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Abstract: In this paper, according to the development of the fractional differentiation and its applications in the modern 

signal processing, we improve the numerical calculation of fractional differentiation by Newton interpolation equation, and 

propose a new mask, the Newton Interpolation’s Fractional Differentiation (NIFD). Then, we apply this new mask to image 

edge detection and can obtain the better edge information image. In order to get continuous and thin edges, we synthesize a 

new gradient and adopt the non-maxima suppression method. For a comparison, we consider the edge map yielded by the 

sobel operator and canny operator. By contrast, we discover that the edge image obtained by NIFD operator is better than 

those of sobel and canny operators, and specially for a noisy image, NIFD operator has the best anti-noise ability. 
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1. Introduction 

Fractional differentiation [10], also called non-integer 

differentiation, is not a new concept: it dates back to 

Cauchy, Riemann, Liouville and Letnikov in the 19
th
 

century. Since then, several theoretical physicists and 

mathematicians have studied fractional differential 

equations, especially fractional-order linear differential 

equations. In comparison with integer-order 

differentiation, the fractional differentiation of direct 

current or low-frequency signal is often nonzero. 

Fractional differential processing is not only 

nonlinearly keeping signal’s low-frequency and direct 

current components, but also nonlinearly enhancing the 

signal’s high-frequency and middle-frequency 

components. Based on the special characteristics of 

fractional differentiation in the last two decades, 

fractional differentiation has played a very important 

role in various physical sciences fields, such as 

mechanics, electricity, chemistry, biology, economics, 

time and frequency domains system identification, 

notably control theory, and robotics. Recently, fractal 

theory is already used in fractal image processing [3, 4, 

5, 6, 9, 12, 13]. 

In image processing, edge detection often makes use 

of integer-order differentiation operators, especially 

order 1 used by the gradient and order 2 by the 

Laplacian [1, 2, 7, 8, 14]. In [4, 5, 6, 9, 11, 12], the 

principles of non-integer order differentiation operators 

in edge detection is introduced. This paper 

demonstrates with details how using an edge detector 

Newton Interpolation’s Fractional Differentiation 

(NIFD) can improve the criterions of thin detection 

and immunity to noise, which can be interpreted in 

term of robustness to noise in general.  

Based on the existed theories of fractional calculus 

and their specific applications in digital image 

processing, we improve the numerical calculation of 

fractional differentiation by Newton interpolation 

equation and propose a new operator (NIFD operator) 

that can improve the criterions of thin detection and 

immunity to noise. 
 

2. Fractional Differentiation Review 

Differential operation is a basic type of mathematical 

calculations, it is widely used in the fields of signal 

analysis and processing. Recently, many researches 

have been reported about fractional calculus and its 

applications, and it has become more and more 

important in foundational research and engineering 

application. From a theoretical point of view, 

fractional differentiation extends the order of signal 

processing from integer-order to any order, which is 

an extension of information processing methods and 

means [3, 4, 5, 6, 9, 12, 13]. 

Grümwald-Letnikov definition of fractional 

calculus originates from the classical definition of 

integer-order differentiation for continuous function, 

which is deduced by generalizing differential order 

from integer to fraction [10]. Assume that ∀ v∈R (R 

represents the real set, [v] is its integral part), the 

signal F(t)∈[a,t], a<t, a∈R, t∈R, has m(m∈Z, Z 

represents the integer set) order continuous 
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differentiation. When v>0, m is no less than [v], so v 

order differentiation could be expressed in the form 

[10]: 

            mn 1
G v

a t vh 0
m 0nh t a

( 1) (v 1)
DF(t ) lim F(t mh)

h (m 1) (v m 1)

Γ
Γ Γ

−

→
== −

− +
= −

+ − +∑
 

Equation 1 is also written as 
v

v

d F

dt
, and the difference of 

fractional differentiation equation 1 is expressed as [4, 

5, 6, 12]: 

                
v

v

d F v( v 1)
F(t ) ( v)F(t 1) F(t 2)

dt 2

v( v 1)( v 2)
         F(t 3)

6

(n v)
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Similarly, for the signal F(x, y), the v order 

differentiation could be expressed: 

t a

v mh
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F ( 1) (v 1)
lim F(x mh,y)
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Γ
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t a
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The differences of fractional partial differentiation 

respectively are expressed as [4, 5, 6, 12]: 
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According to equations 5 and 6, among the n non-zero 

coefficients, only the coefficient of the first term is the 

constant 1, the other n-1 non-zero coefficients are 

functions with respect to the fractional order v. We can 

prove the sum of n non-zero coefficients is non-zero [5, 

12]. And it is one of the significant differences in the 

characteristics between the fractional differentiation 

and the integer-order differentiation. 

 

3. Theory of NIFD  

To make the fractional differential operator more 

precise, we can improve fractional differentiation 

algorithm. Next, the points F(t - mh), m = 0, 1, 2, ..., n 

in equation 2 are viewed as nodes. To express any point 

between t – mh - h and t-mh + h, let ξ = t - mh +  
2

v
h.  

When v ∈ [-2, 2], ξ ∈ [t – mh - h, t-mh + h]. Thus, for 

any three nodes F(t - mh - h), F(t - mh), F(t - mh + h), 

using Newton interpolation equation, one has 

interpolation expression of the signal function F(t) in 

equation 2: 

       
F ( ) F [ t mh h ] F [ t mh h,t mh ]
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Where  
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Taking equations 8 to 10 into equation 7, we have: 
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Since ξ=t-mh + 
2

v  
h, equation 11 becomes:  
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2

1 1
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8 4 4
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8 4

v
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Compare with F(t) in equations 2 and 12 has 

introduced the signal value F(ξ) on non-node. And the 
non-node signal value F(ξ) is a linear combination of 

the nodes F(t - mh - h), F(t - mh), and F(t – mh + h), 

which implies that F(ξ) contains the more information 

in its neighborhood. As we known, the processed 

object of computer or digital filter is the limit number, 

the biggest variable of gray-level of digital image 

signal is also limited, and the shortest changing 

distance of gray-level is one pixel, that is h=1. Then 

F(t) is replaced by F(ξ) and taking equation 12 into 
equation 2, we can obtain the approximation of  

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 

(10) 

(11) 

(12) 
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equation 2 as follows: 
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Equation 13 is called the NIFD of F(t). Indeed, the 

expression can only get the approximated value due it 

simplifies fractional differentiation to multiplication 

and add. Similarly, we choose the top n+2 terms as the 

fractional differentiation approximation of F(t). Let: 
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Thus,  
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Similarly, for the signal F(x,y), from equation 13, the 

approximate backward differences of fractional partial 

differentiation respectively on negative x-coordinate 

and y-coordinate, are expressed as: 
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To obtain new mask along eight symmetric directions 

and make them have anti-rotation capability, eight 

new masks which are respectively along the directions 

of negative x-coordinate, negative y-coordinate, 

positive x-coordinate, positive y-coordinate, left 

downward diagonal, right upward diagonal, left 

upward diagonal, and right downward diagonal are 

implemented, which is noted as NIFD operators and 

the operator along every direction is written as NIFDi, 

i = 0, 1, ..., 7, as shown in Figure 1. 

 

 

Figure 1. NIFD mask. 

 

(13) 

(14) 

(15) 

(16) 

(17) 
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4. Experiment Results and Analysis  

According to Figure 1, we adopt 5×5 mask. For an 

image, first do Gauss filter, and then calculate the 

fractional differentiation by NIFD mask, thus eight 

edge information images are obtained by NIFDi, 

i=0,1,…,7 along eight directions respectively. Some 

results are shown in Figure 2. 
 

 

a) Original. 

  

b) Edge information by NIFD0. c) Edge information by NIFD1. 

  

d) Edge information by NIFD2. e) Edge information by NIFD3. 

  

f) Edge information by NIFD4. g) Edge information by NIFD5. 

  

h) Edge information by NIFD6. i) Edge information by NIFD7. 
 

Figure 2. The edge information image of 0.8 order by NIFDi, i = 0, 

1, …, 7. 

 

From the eight edge information images obtained by 

NIFDi, i = 0, 1, …, 7, we can project them to two 

directions (i.e., linear combination): 

       
(

)
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Then, we synthesize a new gradient for an image f(x,y): 

 

[

(

x y
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−
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The norm of the synthesized gradient is: 
2 2( , ) x ygradf x y d d= +  

In order to get continuous and thin edges, next we 

need to track and connect the edges of image based on 

the norm image of the gradient. The idea is the same 

as the non_maxima suppression method [2]. For a 

comparison, we considered the edge map yielded by 

sobel and canny operators. Some results are shown in 

Figure 3. 

 

  

a) Original. b) NIFD v = 0.1. 

  

c) NIFD v = 0.3. d) NIFD v = 0.5. 

  

e) NIFD v = 0.7. f) NIFD v = 0.9. 

  

g) Sobel. h) Canny. 

Figure 3. Comparison of edge images. 
 

Observing carefully Figure 3, we see that NIFD 

operator and canny operator have stronger edge search 

capability and more complete edge, but sobel operator 

can not. In addition, NIFD operator and canny 

operator almost completely maintain contour 

information of the original image, but only NIFD 

operator can weaken false negatives in the textured 

regions.   

(18) 

(19) 

(20) 
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It is known that accurate detection of edges in noisy 

data should comply with two possibly conflicting 

requirements. The edge detection process should avoid 

false edges produced by noise and ensure that actual 

edges are correctly detected. In order to validate the 

performance of NIFD operator, we generate some noisy 

images by adding zero-mean Gaussian noise with 

standard deviation 0.05, then detect edge of noisy 

images by sobel, Canny and NIFD operators. A part of 

results are shown in Figure 4.  

 

  

a) Original noisy image. b) Sobel. 

  

c) Canny. d) NIFD. 

  

e) Original noisy image. f) Sobel. 

  

g) Canny. h) NIFD. 

  

i) Original noisy image. j) Sobel. 

  

k) Canny. l) NIFD. 

Figure 4. Comparison of edge images obtained by different 

operators for noisy images. 

 

From Figure 4, we see that the better performance of 

NIFD operator is apparent. The edge curve obtained by 

the NIFD operator is always smoother than that of 

canny operator. For sobel operator, the edge map is 

noisy, and this effect is very annoying. And we can 

easily see that the edge map given by NIFD looks 

sharper than those yielded by sobel operator and 

canny operator. The lower resolution yielded by the 

sobel operator is clearly perceivable. The edge curves 

have not been detected. Although, canny operator can 

extract edge curves, the result is more noisy and the 

edge curves contain always some ‘glitch’. Since canny 

operator tracks and connects the edges of image based 

on the norm image of gradient that is obtained by 

filtering along two directions. While NIFD operator is 

based on the norm image of gradient that is 

synthesized by filtering along eight directions such as 

equations 18 and 19, thus it has anti-rotation capability 

and anti-noise ability. Therefore, the NIFD operator 

offers the best result among them. The edge curves 

can satisfactorily been detected and be much less 

noisy by NIFD operator, and the image edges look 

very sharp. NIFD operator has stronger edge search 

capability and more complete edge, and may 

overcome the shortcomings of sobel and canny 

operators.  

       

5. Conclusions 

Fractional differentiation has played a very important 

role in digital image processing fields respectively and 

more and more researchers begin to study them. This 

paper intends to deduce a new operator, NIFD 

operator, which may be applied to edge detection. 

Experiments show that the NIFD operator has 

excellent edge detection capabilities and especially 

plays an important role in reducing the noise 

sensitivity.  
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