
The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Software Protection via Hiding Function

using Software Obfuscation

Venus Samawi1 and Adeeb Sulaiman2
1Department of Computer Science, Al al-Bayt University, Jordan

2College of Administrative Science, Applied Science University, Kingdome of Bahrain

Abstract: Application Service Provider (ASP) is a business that makes computer-based services (small and medium sized
businesses) available to clients over a network. The usual ASP sells a large application to large enterprises, but also, provides
a pay-as-you-go model for smaller clients. One of the main problems with ASP is the insufficient security to resist attacks and
guarantee pay-as-you-go. Function hiding can be used to achieve protection for algorithms and assure charging clients on
per-usage basis. Encryption functions that can be executed without prior decryption (function hiding protocol) gives good
solution to the problems of software protection. Function hiding protocol faces a problem if the same encryption scheme is
used for encrypting some data about the function and also, the output of the encrypted function. In such case, an attacker could
reveal the encrypted data easily thereby comprising its confidentiality. This paper aims to develop a software protection
system based on function hiding protocol with software obfuscation that overcomes function hiding protocol problems. The
suggested system is a multi-client system that allows charging clients on a per-usage basis (pay-as-you-go) and satisfies both
confidentiality and integrity for the ASP and the client.

Keywords: Software protection, function hiding, software obfuscation, ASP.

Received July 10, 2011; accepted May 22, 2012; published online August 5, 2012

1. Introduction

Application Service Providers (ASPs) have evolved
from the increasing costs of dedicated software of
small to medium sized businesses. With ASPs, the
costs of such software can be lowered. At the same
time, the problem of upgrading has been reduced from
the client by placing the services-upgrade
responsibility on the ASP. There are several forms of
ASP businesses. For instance, functional ASP
distributes a single application, such as credit card
payment processing or time-sheet services. An
enterprise ASP delivers broad spectrum solutions. A
local ASP delivers small business services which
provide a pay-as-you-go mode. To provide an ASP
offering, the vendor must also, provide a secure
product [18]. One of the approaches that could be used
to assure charging clients on per-usage basis and
provide certain level of security is through the usage of
a function hiding protocol. The key point of function
hiding is to encrypt a special class of functions such
that they remain executable and produce encrypted
result to prevent clients from copying and using the
program without paying anything for it.

In a function hiding protocol, the client executes the
protected program with encrypted coefficients. The
client will not get the clear-text results until he sends
the encrypted results to the producer (who charges the
client) to decrypt them and sends clear-text result back
to the client. The encryption technique used is
probabilistic Goldwassr and Micali [11, 15] with two

supporting algorithms Plus and Mixed-mult that are
used to allow encrypted function to be executed
without requiring prior decryption [16].

Function hiding protocol needs to guarantee the
secrecy of its coefficients, especially when the same
key is used for encrypting the coefficients of the
function and the output of the encrypted function. Such
situation allows the attacker to reveal the encrypted
coefficients easily. This problem is called coefficient
attack problem. Instead of sending outputs of the
program to the producer, the client (attacker) sends the
encrypted coefficients that he finds in the program.
The client may even scramble them by multiplication
with some random quadratic residue, such that
producer cannot recognize these values as the hidden
function coefficients (polynomial coefficients).
According to the function hiding protocol, the producer
has to decrypt the encrypted data (in attacking case, the
sent data is the encrypted polynomial coefficients) and
thus would supply the client the main information
(original coefficients values), which must be kept
secret. Coefficient attack problem is general problems
that function hiding schemes have to solve.

In this paper, we tackle the problem of coefficient
attacking (mentioned above) by:

1. Using obfuscation technique in this research, the
resistance to the reverse engineering process is
enhanced by adding session termination property in
case of time expiration, and/or rule violation.

2. Making use of hash-table and Greatest Common

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

Devisor (GCD) to assure that the decrypted data
does not contains >70% of the polynomial
coefficients.

To provide security to the clear-text results generated
by the producer before transmitting them to the client,
authentication process is provided. To prove the
authenticity of the service provider (producer), the
clear text results are encrypted using public key (its
private key known only to the client), then encrypted
with private key of the producer.

Furthermore, a detailed description of the
implementation of the function hiding process is given.
Nine algorithms are written to build the developed
protection system in addition to the used obfuscation
technique. This system is tested with three different
applications and proved secure. The tests are carried on
stations of a LAN. We comprehensively survey,
analyze ASP security and pay-as-you-go problems and
how hiding function within software could provide
certain level of software security.

The rest of this paper is arranged as follows:
section 2 concerned with how function hiding aid the
software protection system. The aspects of the function
hiding design are discussed. Some key approaches and
techniques that are useful in the construction of
function hiding in addition to the necessary
mathematical concepts are presented in detail. The
developed software protection system is illustrated in
section 3. The realistic threat model, which indicates
what a cracker is able to do, is discussed in section 4.
Section 5 discusses software obfuscation, its
importance and techniques. Evaluation and testing of
the developed software protection system are presented
in section 6. Section 7 illustrates how multi-clients are
handled in the suggested system. Finally, we conclude
in section 8.

2. Software Protection via Function Hiding
Main applications for code privacy are found in the
software industry and with service providers that seek
for methods to make copying or learning proprietary
algorithms technically impossible. For instance, for
ASP and mobile software agents (designed to be
executed on different hosts with different
environmental security conditions). It is important to
provide protection against various attacks such as
unauthorized access to private data, malicious
modification of its code etc. Function hiding can be
used to accomplish software protection against
disclosure and ensures that only licensed users are able
to acquire the clear-text output of the protected
software [12, 18]. The basic steps of function hiding
protocol are illustrated in Figure 1 [15].

Let E be a mechanism to encrypt a function f
implemented in a program P where Alice (producer)
and Bob is (client):

1. The producer encrypts f, and creates a program P(E
(f))

2. Producer sends software P(E(f)) to the client.
3. Client executes P(E(f)) with input x and sends the

result (E[R]) back to the producer
4. Producer decrypts (E[R]), obtains R and sends the

result (R) back to the client.

Figure 1. A basic protocol for executing encrypted functions [19].

Based on the above protocol, software producer can
charge clients on a per-usage basis. To implement such
a technique, additive homomorphism scheme could be
used to enable hiding of a polynomial function in a
program. Before illustrating the suggested model of
software protection, the public-key and probabilistic
public-key are discussed. Since function hiding
protocol is based on Goldwasser-Micali scheme, it is
important to illustrate some needed mathematical
principles.

2.1. Public Key and Probabilistic Public-Key

Systems
Public-Key crypto system is introduced by Diffie and
Hellman in 1976. In such system, user A has a public
encryption transformation EA with a public key (PA)
saved in a public key directory to be used by others to
encrypt messages before sends them to A; and a private
decryption transformation DA used to decipher the
received messages, known only to user A, secrecy and
authenticity are provided by separate transformations.

The public key crypto systems RSA and Knapsack
schemes are deterministic in the sense that under a
fixed public key, a certain plain text m is always has
some or one of the following [4, 14]:

1. The scheme is not secure for all probability
distributions of the message space.

2. It is sometimes easy to compute partial information
about the plaintext m from the cipher text c.

3. It is easy to detect when the message sent twice.

Public-key encryption scheme is said to be polynomial
secure if no passive adversary can, in expected
polynomial time, select two plaintext messages m1 and
m2 with probability significantly >0.5 [4, 11, 14].

 Key

 [E-1]

 Producer

x

Client

P(E[F])

Mxed-Mult

Plus

E[R]

E[f(x)]

R

F

R E[R]

P(E[F]))

N
et

w
or

k

Software Protection via Hiding Function Using Software Obfuscation

Public key encryption scheme is said to be
significantly secure if, for all probability distributions
over the message space, whatever a passive adversary
can compute in expected polynomial time about the
plaintext given the cipher text, it can also, compute in
expected polynomial time without the cipher text [4,
11, 14].

The probabilistic public-key encryption [11, 14] has
some differences from the public key cryptosystems,
these are, the encryption decryption operations are
performed on binary numbers, quadratic residue
principle and Jacobi symbols are used to get the public
key, and does not produce the same encrypted result
when repeating the encryption operation more than
once, so it is none deterministic.

2.2. Mathematical Background
In this section, mathematical principles needed in the
implementation of the proposed system are illustrated.
These include quadratic residue, rings, relatively prime
numbers, Jacobi symbol, additively homomorphic
encryption, and polynomial rings.

• Quadratic Residue [14]: Let a∈Z*n, a is said to be
a quadratic residue modulo n, or a square modulo n,
if there exists an x∈Z*n such that x2 ≡a(mod n). If no
such x exists, then a is called a quadratic non-
residue modulo n. The set of all quadratic residues
modulo n is denoted by Qn, and the set of all
quadratic non-residues is denoted by nQ .

• Rings[10]: A ring <R, +, .> is a set R together with
two operations + and ., which is called addition and
multiplication respectively, defined on R such that
the following axioms are satisfied:

R1: <R, +> is an Abelian group,
R2: multiplication is associative,
R3: for all a, b, c∈R,

left distribution law: a(b+c)=(ab)+(ac), and right
distributive law: (a+b)c=(ac)+(bc), holds.

• Relatively Prime Numbers [14]: Two integers a
and b are said to be relatively prime or coprime if
GCD (a, b)=1, where GCD is the greatest common
divisor.

• Legendre Symbol and Jacobi Symbol [14]: The
Legendre symbol is a useful tool for keeping track
of whether or not an integer a is a quadratic residue
modulo a prime number p:

Let p be an odd prime and a is an integer.The Legendre
symbol a

p
⎛ ⎞
⎜ ⎟
⎝ ⎠

is defined for a≥0 and p odd prime where:

p

p

0 if p |a
a 1 if a Q
p

1 if a Q

⎧
⎪⎛ ⎞ ⎪= ∈⎨⎜ ⎟

⎝ ⎠ ⎪
− ∈⎪⎩

• Jacobi Symbol [14]: Let n≥3 be odd with prime
factorization 1 2 ke e e

1 2 kn p p p= . The Jacobi
symbol ⎟

⎠
⎞

⎜
⎝
⎛

n
a is defined to be:

1 2 ke e e

1 2 k

a a a a
n p p p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Observe that if n is prime number, then the Jacobi
symbol is just the Legendre symbol.

• Additively Homomorphic Encryption [13, 15]: Let
R and S be ring function E:R→S is called additively
homomorphic if there is an efficient algorithm Plus
to compute E(x+y) from E(x) and E(y) that does not
reveal x and y.

• Polynomial Rings [1]: If R is a commutative ring,
then a polynomial in the indeterminate x over the
ring R is an expression in the form:

 f(x) = a0 + a1x1 + a2x2 + a3x3 + …+ anxn

where each ai∈R and n≥0. The element ai is called
the coefficient of xi in f(x). The largest integer m for
which am≠0 is called the leading coefficient of f(x).
If f(x)=a0 (a constant polynomial) and a0≠0, then
f(x) has degree 0. If all the coefficients of f(x) are 0,
then f(x) is called the zero polynomial and its
degree, for mathematical convenience, is defined to
be -∞. The polynomial f(x) is said to be monic if its
leading coefficient is equal to one. Each polynomial
is composed of a number of monomials. A
monomial in x is an expression of the form: axn.
Where a and x are integer numbers. The number a is
called the coefficient of the monomial. If a≠0, the
degree of the monomial is n.

3. The Developed Function Hiding System
Using function hiding protocol for software protection
can be defeated by coefficient attack (the elements
send to the producer is in fact the encrypted
coefficients). In this case, the producer will decrypt
the polynomials coefficient and handed them to the
client (attacker). Sander and Tschudin [15] suggested
to solve this problem by making sure that the producer
is able to detect if an element send to the producer was
in fact produced as an output of the encrypted program
(E[R]). The key idea is to hide additional polynomials
(besides the function f) which simultaneously executed
when P is run. The additional polynomials serve as
checksums used by producer. By careful construction,
it is unfeasible for a software pirate to construct
numbers that pass the producer's checksum test for
elements that are not outputs of the producer encrypted
program. But this solution suffers from the problem of
the need for additional polynomials and checksum test
which takes additional time. In addition, the
checksums should be easy to evaluate for producer. In
particular, they should be much faster to evaluate than
the original polynomial f itself.

(1)

(2)

(3)

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

We developed the system model shown in Figure 1 to
overcome the coefficient attack problem and prove
authenticity. The suggested system based on software
obfuscation. The details of our system are illustrated in
Figure 2.

Figure 2. The proposed protocol for executing encrypted functions.

In Figure 2, E is the encryption function, F is the
function to be protected, E-1 is the decryption function,
and R is the result. The two functions Mixed-Mult, and
Plus are the functions that are used to support the
operation of function hiding. Let E be a mechanism to
encrypt a function f implemented in a program P:

1. The producer encrypts f and creates a program
P(E(f)).

2. Producer performs obfuscation on program P and
produce Obfuscated Program (OP) (to complicate
reverse software engineering process that could be
used to reveal the hidden polynomial coefficients).

3. Producer sends software OP(E(f)) to the client.
4. Client executes OP(E(f)) at the input x, then use

mixed multiplicative (Mixed-Mult) and an additive
(Plus) encryption function to hide polynomials in a
program

5. Client sends the encrypted result (E[R]) to the
producer.

6. Producer decrypts (E[R]), obtaining R.
7. To provide security for client results, encrypt R with

public key of the client and produce R`.
8. To prove authenticity of the producer, encrypt R` by

private key of producer and generate R``, then sends
the result back to the client.

Next, let us develop the steps illustrated above. The
main steps that are used to construct the function
hiding system are illustrated in Algorithm 1 shown
below. Other functions are called within this algorithm
in order to accomplish the function hiding process
which will be illustrated in the subsequent sections.
Algorithm 1: Function Hiding Model
Let F: be the polynomial illustrated in equation 3.
In order to hide this polynomial, the following steps are
performed:

Step 1: Encrypt each coefficient (a1, a2, a3, …, an) using
Algorithm 6 (Goldwasser-Micali probabilistic
public-key encryption) to get E(a1), E(a2), …, E(an),
where each element E(ai) represents a set of
numbers resulting from encrypting each binary
digit of the coefficient ai.

Step 2: Compute x1, x2, x3, …, xn.
Step 3: Compute the result of each monomial i.e. E(an) xn

using algorithm 8 (Mixed-Mult) and store the
results in an array M; where each monomial is
stored in a single cell of M.

Step4: Add-Up the elements of array M (Algorithm 9).

3.1. Encryption- Decryption Modules
Step 1 in Algorithm 1 encrypts the coefficient of the
polynomial F. In this section, we describe the
algorithms that implement in total the Goldwasser-
Micali encryption method.
Algorithm 2: Z*

n calculation
Input: n; such that n is an integer.
Output: Set of integers such that integer a∈[0,…, n-1]
where GCD(a,n)=1.
Step 1: Specify Zn=[0,…, n-1]
Step 2: For each a∈Zn, Do
 If GCD(a,n)=, then add a to the set of Z*

n

Algorithm 3: Jacobi and legendre symbol computations
JACOBI (a, n)
Input: An odd integer n ≥ 3, and an integer a, 0≤ a ≥ n.
Output: The Jacobi symbol a

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (and hence the Legendre

symbol when n is prime)
Step 1: If a=0 then return (0).
Step 2: If a=1 then return (1)
Step 3: Write a=2e a1, where a1 is odd.
Step 4: If e is even then set s 1.
Otherwise
set s 1 if n≡1 or 7(mod 8),
set s -1 if n≡3 or 5(mod 8)
Step 5: If n≡3(mod 4) and a1≡3(mod 4) then set s -s.
Step 6: Set n1 n mod a1
Step 7: If a1 = 1 then return (s);
Otherwise return (s×JACOBI(n1, a1))

Algorithm 4: Quadratic residue modulo n test
Input: n, an integer
Output: Set of Quadratic residue Module n numbers.
Step 1: Find Z*

n using Algorithm 3.
Step 2: For each a ∈ Zn do;
Step 3: If (x2–a) mod n=0 add a to the quadratic residues

modulo n set; where x is any other integer such that
a∈Zn.

Algorithm 5: Key generation for Goldwasser-Micali
Probabilistic public key encryption
Step 1: Select two large prime numbers p and q randomly,

where they should be roughly the same size (number
of digits)

Step 2: Compute n=pq
Step 3: Select an integer y∈Zn such that y is a quadratic

non-residue modulo n and the Jacobi symbol
y 1 ,
n

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 usingalgorithms 3 and 4.

N
et

w
or

k
 Key obfuscation

 P OP

 [E-1]

Public Key

 Private key

 Producer

 x

OP

Client

F E[F] E[F]

R E[R]

R' R``

R`'

E[F]

Mixed-Mult

Plus

E[R]

E[F(x)]

Software Protection via Hiding Function Using Software Obfuscation

Step 4: The public key of user A is (n,y); and the privet key is
the pair (p,q).

Algorithm 6: Goldwassr-Micali Probabilistic Public-Key
Encryption
This algorithm encrypts an integer m into t-tuple, where t is
the number of binary digits of the integer m.
User A encrypts an integer m for user B, and then B will
decrypt this integer.
A should perform the following steps
Step 1:Obtain B's authentic public key (n,y), using

algorithm 5.
Step 2: Represent the message m as binary string m=m1, m2,

…, mt of length t.
Step 3: For i=1 to t Do

a. Evaluate Z*
n using algorithm 2

b. Pick an x∈Zn at random
c. If mi=1 then set ci yx2 mod n;

 Otherwise set ci x2 mod n
Step 4: Send t-tuple c=(c1, c2, …, ct) to B.
Algorithm 7: Goldwasser-Micali Probabilistic Public-Key
Decryption
This algorithm takes t-tuple and transforms it back to an
integer m; where m is the clear text. To recover the plaintext
message m (of length t bits) from c, user A should do the
following:
 Step 1: For i=1 to t Do

a. Find the Legendre symbol ei= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
p
ci (algorithm 3).

b. If ei=1 then set mi 0; otherwise set mi 1.
Step 2: The decrypted message is m=m1, m2, …, mt.

Algorithm 8: Mixed-mult computation
Input: integer variable x (having b binary digits, such that
x=x1...xb) and encryption of coefficients a; E(a).
Output: list (M) of encrypted integers.
Step 1: For i = 1 to b D

a. If xi=1, then compute E(a2i), using algorithm 2
b. Put the result in list M

Step 2: Add-up elements of list M using the plus algorithm
(Algorithm 9).

Algorithm 9: Plus computation.
This algorithm adds up the monomials of the encrypted
polynomial:∑

=

n

i
ip

1

where each Pi is a list (M) obtained by algorithm 8.
Step 1: Pick a random number x from Z*

n, let c = x2 mod n.
Step 2: For j=1 to b, Do steps 3-5; where b is the number of

binary digits of each number a.
Step 3: Sum[j]=P1[j]. P2[j] mod n.
Step 4: Sum[j]=Sum[j]. c mod n.
Step 5: If P1[j] and P2[j]≠x2 mod n, then c= y.x2 mod n.
Step 6: For i=3 to m, Do steps 7; where m is the number of

monomials in the polynomial.
Step 7: For j=1 to b, Do steps 8-10.
Step 8: Sum[j]=Sum[j]. Pi[j] mod n.
Step 9: Sum[j]=Sum[j] c mod n.
Step 10: if Sum[j] and Pi[j]≠x2mod n,
 then c=y. x2mod n.

4. The Realistic Threat Model
When a security mechanism is required to achieve a
security goal, it is important to illustrate the realistic
threat model, which points up what a cracker is able to
do. Crackers knowledge and resources could be
discriminated based on [20, 21]:

• Algorithm understanding level of the used
protection mechanism: The cracker knows the
cipher algorithm, but not the secret information such
as the secret key.

• Level of system observation skill: The cracker owns
a binary file, disassembled code, decompiled code
of P, as well as a computer system M in which P is
executed. The cracker has a debugger with
breakpoint functionality that can watch internal
states of M, e.g., memory snapshot of M, audio-
visual outputs of M and the input and output value
of P. The cracker also, monitors the execution trace
of P (history of executed opcodes).

• System control skill level: When program P is
executed on computer system M, the cracker
controls the mouse and keyboard inputs of M and
run P with an arbitrary input values. The cracker
can change the instructions and the operand values
in P, in addition to the memory image of M, before
and/or during running P on M.

In this work, the expected threat model is based on
reverse engineering (level of system observation skill)
specifically once a cracker has the binary program
(executable program), he can understand the principles
of the used algorithm. Also, assume that the cracker
has a static analyzer such as a dis-assembler and a de-
compiler, as well as a debugger (dynamic analyzer). In
other words, the expected cracker has both algorithm
understanding and observation skills that allow him to
extract the encrypted coefficients of the hidden
function.

In order to hide secrets in an implemented software
and hinder reverse engineering process, a number of
obfuscation techniques have been proposed based on
the expected threat model [9, 21] as will discussed in
the next section.

5. Software Obfuscation
Software obfuscation has become a vital mean to hide
secret information that exists in software systems.
Obfuscations transform a program P to obfuscation
program OP as shown in Figure 2. OP is functionally
equivalent to the original program but it is more
complex and difficult to be understood [9, 21]. The
most popular obfuscation techniques [7, 8, 21]:

• Lexical obfuscations: (e.g., comment removal,
identifier renaming and debugging info removal,
etc.,).

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

• Data obfuscations: Data obfuscations thoroughly
change the data structure of a program and encrypt
literals including modifying inheritance relations,
restructuring arrays, etc. They make the obfuscated
codes so, complicated, which makes it is very
difficult to recreate the original source code.

• Control-flow obfuscation: Obfuscates the layout and
control flow of binary code. Many obfuscation
techniques use opaque predicates to forged
infeasible control flow, and then insert fake code
that obfuscates the control and data flow.

To overcome the expected threat model (illustrated in
the previous section), two obfuscation techniques are
used: lexical obfuscator, and changing data type
obfuscator for a chosen variables. The chosen variables
are the encrypted hidden function coefficients. The
data type will be changed from long-term to short-term
to make the data obfuscation complicated. The used
approach is as follows:

1. Parse the source program (un-obfuscated program)
to remove comments and find all tokens of the
program.

2. Find and keep all program variables through
analyzing the tokens, perform variable renaming,
then

3. Choose the variables that are important to obfuscate.
To obfuscate variables, choose splitting, or
extending method and convert them into array of
short term variables [6, 7, 8]. In this work, variable
splitting is used since the obfuscation metrics
(potency and resilience) of variable splitting all
grow with the number of variables into which the
original variable is split [3].

The resulting program is the OP. For further security,
white-box cryptography [9] could also, be used.

6. System Evaluation
The proposed protocol making use of function hiding
protocol based on Goldwasser-Micali scheme. Hiding
a polynomial f in a program P according to the method
described by Sander and Tschudin [15] exhibit secured
against known cipher text attack as “P guarantees that
no information is leaked about the coefficients of the
polynomial f” [15]. On the other hand, there is
coefficient attack problem which is (in this work)
handled by obfuscating program P and generates OP.
But does the OP highly resists reverse engineering
process (i.e., prevent specifying the coefficients) and
solves the coefficient attack problem.

As well known, secure obfuscation algorithms have
been proven to be impossible [5]. Program obfuscation
does not prevent software engineering attack, it will
only decelerate it. So, it is a matter of time before
attacker could recognize the coefficients of the

polynomial. But how could we evaluate the used
obfuscation scheme?

To assess the reverse engineering complexity of
obfuscated code, most researchers use potency and
resilience metrics. Potency is the amount of obscurity
added to the code, i.e., strength of OP against a human
de-obfuscator. Resilience measures strength of OP
against automated de-obfuscator [5]. Others works use
different approach and assess obfuscation technique
through controlled experiments involving human
subjects [2, 5] as will be used in this work.

6.1. Experimental Planning
In this work, the attacker has complete control over the
execution platform (e.g., the Java Virtual-Machine,
system calls). This implies that the attacker can trace
and profile the execution of OP, and can run a
debugger on OP. We choose 10 high ability subjects
who have experience in reverse engineering. Four
experiments were carried out according to the
following procedure: Each subject receives OP and
data file and asked to specify the polynomial
coefficients of each task. For each of the four tasks to
be performed, mark the start time; write the answer;
mark the stop time.

Table 1. Evolution results of 40 experiments.

 #Coefficients Correctness Time Needed
(Hours)

Poly1 5 90% 6
Poly2 10 70% 9
Poly3 15 58% 10
Poly4 20 47% 12

The tested hypotheses related to differences in time

(max time given was 12 hours/ experiment) needed to
perform the tasks, and the accuracy of the task result.
Table 1 shows the average results of the 40 experiment
from curacy and estimated time needed to get the
results. From the experiment results, the time needed to
perform the tasks significantly increases and the
accuracy decreases when number of coefficients
increased. Upon the results, to grantee preventing the
client from revealing the polynomial coefficients we
decided to terminate the session in two cases:

• The Time Stamp (Expiration Time): The client is
requested to send the data he wants to decrypt
within less than 12 hours after he made the request
for the service.

• Rule-Violation: The polynomial coefficients are
saved in a hash table. After decrypting the received
data, check the decrypted data with the hash table
content. If it contains more than 80% of the
polynomial coefficients, the session will be
terminated without sending the decrypted data to the
client. Using hash table needs O(1) as time
complexity. The hash table size will depends on
number of polynomial coefficients.

Software Protection via Hiding Function Using Software Obfuscation

• To overcome the problem of scrambling the
previously sent coefficients by multiplying them
with some random quadratic residue so, that the
server cannot recognize them as previously sent
coefficient, GCDs of the received coefficients and
the recently stored in the hash table are calculated.
If all the results 1's, this means that the received
coefficients are not multiple of the original
coefficients. Otherwise, indicates a multiplication
has been done. The session also, terminates without
sending decrypted data to the client. The time
complexity of Euclid's GCD algorithm of two
integers u, v, where u>v is of O(log2|v|).

7. Multi-Client System
T suggested approach is used to serve one client. To
make the system able to serve many clients, the
coefficients of the same service can be encrypted with
different encryption functions (different modulus for
each user) and coefficients obfuscated (split or
merged) in different way. To prevent the same client
from trying to reveal the coefficients by different
sessions, for each request (session), the client will
receive different copy of the application. This will
prevent him from making use of multiple sessions to
perform reverse engineering and overcome the
Timestamp restriction.

When a client makes a request, the application is
split into two sites (parts), part1 (at server site) that
register client, specify Time-stamp, built a hash table
for the used coefficients. Encrypt the hidden function
with new modules and client special encryption key K.
Obfuscate the application Program (OP). Finally, sends
OP to the client (part 2). The client will run the
application program and gets the encrypted result. The
encrypted result will be sent to the server. The server
(part 1) will check the Time-stamp, if it is expired then
end the session with the client. In case no time
expiration, the server will decrypt the data sent by the
client, check them with the coefficient stored in the
hash table. If 70% of the coefficients match, then the
client request will be refused and session will be
terminated. Else, part-1 will ask for the fee of the
application. When money is received, the decrypted
results will be authenticated (as explained before) and
sent to the client, then terminate the session.

8. Conclusions
Software piracy is a major financial problem for ASPs
where small enterprises can sell software on a per-
usage basis. This paper is concerned with the security
of ASP. We suggest a multi-client approach that makes
use of the function hiding technique to achieve
protection of algorithms against revelation. To prevent
the same client from trying to reveal the coefficients by
different sessions, the coefficients of the same service

are encrypted using different encryption functions
(different modulus for each user). Coefficients
obfuscated (split) in different way.

The suggested approach guarantees charging clients
on a per-usage basis. Moreover, we describe a protocol
that ensures, under certain conditions, that only
licensed users are able to gain the clear-text output of
the program, thereby providing confidentiality and
integrity for both ASP and client.

The proposed approach is applied to a special class
of functions for which secure and computationally
feasible solutions are to be obtained. The key point of
this work is to encrypt functions such that they remain
executable. We further improve the confidentiality of
the system by making reverse engineering a difficult
task. This was accomplished by: 1). using both lexical
obfuscation and changing data type obfuscation
method to hide any confidential data in a program, 2).
Terminate session with client in case of time expiration
or rule violation. The testing of the suggested approach
is encouraging and it meets the intended objective. As
future work, improve obfuscations using obfuscation
method suggested by Wei and Ohzeki [19], and
evaluation of the proposed framework with other
programs.

References

[1] Auvil D., Algebra for College Students,
McGraw-Hill, USA, 1996.

[2] Badger L., Kilpatrick D., Matt B., Reisse A., and
Vleck T., “Self-Protecting Mobile Agents
Obfuscation Techniques Evaluation Report,”
Technical Report, NAI Labs, 2002.

[3] Balakrishnan A. and Schulze C., “Code
Obfuscation Literature Survey,” available at:
http://pages.cs.wisc.edu/~arinib/writeup.pdf, last
visited 2005.

[4] Buchmann A., Introduction to Cryptography,
Springer, Johannes, 2004.

[5] Ceccato M., Penta M., Nagra J., Falcarin P.,
Ricca F., Torchiano M., and Tonella P.,
“Towards Experimental Evaluation of Code
Obfuscation Techniques,” in Proceedings of the
4th ACM Workshop on Quality of Protection,
USA, pp. 39-46, 2008.

[6] Chen H. and Hou T., “Changing Data Type
Method of Data Obfuscation on Java Software,”
in Proceedings of International Computer
Symposium, Taiwan, pp. 439-442, 2004.

[7] Chen H., Yuan L., Xi W., Zang B., Huang B.,
and Yew P., “Control Flow Obfuscation with
Information Flow Tracking,” in Proceedings of
the 42nd Annual IEEE/ACM International
Symposium on Micro-Architecture, USA, pp.
391-400, 2009.

The International Arab Journal of Information Technology, Vol. 10, No. 6, November 2013

[8] Cho S., Chang H., and Cho Y., “Implementation
of an Obfuscation Tool for C/C++ Source Code
Protection on the XScale Architecture,” in
Proceedings of Software Technologies for
Embedded and Ubiquitous Systems, Berlin, vol.
5287, pp. 406-416, 2008.

[9] Chow S., Eisen P., Johnson H., and Oorschot P.,
“A White-Box DES Implementation for DRM
Applications,” in Proceedings of the ACM
Workshop on Security and Privacy in Digital
Rights Management, Berlin, vol. 2696, pp. 1-15,
2002.

[10] Farleigh J., A First Course in Abstract Algebra,
Addison-Wesley, USA, 2002.

[11] Goldwasser S. and Micali S., “Probabilistic
Encryption,” Journal of Computer and System
Sciences, vol. 28, no. 2, pp. 270-299, 1984.

[12] Hacini S., Guessoum Z., and Boufaïda Z., “Using
a Trust-Based Environment Key for Mobile
Agent Code Protection,” in Proceedings of World
Academy of Science, Engineering and
Technology, pp. 854-859, 2008.

[13] Melchor A., Gaborit P., and Herranz J.,
“Additively Homomorphic Encryption with T-
Operand Multiplications,” in Proceedings of the
International Association for Cryptologic
Research, pp. 138-154, 2008.

[14] Menezes A., Oorchot P., and Vanstone S.,
Handbook of Applied Cryptography, CRC Press,
USA, 1996.

[15] Sander T. and Tschudin C., “On Software
Protection via Function Hiding,” in Proceedings
of the 2nd International Workshop IH’98
Portland Oregon, USA, vol. 1525, pp. 111-123,
1998.

[16] Sander T. and Tschudin C., “Toward Mobile
Cryptography,” in Proceedings of Security &
Privacy, California, pp. 215-224, 1998.

[17] Seroul R., Programming for Mathematicians,
Springer, Paris, 2000.

[18] Smith B., Campbell L., Cheah J., Lachmann A.,
Milstein S., Morgan D., Nartovich A., and
Roelofs J., Application Service Provider Business
Model: Implementation on the iSeries Server,
International Business Machines Corporation,
US, 2001.

[19] Wei Y., and Ohzeki K., “Obfuscation Methods
with Controlled Calculation Amounts and Table
Function,” in Proceedings of the International
Multi-Conference on Computer Science and
Information Technology, Wisla, vol. 5, pp. 775-
780, 2010.

[20] Yamauchi H., Kanzaki Y., Monden A.,
Nakamura M., and Matsumoto K., “Software
Obfuscation From Crackers’ View Point,” in
Proceedings of the International Conference,

Advances In Computer Science and Technology,
Mexico, pp. 1-6, 2006.

[21] Yamauchi H., Monden A., Nakamura M.,
Tamada H., Kanzaki Y., and Matsumoto K., “A
Goal-Oriented Approach to Software
Obfuscation,” International Journal of Computer
Science and Network Security, vol. 8, no. 9, pp.
59-71, 2008.

Venus Samawi is an associative
professor in Al al-Bayt University,
at the Department of Computer
Science. She received her BSc from
University of Technology at 1987,
the MSc and PhD degrees from
Computer Science Department in

Al-Nahrain University (Saddam University previously)
at 1992 and 1999 respectively. She supervises three
PhD students in system programming, pattern
recognition, and network security. She also, leads and
teaches modules at both BSc and MSc Levels in
computer science. She is a reviewer in four IEEE
conferences (ICIEA 2009, 2011, 2012, and ICFCN'12).
Her special area of research is AI, neural networks,
genetic algorithms, and image processing.

Adeeb Sulaiman is an associate
professor College of Administrative
Science, Applied Science
University. He holds a PhD degree
in computer science University of
Newcastle Upon Tyne, UK, in 1984,
MSc degree in computer science,

University of Glasgow, UK, 1981, and BSc degree in
electrical and electronic engineering, University of
Technology, Iraq in 1977. He published 12 papers in
the fields of cryptography, information hiding, digital
watermarking, and algorithms design. Worked at
Universities in different Arab countries (Iraq, Jordan,
Oman, Sudan and Bahrain). He was a head of the
Departments of Computer Science, Information
Systems, and Computer Communication, and as
faculty member. Now, he is an assistant dean of
College of Administrative Science, Applied Science
University, Kingdome of Bahrain.

