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Abstract: Today’s multi-computer systems are heterogeneous in nature, i.e., the machines they are composed of, have varying 
processing capabilities and are interconnected through high speed networks, thus, making them suitable for performing 
diverse set of computing-intensive applications. In order to exploit the high performance of such a distributed system, efficient 
mapping of the tasks on available machines is necessary. This is an active research topic and different strategies have been 
adopted in literature for the mapping problem. A novel approach has been introduced in the paper for the efficient mapping of 
the DAG-based applications. The approach that takes into account the lower and upper bounds for the start time of the tasks. 
The algorithm is based on list scheduling approach and has been compared with the well known list scheduling algorithms 
existing in the literature. The comparison results for the randomly synthesized graphs as well as the graphs from the real 
world elucidate that the proposed algorithm significantly outperforms the existing ones on the basis of different cost and 
performance metrics. 
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1. Introduction 

Availability of distributed set of powerful machines, 

intercommunicating through high speed links, provides 

a computing platform for executing applications with 

multifarious computational demands [1]. In order to 

fully exploit such Heterogeneous Distributed 

Computing Systems (HDCS), applications running on 

them are decomposed into different number of tasks 

that may have or have no dependencies among 

themselves [11].  

Optimal mapping of the tasks, i.e., their matching 

and then appropriate scheduling on diverse set of 

machines in a way to step up the overall efficiency of 

the system and gain promising potentials of the 

distributed resources is a very critical aspect. Mapping 

of tasks to machines should be done so as to lessen the 

overall time for the execution of the application. The 

scheduling problem becomes more complex in a HDCS 

due to the multiformity of not only the resources on 

which tasks are to be executed but also due to varying 

speeds of intercommunicating links between them as 

time required for the single task execution on different 

resources or for transferring same amount of data will 

be different.  Generally, the task scheduling problem is 

modeled by Directed Acyclic Graph (DAG) in which 

application tasks are shown through the graph nodes 

and dependencies for the data among different tasks are 

depicted through edges. Communication costs are 

marked on the edges and computation costs are labeled 

on the nodes. The task scheduling problem addressed 

here is a static model as different properties of the 

application for example, execution times of all the 

tasks on distinct resources and inter-task 

communication costs are known in advance.  

To achieve promising results from the multifarious 

distributed resources and eminent speed networks, 

efficient strategies for the scheduling of the 

applications have prime importance and therefore, this 

area is an active topic of research. Plethora of 

algorithms exists in the literature for solving the 

problem of task scheduling but, being NP-complete 

[4], finding near optimal solution for the problem 

requires more efficient scheduling strategies. High 

speedup and efficiency can be attained only if the 

mapping of tasks on machines is done appropriately as 

it can truly exploit system parallelism. 

List scheduling strategy has been adopted in the 

research work proposed in the paper. Proposed work 

has been compared with the work in [14, 15] in terms 

of different performance and speed metrics such as 

efficiency, speedup, schedule length ratio and 

makespan. The results obtained through extensive 

simulation analysis affirm that the proposed algorithm 

surpasses the previous ones quite significantly. 

The paper is organized as follow: The task 

scheduling problem has been addressed in section 2. 

Section 3 gives a brief review of the related work in 

the field. Proposed algorithm is demonstrated in 

section 4 with experimental investigation being shown 

in section 5. Finally, section 6 concludes the paper. 
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2. Task Scheduling Problem 

The basic elements of a scheduling system are an 

application program, certain environment to run the 

application on and some strategy for the scheduling of 

the application. Generally, a DAG is used for this 

purpose, with a set V of nodes representing n number of 

tasks of the application and a set E of edges showing 

the dependencies among the tasks. There is an entry 

task for each DAG with no parents and an end task with 

no children. 

The heterogeneous computing environment, on 

which the application is to be executed, consists of a set 

P of m autonomous processors intercommunicating 

with each other through high speed networks of varying 

bandwidth described in Bmxm matrix. Estimated time to 

compute a task on every processor is given in a 

computation cost matrix W of size n×m. The 

communication cost, Ci,j, for transferring output, datai,j, 

of a task ti to tj , if both are being executed on same 

processors, is 0. If the situation is different and both are 

being executed on different processors then the 

communication cost, Ci,j, between the two dependent 

tasks is computed using the following relation: 

                            
yxjiji BdataC ,,, /=                    (1) 

For the sake of simplicity, data transfer cost is assumed 

to be 1.0 in this case. A task graph of Figure 1 has been 

chosen for the thorough elaboration of the proposed 

algorithm. Computation cost matrix is given in Table 1. 
 

 
Figure 1. Directed acyclic graph. 

 
Table 1. Computation cost matrix. 

Task P1 P2 P3 

1 17 19 8 

2 7 6 7 

3 21 29 14 

4 8 10 11 

5 33 30 50 

6 11 13 11 

7 11 6 15 

8 12 20 14 

9 26 31 27 

10 13 12 13 

 

Let the earliest start time and earliest completion 

time for the execution of a task ti on a processor pj be 

EST(ti,pj) and ECT(ti,pj) respectively.  EST for the 

entry task, on all the processors, is 0, i.e. 

                   
0 jEST ( t , p ) 0=                       (2) 

 For the rest of the tasks in the application graph, the 

EST and ECT values are recursively figured out using 

the equations 3 and 4. An important consideration here 

is that a task can be scheduled to execute only if the 

execution of its parent tasks has finished and once a 

task has been executed, EST and ECT values become 

the AST (actual start time) and ACT (actual completion 

time) respectively for the task. 

     ))}Ct(ACTmax(],j[availmax{)p,t(EST j,ipji +=        (3) 

                  ),(),( , jijiji ptESTWptTEC +=                     (4) 

where tp belongs to the immediate predecessor set of 

task ti, the time when processor pj will be free from the 

execution of already scheduled tasks and is available 

for the execution of the task ti is depicted by avail[j] 
and Ci,j is the communication cost needed for 

transferring the output of the parent task to its 

currently executing child task (ti in this case). The 

internal max block in equation 3 is returning the time 

when all the necessary information for ti has reached 

the processor pj. When EST value for ti on pj has been 

computed, the earliest time by which the computation 

of ti can be completed can be found out using equation 

4. Here, the computation time of ti (Wi,j) is added up in 

its earliest start time on pj (EST (ti, pj)) to get ECT (ti, 
pj). Finally, after all the tasks are mapped on 

appropriate processors, the actual completion time for 

the end task gives the schedule length (or the 

makespan) for the entire application, i.e. 

                       endmakespan max{ ACT ( t )}=                  (5) 

Efficient scheduling of the application requires 

adopting a scheduling strategy that minimizes the 

makespan.  

 

3. Related Work 

High performance of the HDCS demands for the 

efficient scheduling strategies for an application.  

Because of its fundamental significance, extensive 

study has been made in the field and bunch of 

algorithms exist in the literature. The classification of 

the algorithms has been done as: list scheduling 

algorithms [7, 8, 12, 14], guided random algorithms 

[5], cluster based [9] and task duplication algorithms 

[2, 3, 6]. 

List scheduling algorithms have been chosen as a 

research area for the work proposed in the paper. 

Here, priority based approach is followed and an 

ordered list of tasks is maintained on the basis of their 

priorities [14]. Few of the algorithms in this category 

that exist in literature are Modified Critical Path 
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(MCP) [16], Mapping Heuristics (MH) [7], Levelized 

Min Time (LMT) [8], Dynamic Critical Path for Grids 

(DCP-G) [13],  Heterogeneous Earliest Finish Time 

(HEFT) [14], Critical Path on a Processor (CPOP) [14] 

and Performance Effective Task Scheduling (PETS) 

[15]. A brief description of some algorithms is given 

below. 

 

3.1. Mapping Heuristics (MH) 

The computation costs for a task, in case of MH, is the 

ratio of the total count of instructions that have to run in 

the task and the processor speed. Static upward ranks 

are computed for the tasks, on the basis of which 

priorities are assigned. The main drawback associated 

with the MH algorithm is that it does not follow 

insertion based strategy. 

 

3.2. Levelized Min Time (LMT) 

The two phase algorithm initially performs task 

prioritization and then the selection of processor phase 

takes place. In first phase, level-wise prioritization of 

the tasks is done such that a lower level task has higher 

rank than the higher level task. Second phase allots the 

tasks to the quickest processor on the basis of 

computation and communication costs. LMT, however, 

considers only the computation costs of the tasks to 

assign the priorities.  

 

3.3. Dynamic Critical Path for Grids (DCP-G) 

This algorithm considers the lower and higher limits for 

the starting time of a task and generates a critical path 

on this basis. It follows Min-Min algorithm strategy as 

a task is allotted to a processor that finishes its 

execution fastest. The emphasis here is to minimize the 

critical path length. 

 

3.4. Heterogeneous Earliest Finish Time 

(HEFT) 

One of the most well-known scheduling algorithms, 

HEFT, prioritizes the tasks considering their upward 

ranks which are computed using average of execution 

times of tasks and mean communication costs among 

the processors of two successive tasks. A processor that 

yields minimum finish time for a task is chosen for its 

execution. 

 

3.5. Critical Path on a Processor (CPOP) 

CPOP uses downward ranks along with upward ranks 

for the task prioritization. Here, Critical Path (CP) is 

maintained for a graph and a critical processor is used 

for mapping of tasks that lie on the CP. For the 

remaining tasks, the processor which gives minimum 

finish time is selected for execution. 

3.6. Performance Effective Task Scheduling 

(PETS) 

PETS algorithms has three phases. It performs level-

wise sorting of the tasks before task prioritization and 

processor selection phases. Firstly, grouping of 

independent tasks is done in a way that their 

concurrent execution can be performed. Processor 

selection phase for PETS is same as for HEFT and 

CPOP. 

 

4. Proposed Work 

4.1. Minimal Latest Start Time (MLST) 

MLST is the proposed algorithm in the paper. The 

time limits for beginning the scheduling of a task are 

taken into account. The objective behind the approach 

is that a task whose latest time to start scheduling has 

approached must be put for scheduling. Delaying the 

execution of the task even if its start time has reached 

its maximum limit will result in an increase in the 

execution time of the entire application. The time 

limits have been considered for scheduling in the 

earlier proposed algorithms in the literature such as in 

[13, 16, 17], but the novelty introduced in the paper is 

that an extra phase has been adopted that performs 

level-wise task sorting. The algorithm has also task 

prioritization and processor selection phases. For 

assigning priorities, the lower and upper bounds for 

the start time of a task have been considered and a task 

whose latest start time among all the tasks is minimal 

is assigned a higher rank. The prioritization of the 

tasks is done level wise such that a task at a lower 

level has higher rank than a task at a higher level. 

DAG is traversed in such a way that independent tasks 

at each level are grouped in a way that their concurrent 

execution is possible. Absolute Earliest Start Time 

(AEST) of the tasks is computed recursively starting 

from the entry node [17]. AEST for the entry node is 0 

and for the other tasks, it is figured out using the 

following relation, 
 

   AEST ( t ) max { AEST w C }t t t ,ti t pred ( t ) p p pp ii
= + +

∈
    (6) 

 

where tp is the immediate predecessor of the task ti. 

When AEST values for all the tasks are known, 

Absolute Latest Start Time (ALST) for each task is 

computed recursively by traversing the DAG upward. 

Equations 6 and 7 are used for the calculation of 

ALST. 
 

       
endend tt AESTALST =          (7) 

 

isisi ts,it)t(succtt w}CALST{minALST −−=
∈

           (8) 

where ts is the set of immediate successors of the task 

ti.  
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Finally, the prioritization of the tasks is done level wise 

on the basis of ALST of the tasks. A task that has 

minimal ALST among all the tasks at a level has higher 

priority (rank). For the processor selection phase, EST 

and ECT for a task on each processor is reckoned using 

the equations 2, 3 and 4 and the processor which gives 

the least ECT for a task is assigned the task for 

execution. The MLST works on insertion based 

approach in which scheduling of a task  is allowed 

between already scheduled tasks if there is an idle time 

slot available, provided the priority constraints are not 

violated. 
 

Table 2. Computed attributes for MLST. 

Tasks 

w.r.t 

Priority 

Processors 
Final 

Processor 
P1 P2 P3 

EST ECT EST EST ECT EST 

1 0 17 0 19 0 8 P3 

3 26 67 26 75 8 32 P3 

2 90 97 90 96 32 39 P3 

4 74 77 74 79 39 45 P3 

5 63 96 63 93 45 95 P2 

6 99 110 99 112 45 56 P3 

9 171 177 93 104 171 178 P2 

8 118 130 118 138 56 70 P3 

7 61 72 104 110 70 85 P1 

10 176 179 116 118 176 179 P2 

 

The summary of the proposed algorithm is given in 

Figure 2. 
 

Input: DAG, Number of Processors 
Output: Scheduled Tasks, Makespan  

1. Beginning from the entry node of the DAG, do 
a. Calculate the absolute earliest start time (AEST) for all the 

tasks by task graph traversal in top-down manner. 
2. Beginning from the end node of the DAG, do 

a. Compute the absolute latest start time (ALST) for all the 
tasks by task graph traversal in bottom-up manner. 

3. Beginning from the first level, set the priorities of the tasks in 
the non-increasing order of their ALST on every level such 
that a task at higher level has higher rank.  

4. While there are tasks that have not been scheduled yet, do 
a. Select the highest priority task 
b. Compute ECT of the task on each processor by following 

the insertion based approach. 
c. Allot the task to the processor that gives least ECT 

                end 
          end 
    end 
 

Figure 2.  MLST algorithms. 

 

The algorithm has been explained through the DAG 

of Figure 1. There are 10 tasks in the graph and the 

tasks are to be executed on an appropriate processor 

from a set of 3 processors. Table 2 displays the 

attributes of the tasks required for the proposed 

algorithm such as average computation costs, AEST, 

ALST, ranks based on the ALST and the priorities of 

the tasks according to their rank value.  

Finally, EST and ECT values for the tasks on every 

processor and the selected processor through MLST are 

displayed in Table 3. The schedule length for the 

selected DAG obtained when executed through MLST 

algorithm is 133 while HEFT, CPOP and PETS give 

the schedule lengths of 151, 149 and 169 respectively.  
 

Table 3. Computed EST and ECT on each processor and the 

selected processor for MLST.  

Task Avg_CC AEST ALST Rank 
Task 

Priority 

1 14.667 0 0 0 1 

2 6.667 66.667 78.333 78.333 3 

3 21.333 62.667 62.667 62.667 2 

4 9.667 60.667 144.000 144.000 4 

5 37.667 106.000 106.000 106.000 5 

6 11.667 97.333 180.667 180.667 6 

7 10.667 124.000 227.000 227.000 9 

8 15.333 141.000 224.333 224.333 8 

9 28.000 201.667 201.667 201.667 7 

10 12.667 282.667 281.667 281.667 10 

 

5. Results and Discussion 

In this section, the proposed technique has been 

evaluated through its comparison with HEFT, CPOP 

and PETS. Random task graph generator function has 

been implemented through which DAGs with diverse 

attributes have been generated and then used for the 

experimental purposes. Task graphs of real world 

application have also been considered for comparative 

analysis of the proposed and existing algorithms. 

Matlab simulator has been used for the comparative 

study of the proposed and existing work. 

 

5.1. Attributes of the Task Graph  

The attributes of the DAGs depend on various input 

parameters such as, number of nodes in the graph (N), 

communication to Computation Cost Ratio (CCR), 

shape/height parameter of the graph (α), out degree of 

a node and range percentage of computation cost (β). 

Different combinations of values (given below) have 

been selected in the DAG generation for the 

experimental purpose. 

N= {100, 150, 200, 250, 300, 350, 400} 
No_of_Processors = {4, 8, 12, 16, 64} 
α = {0.5, 1.0, 1.5} 
CCR = {0.1, 1, 5, 10, 15, 20, 25, 30} 
Out_degree = {1, 2, 3, 4, 5} 
β = {0.25, 0.5, 0.75, 1.0} 

Height of a DAG is generated from a uniform 

distribution randomly that has √n/α as mean and width 

from √n×α. For small values of α, the generated DAG 

is longer and has low parallelism while a shorter DAG 

with high parallelism results if α is kept high. 

Heterogeneity among the processors is controlled 

through the range parameter (β). A significant 

variation can be produced in the computation times of 

the tasks on diverse processors with large value of β. 

 

5.2. Comparison Metrics 

The comparison among the proposed techniques and 

the existing ones is made on the basis of different 
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performance and cost metrics. A little description of 

these metrics is given below: 

• Makespan: Is the main performance metric which 

gives the overall completion time for all the tasks in 

a given graph. 

• Schedule Length Ratio (SLR): As different task 

graphs with diverse attributes are generated and 

studied, schedule length ratio is computed in which 

schedule length is normalized to some lower bound. 

For an algorithm, SLR value is the ratio of its 

makespan and sum of minimum computation costs 

of tasks on the CP, i.e. 

)CP_on_CompCostmin(

makespan
SLR =

                   

• Speedup: Is the third metric employed for the 

evaluation purpose of the algorithms which is 

incurred by dividing the sequential execution times 

of the graphs by their parallel execution times. 

• Efficiency: Is the speedup and makespan ratio of the 

graph. 

 

5.3. Randomly Generated Task Graphs 

The quality of the algorithm on the basis of different 

graph attributes described above has been evaluated by 

generating the randomly generated task graphs with 

diverse features and then executing through the 

proposed and existing algorithms. Comparison of the 

algorithms has been made and shown below. The 

results demonstrate that the existing algorithms (HEFT, 

CPOP and PETS) are outperformed by the MLST 

algorithm. For the experimental evaluation of the 

MLST algorithm, 700 graphs with diverse attributes 

have been produced. In 63% cases, the MLST 

algorithm surpasses the HEFT algorithm, in 65% cases 

PETS algorithms is outperformed and 70% scenarios 

show better results compared with CPOP. 

The algorithms have been compared on the basis of 

makespan they produce when task graphs with different 

shapes are executed through them. Longer graphs with 

low parallelism to smaller graphs with high parallelism 

were generated through random graph generator. For 

each value of shape parameter (α), 100 task graphs 

were generated. The comparison has been displayed in 

Figure 3 which shows that the MLST algorithm 

completely outperforms HEFT, CPOP and PETS 

especially for longer graphs which have low 

parallelism. 

The proposed algorithm has also been analyzed by 

average SLR produced for different graph structures 

and the results are shown in Figure 4. Again, 100 

graphs were generated for each value of the shape 

parameter (α). The results affirm the fact that MLST 

performs significantly well compared with HEFT, 

CPOP and PETS. 
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Figure 3. Average makespan for varying α. 
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Figure 4. Average SLR for varying α 

 

In another experiment, algorithm quality has been 

verified by changing the number of nodes and taking 

the average SLR of the schedule for 100 task graphs 

for each value of number of nodes. The experiments 

have been conducted for 100, 150, 200, 250, 300, 350 

and 400 number of nodes. Figure 5 shows that as the 

number of nodes rises, the quality of the algorithm 

compared with the reported algorithms also improves. 

Similar experiments have been conducted for average 

SLR when the CCR is changed and selected from the 

range of values given in the above section. For 

computation-intensive graphs, average SLR produced 

by MLST is comparable with HEFT but for 

communication-intensive graphs, i.e., the graphs for 

which CCR is high, MLST outperforms rest of the 

algorithms. The results are shown in Figure 6. 
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Figure 5. Average SLR for varying no of nodes. 
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Figure 6. Average SLR for varying CCR. 

(9) 
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Further,   speedup and efficiency comparison of the 

algorithms on the basis of varying number of nodes and 

number of processors, respectively, have been made. 

Number of nodes is same as used for the average SLR 

comparison. The number of processors has been taken 

from 4, 8, 12, 16 and 64. The results of Figures 7 and 8 

elucidate that MLST algorithm outperforms the other 

reported algorithms for average speedup and average 

efficiency. 
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Figure 7. Average speed up comparison. 
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Figure 8. Average efficiency comparison. 

 

5.4. Task Graphs of Real World Problems 

In another experiment, task graph of a real world 

problem, molecular dynamics code [10], has been 

taken. The task graph is an irregular one. The number 

of tasks in the graph and the application structure are 

defined already, only the CCR values have been 

changed to evaluate the quality of the proposed 

algorithm with respect to average SLR. The 

performance of the algorithm has been displayed in 

Figure 9 which explains that the MLST algorithm 

outperforms the other reported algorithms significantly 

well. Again, graphs with diverse features have been 

generated and the MLST algorithm outperforms the 

HEFT and PETS in around 60% cases and CPOP in 

70% cases. 
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Figure 9. Average SLR comparison for molecular dynamics task 

graph.  

6. Conclusions 

In order to obtain the near optimal results for the 

problem of task scheduling in an HDCS, efficient 

strategies for the optimal mapping of the tasks are 

required. A novel task scheduling algorithm has been 

introduced in the paper and extensively been tested 

for different comparison metrics. The comparison of 

the algorithms has been made against the well known 

existing algorithms in the literature on the basis of 

these cost and performance metrics. Diverse set of 

task graphs with varying features have randomly been 

generated and used for the experimental purpose 

along with the task graph of a real world application. 

The comparative analysis explains that the 

performance of the proposed algorithm is 

significantly well in most of the cases. 
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