.

346 - 357, 2002.

[7] XMARK.DTD., available at:

http://monetdb.cwi.nl/xml, 2014.

[8] XML., available at: http://www.w3.org/XML,

2013.

[9] XPath., available at: http://www.w3.org/

TR/2007/REC-xpath20-20070123, 2014

[10] Yang L., Lee M., and Hsu W., “Efficient Mining

of XML Query Patterns for Caching,” in

Proceedings of the 29
th
 International Conference

on Very Large Data Bases, Berlin, Germany, pp.

69 - 80, 2003.

[11] Yang L., Lee M., and Hsu W., “Finding Hot

Query Patterns over an XQuery Stream,” the

VLDB Journal, vol. 13, no. 4, pp. 318 - 332,

2004.

[12] Yang L., Lee M., Hsu W., Huang D., and Wong

L., “Efficient Mining of Frequent XML Query

Patterns with Repeating-Siblings,” Information

and Software Technology, vol. 50, no. 5, pp.

375 - 389, 2008.

[13] Zhu Y. and Shasha D., “StatStream: Statistical

Monitoring of Thousands of Data Streams,” in

Proceeding of the 28
th
 Conference on Very Large

Data Bases, Hong Kong, China, pp. 346 - 357,

2002.

Tsui-Ping Chang received her PhD

degree in Computer Science and

Engineering from National Chung

Hsing University in 2009. Since

2000, she was the faculty member of

the Department of Business

Administration, Kao Yuan

University. In 2009, she joined the Department of

Information Technology, Ling Tung University. Her

research interests include XML database systems,

XML data mining, and object-oriented systems.

