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Abstract: An XML query stream is a massive and unbounded sequence of queries that are continuously generated at a fast 

speed from users over the Internet. Compared with traditional approaches of mining frequent user query patterns in static 

XML query databases, pattern mining in XML query streams is more challenging since several extra requirements need to be 

satisfied. In this paper, a mining algorithm is proposed to discover frequent user query patterns over an XML query stream. 

Unlike most of existing algorithms, the proposed algorithm works based on a novel encoding scheme. Through the scheme, 

only the leaf nodes of XML query trees are considered in the system and result in higher mining performance. The 

performance of the proposed algorithm is tested and analyzed through a series of experiments. These experiment results show 

that the XSM outperforms other algorithms in its execution time. 
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1. Introduction 

XML query stream mining [1, 4, 11] has become a 

more and more attractive research area in recent years 

due to XML [8] has become the de facto standard 

language for information exchange over the Internet. 

An XML query stream is a massive and unbounded 

sequence of queries that are continuously generated 

from users to query XML data over the Internet. Due to 

this reason, as compared with traditional XML query 

pattern mining [5, 10, 12] in static databases, pattern 

mining in XML query streams has several 

requirements that need to be satisfied. For example, 

each user query in the XML query stream can be 

examined at most one time, that is, multiple scans of 

data source is infeasible.  
An XML query stream [2, 3, 6, 13] comprises a 

continuous sequence of user queries which can be 
represented by multiple trees. Document data 
represented in XML comprise a sequence of possibly 
nested tags which can be expressed by a tree structure. 
Since XML data can be modeled as a tree, XML user 
queries are treated as trees. For example in Figures 1 
and 2, they show an XML tree and its corresponding 
XML query tree. As an example of the XML tree 
depicted in Figure 1, an XML element enclosed within 
a pair of an opening tag and a closing tag is denoted by 
its tag name with a suffix number for distinguishing 
itself from other elements with the same tag name. 
Therefore, XML user queries (i. e., XPath [9]) 
typically specify patterns of selection predicates on 
multiple elements that have some specified 
tree-structured relationships. The primitive 
tree-structured relationships are parent-child and 
ancestor-descendant.  

For example in Figure 2, it shows a query tree 

which is modeled by the XPath expression: Book [title 

= ‘XML’]/ allauthor/ author [.=’john’]. This expression 

matches author elements that: Have the string value 

“john”., are descendants of book elements that have a 

child title element whose value is “XML”.  
Mining frequent XML user query patterns may be 

used to enhance the query performance of XML 
streams. Frequent XML query patterns can be used to 
design an index mechanism or cache the results of 
these patterns to reduce the unnecessary computation 
and thus enhance the query performance. Using 
frequent XML query patterns, the features (i. e., 
contents and structures) of query results (i. e., the 
fragments of XML data in steams) are discovered and 
thus a suitable index mechanism can be designed. On 
the other hand, frequent XML query patterns can be 
used to support for storing a collection of XML data’s 
fragments which are the answers of XML query 
patterns into a cache.  
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Figure 1. An XML tree. 

Several methods [1, 4, 11] have been proposed for 

mining frequent user query patterns over an XML 

query stream. XQSMinerI is a one pass algorithm to 

find out frequent user query patterns from XML query 
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streams. XQSMinerII provides some control over the 

error bound in the estimate. XQSMinerI treats the 

stream of XML query trees as a stream of batches. This 

is because it is very expensive to enumerate frequent 

query patterns for all of query trees in a stream. In 

addition, XQSMinerII adopts the framework [6] and 

operates with two parameters, support σ and error ε, 

and processes the XML query stream in batch. The 

incoming stream is conceptually divided into buckets 

and in every batch it processes a number of buckets of 

query trees, where the number of buckets is dependent 

on the size of buffer. The local mining result of every 

batch is integrated into a data structure DTS which is a 

set of entries of potential frequent query patterns. 

In this paper, an efficient algorithm (namely XSM) 

is proposed to mine frequent query patterns from XML 

query streams. XSM utilizes the framework [6] for 

approximate frequency count of query patterns. In 

XSM, an encoding scheme (namely XSCode) to 

represent an XML tree with its corresponding user 

query trees is proposed. XSCode is more 

space-efficient since it preserves the structure 

information of an XML query tree by only recording 

the codes of its leaf nodes. Through these codes, the 

frequent query patterns are enumerated efficiently from 

an XML query stream in XSM. 
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Figure 2. An XML query tree. 

The rest of this paper is organized as follows: Section 2 
illustrates a tree model of XML data. Section 3 
describes the details of XSM. Section 4 shows the 
experimental results, and section 5 illustrates the 
conclusion and further work.  

 

2. Preliminaries 

• Definition 1: An XML query can be modeled as an 
unordered tree T =<N, E>, where N is the node set, 
and E is the edge set. Nodes n∈N represent the 
elements, attributes, and string values in an XML 
query, and edges e ∈ E represents the parent-child 
relationships denoted by “/”. 

• Definition 2: Given an XML query tree T = <N, E> 
and an XML query rooted subtree ti = <Ni, Ei>. ti is 
considered to be the i

th
 rooted subtree of T iff there 

exists:  

Root(ti) = Root(T)                         

Where Root(ti) and Root(T) are the functions which 

return the root nodes of ti and T respectively.  

Ni ⊆ N, Ei ⊆ E 

• Definition 3: An XML query stream, XQS = <T1, 
T2, ..., Tn>, where n is the length of current stream, 
that is, the number of query trees seen so far.  

• Definition 4: Given an XML query stream XQS, a 

minimum support value σ ranging from (0, 1], and 

an error parameter ε ranging from (0, 1], construct 

an algorithm to produce a set of frequent XML 

query trees ti f along with their estimated 

frequencies on request. For any XML query tree ti, 

let counttrue(ti) denote the true frequency of ti, and 

count(ti) denote the estimated frequency of ti. The ti 

produced has the following guarantees:  

1. For any ti in the current stream, if counttrue(ti) ≥ σ 

× n, then we have ti ∈ f.  

2. For any ti that is considered to be frequent, we 

have counttrue(ti) ≥ (σ – ε) × n.  

3. For any ti, its estimated frequency count(ti) ≥ 

counttrue(ti) – ε × n.  
 

Definition 1 defines an XML query as a tree. 
Definition 2 defines an XML query rooted subtree. 
Definition 3 illustrates an XML query stream XQS 
which contains multiple XML query trees. Each query 
tree in XQS represents a transaction associated with its 
transaction ID. For example in Figure 3, the XML 
query stream XQS = <T1, T2, …, T100, T101, T102, T103, 
T104, T105, ..., T200>, where T1, T2, …, T100, T101, T102, T103, 
T104, T105, ..., T200 are the user query trees and with their 
transaction IDs 1, 2, …, 100, 101, 102, ..., 200 
respectively. Also, the length of XQS is equal to 200. 

 

3. Mining Frequent Query Pattern Over 

XML Query Streams 

3.1. XSCode 

XSCode encodes the nodes of an XML tree in an xy 
coordinate system where xy are the coordinates of the 
two-dimensional space. The following symbols T, r, k, 

p, l, fc, and nc are used to represent the nodes in an 
XML tree. Symbol T represents an XML tree, r 
indicates the root node in T, k represents a node in T, p 

indicates the parent node of k, l represents the left 
sibling node of k, fc denotes the first child node of k, 
and nc represent the child node of k expect the first 
child fc. The encoding rules are described for the nodes 
in an XML tree T and listed as follows:  

 

1. For an XML tree T, the root node r is set on the 

origin whose coordinates x and y are (0, 0). 

2. For any node k in the tree T, if k is the fc node of its 

parent node p and p’s coordinates are (xp, yp), then 

k’s coordinates are (xp + 1, yp + 1). 

3. For any node k in the tree T, if k is the nc node of its 

parent node p and its left sibling node l has m 

descendant nodes with the coordinates (xl, yl). If m = 

0 then k’s coordinates are (x1 + 1, y1), otherwise, k’s 

coordinates are (xl + m, yl). 

Note that, hereafter; the coordinates of an XML node 

(1) 

(2) 
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based on XSCode are namely xscode.  
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Figure 3. The XML query stream XQS. 

 

• Example 1: Consider the XML tree in Figure 1. 

Suppose that all of nodes in the tree are encoded by 

the rules of XSCode. The xscodes of these nodes are 

shown in Figure 4. According to Rule 1, the root 

node book in the XML tree in Figure 1 is set on the 

origin and its xscode is (0, 0). According to Rule 2, 

the nodes title, XML, author1, john, jane, 2000, 

head1, origins, and head2 are the fc nodes of a node 

in the tree and their xscodes are (1, 1), (2, 2), (3, 2), 

(5, 3), (4, 3), (5, 2), (6, 2), (7, 3), and (8, 3) 

respectively. Also, by Rule (3), the nodes allauthor, 

year, chapter, author2, section1, and section2 are the 

nc nodes of a node in the tree and their xscodes are 

(2, 1), (4, 1), (5, 1), (4, 2), (7, 2), and (9, 3) 

respectively. 
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Figure 4. The xscodes of the nodes in Figure 1. 

Derived from the XSCode encoding rules, Lemmas 

1 and 2 show the features of xscodes of an XML tree.  

• Lemma 1: For any node f in an XML tree Ti, if f’s 

xscode is (x, y), then the value of y is equal to the 

level l of the node f in Ti.  

• Proof: We prove the lemma by showing that the 

value of y is equal to that of l. There are three cases, 

depending on whether node f is the root, fc, or nc 

node in Ti.  

• Case 1: Suppose that node f is the root node in Ti. 

According to Rule 1, the xscode of f is (0, 0). Thus, 

the value of y is equal to 0. Also, since f is the root 

node, f’s level l is equal to 0. As a result, the value 

of y is equal to that of l. 

• Case 2: Suppose that f is the fc node in Ti. Since f is 
not the root node and with the level l, it has the 

ancestor nodes p0, p1,.., pl-1, where pl-1 is f’s parent 

node, pl-2 is pl-1’s parent node,…, and p0 is the root 

node. According to Rule 1, the xscode of p0 is (0, 0). 

Thus, yp0 is equal to 0. Also, according to Lemma 2, 

p1’s xscode yp1 = yp0 + 1. Thus, yp1 = yp0  + 1 = 0 + 1 

= 1. In consequence, p2’s xscode yp2 = yp1 + 1 = 1 + 

1 = 2. Therefore, pl-1’s xscode ypl-1 = l - 1. Since f is 

the child node of yp-1, f’s xscode y = ypl-1 + 1 = l – 1 

+ 1 = l. As a result, the value of y is equal to that of 

f’s level l. 

• Case 3: Suppose that f is the nc node and thus has a 

sibling node fc in Ti. According to Case 2, the fc’s 

xscode yfc = l. In consequence, according to Rule 3, 

f’s xscode y is equal to yfc. As a result, y = yfc = l and 

the value of y is equal to that of f’s level l. 

Based on Case 1, Case2, and Case 3, we thus prove 

this lemma. 

• Lemma 2: For any two nodes f1 and f2 in an XML 

tree Ti with the xscodes (x1, y1) and (x2, y2) 

respectively, if node f2 is a descendant node of f1, 

then both of the values of x2 and y2 are bigger than 

those of x1 and y1 respectively. 

• Proof: We prove the lemma by showing that x2 > x1 

and y2 > y1. There are two cases, depending on 

whether node f2 is a child node or not of f1. 

• Case 1: Suppose that node f2 is a child node of f1. If 

f2 is the first child node of f1, according to Rule 2, 

the xscode (x2, y2) of f2 is equal to (x1 + 1, y1 + 1); 

otherwise, that is equal to (xs + m, ys), where (xs, ys) 

is the xscode of f1’s first child node fs and fs has m 

descendant nodes. Thus, if f2 is the first child node 

of f1, x2 = x1 + 1 and y2 = y1 + 1 which result in x2 > x1 

and y2 > y1 respectively. In addition, since x2 = xs + m, 

y2 = ys, xs = x1 + 1, and ys = y1 + 1 which result in x2 > 

= xs > x1 and y2 > ys > y1. As a result, x2 > x1 and y2 > 

y1. 

• Case 2: Suppose that node f2 is not a child node of f1 

and has a parent node fa which is a child node of f1. 

According to Case 1, node fa’s xscode xfa > xf1 and 

yfa > yf1. Also, since f2’s xscode xf2 > xfa and yf2 > yfa, 

they result xf2 > xf1 and yf2 > yf1. 

Based on Case 1 and Case2, we thus prove this lemma. 

  

3.2. Functions X-Path and X-Subtree 

In algorithm XSM, the path and subtree information of 

query trees in XML query streams are firstly 

considered by functions X-Path and X-Subtree. 

Symbols T, li, w, ε, β, Bcurrent, ti, ai, counti, errori, 

siblingij, s-countij, and di are used in X-Path and 

X-Subtree. Symbol T represents an XML query tree, li 

indicates a leaf node of T, ti represents the nodes which 

are stored in the system, ai indicates an ancestor node 

of ti, counti indicates the frequencies of ti, errori shows 

ti’s frequencies which are not recorded in the system, 

siblingij indicates the sibling relationship between 

nodes ti and tj, s-countij shows the frequencies of the 

sibling relationship between ti and tj, and di shows a 

descendant node of ti. On the other hand, symbol ε 

denotes an error parameter. The incoming XML query 

stream is conceptually divided into buckets of w= 





ε
1  
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query trees. The buckets are labeled with bucket IDs 

starting from 1. The current bucket ID is denoted as 

Bcurrent, whose value is 





w

n . Also, the number of 

buckets in the main memory for the XML query stream 

is denoted as β. In function X-Path, the leaf nodes of 

XML query trees are concerned to record the path 

information of an XML query tree. If no node stored in 

the system, the leaf nodes of an XML user query tree 

are stored; otherwise, their xscodes are compared with 

those of nodes ti. In addition, if counti＞β and Bcurrent＞

β in the system, the value of (Bcurrent - β) are set into 

their variables errori. In function X-Subtree, the 

relationship of a pair of leaf nodes of XML query trees 

is considered to deal with the subtree information of an 

XML query tree.  

• Example 2: Suppose that all of the query trees T1, 

T2, …, and T200 in an XML query stream in Figure 3 

are sequential read and processed by function 

X-Path. Also, suppose that query trees T1, T2, …, T99 

have been processed by X-Path and result in the 

stored nodes ti as shown in Figure 5. Suppose that 

the error parameter ε is equal to 0.1 and the batch 

size is equal to 100. Therefore, a bucket has 10 

(1/ε=1/0.1) query trees, β is equal to 10 ( 





10

100 =10), 

and Bcurrent is equal to 10 ( 





10

99
=10). Firstly, T100 is 

read and Lines 7-11 are executed since the leaf node 

XML of T100 is the same as the node t1. Therefore, 

the value 1 is added into the variables count1 and 

count3 of t1 and t3 respectively. Also, Lines 27-28 are 

executed and the new node t5 is inserted between t4 

and t2 since the leaf node author is a parent of t2. 

Then, T101 is read and the value of Bcurrent is changed 

to 11 (i. e., 






10

101 =11). Therefore, Lines 8-9 are 

executed since the values of variables conut1 and 

count5 of t1 and t5 (i. e., values 26 and 86 

respectively) are bigger than that of β (i. e., the 

value 10) and the value of Bcurrent (i. e., the value 11) 

is bigger than that of β. As a result, the variables 

error1 , error3, error4, and error5 of t1, t3, t4, and t5 

respectively are set to value 1 (i.e., Bcurrent - β = 11 

-10). In consequence, T102 is read and Lines 20-24 

are executed since the leaf nodes title and allauthor 

of T102 are the same as the nodes t3 and t4 

respectively. Therefore, the value 1 is set into the 

variables error3 and error4 of t3 and t4 respectively. 

Then, T103 is read and Lines 21-25 are executed 

since T103’s leaf node title is the ancestor of node t1. 

Thus, the value of variable error3 of t3 is set by the 

value 1. 

Function X-Path (T, ε, size) 

Input: An XML query tree T 

Output: nodes ti 

1  if there is no node stored in the system 

2   store the nodes li as ti and set variables counti with 1 

3  else 

4   for each leaf node li of T 

5    compare the li’s xscode with that of each ti 

6 if li’s xscode is the same with that of ti then       

7   if ((ti’s counti) ≥ β) and (Bcurrent>β) then 

8    ti’s errori =Bcurrent – β 

9    all of ti’s ancestor nodes ai‘s errori= Bcurrent – β 

10   else 

11    add 1 to counti of ti and all of ancestor nodes ai 

12  else 

13   if li is ti‘s ancestor and their xscodes do not  

14   stratify Lemma 2, and ti has no ancestor ai 

15    store the node li as a parent node pi of ti  

16    set the value of counti of pi is the sum of that of  

17    ti with value 1 

18   if ((pi’s counti) ≥ β) and (Bcurrent>β) then 

19    pi’s errori =Bcurrent – β 

20    all of pi’s ancestor nodes ai‘s errori= Bcurrent – β 

21     if li is an ancestor node of ti and ti has an  

22     ancestor node ai which is the same as li  

23    if ((ti’s counti) ≥ β) and (Bcurrent>β) then 

24     ti’s errori =Bcurrent – β 

25     all of ti’s ancestor nodes ai‘s errori= Bcurrent – β 

26      else 

27       add value 1 to counti of ai and all of ai’s  

28       ancestor nodes 

29   if li is an ancestor node of ti and all of ti’s  

30   ancestor nodes ai are different from li 

31     find a ai which is a child node of li 

32     set node li as a parent node pi of ai’s parent  

33   if li is a descendant node of ti  

34     store node li into a new created node ci  

35     set node ci as a child node of ti 

36     add 1 to counti and all of ci’s ancestors 

37   if li and ti have no ancestor-descendant  

38   relationship 

39     store li into a new created node in system 

40   end if 

41  end for 

42 end if 

43 return nodes ti 
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thor

count1: 25

error1: 0

count3: 33

error3: 0

count2: 85

error2: 0

count4: 90
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Figure 5. The nodes ti after processing T1, T2,.., T99 in Figure 3 by 

X-Path. 

After reading T104, Lines 7-11 are executed and the 

values of variables error1 and error3 of t1 and t3 

respectively are added by value 1 since the leaf node 

XML of T104 is the same as t1. Finally, T105 is read and 

Lines 7-8 and 21-25 are executed. The values of 

variables error1, error3 and error4 of t1, t3, and t4 

respectively are set by the value 1 and result in Figure 

6. 

Also, suppose that all of query trees T1, T2, …, and 

T200 in Figure 3 are sequential read and processed by 
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function X-Subtree. Suppose that the stored nodes ti is 

shown in Figure 6 before executing X-Subtree. Firstly, 

T100 is read and Lines 3-8 in function X-Subtree are 

executed since the relationship between the leaf nodes 

XML and author are not recorded in their 

corresponding nodes t1 and t5. Thus, sibling15 is created 

and the variable s-count15 is set to value 1. Then, T101 is 

read and processed by Lines 3-8 and the variable 

s-count15 between t1 and t5 is added by value 1 since it 

is the same as T100. In consequence, T102 is read and 

Lines 7-8 are executed since T2’s leaf nodes title and 

allauthor are the ancestors of nodes t1 and t5 

respectively. Thus, sibling34 between nodes t3 and t4 is 

created. Also, the value of variable s-count34 is set by 

the sum of value 1 and the value of di’s s-countij. This 

is shown in Figure 7. In addition, T103 and T104 is read 

and not to be processed since it has no a pair of leaf 

nodes. Finally, T105 is read and then Lines 7-8 are 

executed and results in Figure 8. 
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Figure 6. Nodes ti for Figure 3 after executing X-Path. 
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Figure 7. Nodes ti for T100, T101, and T102 in Figure 3 after 

executing X-Subtree. 
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Figure 8. Nodes ti for Figure 3 after executing X-Subtree. 

Function X-Subtree(T) 

Input: An XML query tree T 

Output: nodes ti 

1 for each pair of leaf nods li and lj of T 

2  if the sibling relationship between li and lj is not  

3  stored 

4   set the siblingij relationships between ti and tj  

5   if there is no variable s-countij of the descendant  

6   nodes di of ti and tj 

7    set the variable s-countij between ti and tj with 1 

8   else 

9    set the variable s-countij between ti and tj with  

10    the value which is the sum of the value of            

11    variable s-countij of di with dj and value 1 

12  else 

13   add 1 to the s-countij variables between ti and tj 

14  end if   

15 end if 

16 end for 

17 return nodes ti 

3.3. XSM 

The following symbols ti, pi, (cx, cy), zi, temp_x, ct, fp, 
and fs are used in algorithm XSM. ti indicates the node 
which is stored in the system, pi represents ti’s parent 
node, (cx, cy) represents the xscode in ti, zi indicates the 
sibling node of ti, and temp_space represents a temp 
space in the system. Symbol ctz indicates a subtree of 
nodes ti and zi. In addition, symbol fp indicates a set of 
frequent paths, while fs shows a set of frequent 
subtrees. 

Example 3: Suppose that XQS has the query trees T1, 

T2, …, and T200 as shown in Figure 3 and a user issues 

an request when the query tree T1, T2, .., T105 have 

processed and sets σ = 0.3. Also suppose that the error 

parameter ε is equal to 0.1 and the batch size is equal 

to 100. Therefore, a bucket has 10 (1/ε=1/0.1) query 

trees, β is equal to 10 ( 100

10

 
  

=10), and Bcurrent is equal to 

10 (
99

10

 
  

=10). Firstly, after executing Lines 3-5, the 

information of the XML query stream is shown in 

Figure 8. Then, Figure 9 and 10 show the results after 

executing algorithm XSM. Figure 9 shows the results 

after executing Lines 5-12. In Figure 9, the values of 

counti of ti are bigger than 31.5 (σ * i = 0.3 * 

105=31.5). Finally, figure 10 presents sets fp and fs 

after executing Lines 14-25. 
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Figure 9. The frequent query patterns for Figure 3 after executing 

XSM. 
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Figure 10. The frequent query patterns for Figure 3 after executing 

XSM. 



Mining Frequent User Query Patterns from XML Query Streams                                               457                          

  

 

Algorithm 1: XSM (XQS, ε, size, σ) 

Input: The XML query stream XQS; The value of error 
parameter ε; The size of batch size; Specified minimum 
support σ;  
Output: A set of frequent query patterns from XQS 
1  Repeat  
2  read a query tree Ti from XQS  
3  X-Path(Ti, ε, size); 
4  X-Subtree (Ti, ε, size); 
5   if (ti‘s counti + ti’s errori) is small than Bcurrent 

6     delete the node ti 

7     delete all of ti’s ancestor nodes 
8   end if 
9  if a request issued from users  
10    copy all information into temp_space 
11    for each node ti in temp_space 
12    if the value of counti is small than σ∗i 
13       delete the node ti 
14       delete ti’s sibling nodes  
15      delete all of ti’s descendant nodes 
16    end if 
17   end for 
18 /* generate frequent subtrees from temp_space; */ 
19 for each node ti with xscode (cx, cy) in temp_space 
20    while cx > 0 
21      add a path (pi, ti) into set fp 
22      if ti has the sibling node zi 
23         add the cross subtree ctz into set fs 
24      end if 
25      set pi is the parent of pi 
26    end while 
27    delete ti 

28    delete ti’s sibling nodes 
29   end for 
30  end if 
31 Until not eof(XQS) 
 
3.4. Comparison 

One reason confirms that XSM may outperform 

XQSMinerI and XQSMinerII. XQSMinerI and 

XQSMinerII construct a Dynamic Transaction 

summary Structure (DTS) that summarizes the query 

patterns seen so far and keeps track of the transaction 

ID of each query pattern. Then, through tree-join 

process (i.e., constructing data structure ECTree), the 

single branch candidate subtrees are merged to produce 

the frequent query patterns. As a result, in XQSMinerI 

and XQSMinerII, more XML query trees are processed 

on DTS and thus cost a lot of time to produce frequent 

XML query patterns. In contrast, XSM encodes the 

path and subtree information in an XML query tree’s 

leaf node and results in a few nodes are recorded to be 

tested. Therefore, the mining performance is enhanced. 

 

4. Experimental Results and Analyses 

In this section we are to appraise our algorithm XSM. 

Two experiments in total have been conducted to 

evaluate the performance of XSM.  The two 

experiments were carried out on the platform of 

personal computer with P8 2.67 GHz dual core CPU 

and about 4 GB of available physical memory space. 

The operating system is Windows 7, and the programs 

of the algorithm are implemented in C++ (and 

complied by Dev-C++). 

To simulate an XML query stream, we employ the 

XMARK.DTD [7] as the DTDs to generate the query 

trees. First of all, we translate the DTDs into DTD 

trees. Secondly, we generate a query tree database 

containing 90000 different queries. Finally, we 

randomly select a number of queries (ranging from 

10000 to 90000) from the previous step to form an 

XML query stream. In consequence, in the two 

experiments, parameters and their settings are listed in 

Table 1. The parameter n denotes the number of XML 

query trees in an XML query stream. Parameter ε 

illustrates the maximum error in the system to mine the 

frequent user query patterns. Parameter σ represents 

the value of minimum support in the system, and the 

parameter B denotes the batch size in the system. 

Table 1. Simulation parameters and settings. 

Parameters Descriptions Settings 

n Number of XML query trees 20,000 ~ 90,000 

ε Maximum error in the system 0.008 ~ 0.2 

σ Minimum supports 1%~20% 

B Size of batch in the system 2,000 ~ 8,000 

 

The first experiment, with results shown in Figure 

11, observes the execution time (Y-axis) of XSM for 

different support levels under different batch size 

(X-axis). The specified maximum error ε is set to 0.1 in 

Figure 11. From Figure 11, we can infer that for XSM, 

the execution time taken decreases drastically as the 

batch size increases. The reduction in time taken is 

even more pronounced when the batch size is 3000. 

The reason is that for small batch sizes, the xsnodes in 

the system are deleted frequently in the system. In 

addition, using the higher support as the threshold to 

prune away infrequent query patterns results in higher 

performance and further reduces the execution time 

taken. As a result, it is important to choose an 

appropriate batch size for an XML query stream 

mining algorithm. The performance will deteriorate 

significantly if the batch size is too small. 
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Figure 11. The execution time with varying batch size. 

 

The second experiment, with results shown in 

Figure 12, observes the execution time (Y-axis) of 

XSM for different support levels under different 

maximum error (X-axis). The specified number of 
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queries in the batch B is set to 4,000 in Figure 12. 

From Figure 12, we can infer that for XSM, the 

execution time taken decreases drastically as the 

maximum error increases. The reduction in time taken 

is even more pronounced when the maximum error is 

0.05. The reason is that, the number of query trees is 

deleted for high maximum error more than that for low 

maximum error and results in less query trees’ 

information are preserved in the system. 
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Figure 12. The execution time with varying maximum error. 

5. Conclusions 

In this paper, an efficient mining algorithm XSM is 
proposed to discover frequent XML query patterns 
from XML query streams. Unlike the existing 
algorithms, a new idea by encoding XML query trees (i. 
e., XSCode) is proposed and thus preserves the path 
and subtree information of query trees. With this idea, 
it became obvious that XSM is not capable of 
maintaining all of the user queries and thus takes less 
execution time and memory space to produce the 
frequent XML query patterns. Our future work 
includes expanding XML query patterns with 
repeating-siblings, since XSM cannot mine the 
frequent XML query patterns with sibling repetitions 
from an XML query stream. 
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