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Abstract: In this paper, a new tool that is fractional Fourier Transform is introduced to 3D model retrieval. And we propose a 

3D model descriptor based on 3D factional Fourier transform. Fractional Fourier transform is a general format of Fourier 

transform, and add a variables that is order. Our approach is based on volume. The first step of the approach is that voxelize 

these 3D models. A coarse voxelization is regarded as the input for the 3D Discrete Factional Fourier Transform (3DDFRFT). 

A set of (complex) coefficient is obtained by 3DDFRFT in each order. The absolute values of coefficients are considered as 

components of the feature vector in each order. We also can integrate these feature vectors into the mixed feature vector, which 

is named as Multi-Order fractional Fourier Feature Vector (MOFFFV). We finally present our results and compare our method 

to 3D descriptor based on 3D Fourier Transform on the Princeton Shape Benchmark database. 
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1. Introduction 
 

With the development of the 3D data acquisition and 

graphics hardware technology, there are more and 

more 3D model reservoirs in virtual reality, 3D games 

and other fields. So, how to quickly find the model that 

we need becomes a hot topic. The 3D model retrieval 

research has been focused on primarily content-based 

retrieval technology. A challenging issue in content-

based 3D model retrieval is the description of shapes 

with suitable numerical representations called shape 

descriptors. In general a shape descriptor should be 

discriminative, compact, easy to compute, and 

invariant under a group of transformations. In recent 

years, many authors propose their algorithms in order 

to describe 3D models. However, none of them can be 

fit for all situations. 

In this paper, we propose a new approach to extract 

features of 3D objects. This approach is based on 

fractional Fourier transform. Before the extraction 

feature from 3D model, we firstly apply pose 

normalization in order to align the model into 

canonical position. Secondly, we will apply the 

algorithm of voxelization to voxelizing these objects. 

Thirdly, we apply the 3D Discrete Fractional Fourier 

Transform (3DDFRFT) is used to the volume model to 

representing the feature in the fractional domain. 

Finally, we extract the low-frequency fractional fourier 

coefficients in the fractional domain as the model 

feature vectors. In section 2, we describe related 

works. The Fractional Fourier Transform (FRFT) is 

introduced in section 3. In section 4, we give the 

algorithm to extract 3DDFRFT features of 3D models. 

In section 5, we display the experimental results. 

Finally, Conclusions and future works are addressed in 

section 6. 

 

2. Related Work 
 

The methods for feature extraction can be categorized 

into five major approaches including statistics-based 

approach, volume-based approach, extension-based 

approach, image-based approach and 3D closed curve-

based approach. Statistical-based approaches reflect 

basic object properties like the number of vertices and 

polygons, the surface area, the volume, the bounding 

volume, and statistical moments. Paquet et al. [10], 

describe shape features using bounding volume, object 

orientation, and object volume density. Ohbuchi et al. 

[7], propose a statistical feature vector which is 

composed of three measures taken from the 

partitioning of a model into slices orthogonal to its 

three principal axes. A sampling window is moved 

along the principal axes, and its moment of inertia is 

calculated. Osada et al. [8], described the shape of a 

3D object as a probability distribution sampled from a 

shape function, which reflects geometric properties of 

the object. Therefore, the method can avoid 

preprocessor of the model pose normalization. Paquet 

et al. [9], propose a descriptor that is cords-based. A 

cord is defined as a vector that points from the center 

of mass of a model to the center of mass of a triangle 

of a mesh. The feature vector is composed from three 

histograms: the distribution of the angles between the 

cords and the first principal axis, the distribution of the 

angles between the cords and the second principal axis, 
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and the distribution of the cord lengths.  

Volume-based approaches mainly rely on the models 

volumetric representation. The shape histogram is 

introduced by Ankerst et al. [1]. The enclosing object 

space is divided into a series of profiles and sectors for 

calculating the 3D shape histogram in 1999. 

Elmustapha [4] proposed a new method to describe 3D 

models based on 3D discrete cosine transform which is 

applied for the voxelized 3D model. Vrani´c and Saupe 

[18] present a shape descriptor based on the voxeled 

model. A coarse voxelization of a 3D model is used as 

the input for the 3D Discrete Fourier Transform 

(3DDFT), while the absolute values of obtained 

(complex) coefficients are considered as components 

of the feature vector. Then, magnitudes of certain k 

low-frequency coefficients are used for description. 

Funkhouser et al. [5], propose a descriptor based on 

the spherical harmonics representation of object 

samples. 3D space is divided into a series of concentric 

spheres with different radius. A frequency function that 

has rotation invariant is defined in the concentric 

sphere space. The functions constitute a 3D model of 

the feature vector.  

Extension-based approaches build object descriptors 

from features sampled along certain spatial directions 

from an object’s center. Vrani´c et al. [19], introduce a 

ray-based descriptor that describes a surface by 

associating to each ray from the origin the distance to 

the last point of intersection of the ray with the model.   

Image-based approaches reflect the feature of spatial 

object in 2D image. Ohbuchi et al. [6], also proposed 

the depth buffer image method to extract model 

feature. 42 depth buffer images of the model are 

obtained by 42 viewpoints located on the model’s 

bounding sphere. Then the generic Fourier descriptors 

are exacted from these depth buffer images. The 

similarity of models can be obtained by computing 

these generic Fourier descriptors. Chen-Tsung [2] 

proposes a 3D shape representation scheme based on a 

combination of principal plane analysis and dynamic 

programming in 2006. First, a 3D model is transformed 

into a 2D image by projecting the vertices of the model 

onto its principal plane. Second, the convex hall of the 

2D shape of the model is further segmented into 

multiple disjoint triangles using dynamic 

programming. Finally, for each triangle, a projection 

score histogram and moments are extracted as the 

feature vectors for similarity searching. 

3D closed curve-based approach is a way in recent 

years. Elmustapha et al. [3], propose a new method for 

describing 3D-shape.The main idea is to reconstruct a 

3D closed curve that represents a 3D model given by a 

polygonal mesh, and to extract signatures from this 3D 

closed curve, such as the area descriptor, the dot 

product descriptor, the torsion descriptor and the radius 

descriptor. The FFT energy spectral feature vectors of 

their signatures are viewed as the feature vector of 3D 

model. 

From the above, the Fourier transform is widely 

used in 3D model retrieval. The FRFT, as a 

generalization of the classical Fourier Transform (FT), 

is a unified time-frequency transform, and has many 

applications in the field of optics and signal 

processing. With the order from 0 increasing to 1, the 

FRFT can show the characteristics of the signal 

changing from the time domain to the frequency 

domain. The FRFT is more flexible than the FT for it 

has one more transform parameter than the latter. 

Through FRFT, we can obtain the information of a 

signal in the time-frequency domain. We shall describe 

in detail the FRFT in the next section. 

 

3. Fractional Fourier Transform (FRFT) 
 

FRFT is a generalization of the FT proposed some 

years ago. In addition, the FRFT is a special case of the 

more general linear canonical transform, and it 

provides a tool to compute the mixed time and 

frequency components of signals. The FRFT of a 

function x(t) with a kernel kp(t,u) can be defined as: 
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where α=pπ/2, p is the order of FRFT. According to 

the definition, the FRFT with α=π/2(p=1) corresponds 

to the classical FT, and one with α=0(p=0) 

corresponds to the identity operator. The FRFT has an 

important property that its operator is additive in order, 

that is: 

               1 2 2 1 1 2[ ] [ ]p p p p p pF F F F F += =                 (3) 

 

 
Figure 1. The rotation of time-frequency plane [14]. 

 

Another important property will be introduced that 

the FRFT can be interpreted as a rotation in the time-

frequency plane with angle α as shown in Figure 1. 

The property establishes the direct relationship 

between the FRFT and the time-frequency distribution, 

and founds the theory that the FRFT domain can be 

interpreted as a uniform time-frequency domain. With 

the order from 0 increasing to 1, the FRFT can show 

the characteristics of the signal gradually changing 

from the time domain to the frequency domain as 

shown in Figure 2. Thus it is concluded that the FRFT 

is a signal analysis tool between the time domain and 

the frequency domain. 

(2) 
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Figure 2. The FRFT of rectangle pulse [13]. 

 

The Discrete FRFT (DFRFT) is for the FRFT like 

what the DFT is for the FT. There is not a unique 

definition, but there is some general agreement on the 

definition given by Candan and co-workers. It is based 

on a fractional power of the DFT matrix. Due to the 

separability of kernel function, 3D DFRFT can be 

obtained by 1D DFRFT, The FRFT also has a number 

of important properties. Interested readers may refer to 

[11, 12, 14, 15, 16, 17]. 

 

4. Feature Vector Computation 
 

4.1. Pose Normalization 
 

Objects represented as polygonal meshes are given in 

arbitrary orientation, scale, and position in the 3D-

space. Many authors have proposed many features, 

which possess the invariance with respect to 

translation, rotation, scaling, and reflection. However, 

the feature vectors proposed in this paper indeed 

depend upon sizes, locations, and orientations of given 

3D shapes, pose normalization is necessary as a step 

preceding the feature extraction. Pose normalization is 

a process of adjusting the size, location, and orientation 

of a given object in a canonical space. 

The normalization of translation, scaling, and 

reflection are easy solved. The center of gravity of 

models is moved to the origin of coordinate. This 

solves the issue of normalization of translation. We can 

resolve the issue of normalization of scaling via the 

maximum radius of model vertices. Nevertheless, the 

normalization of rotation is a difficult issue, and a 

crucial problem. The most prominent tool for solving 

the problem is the Principal Component Analysis 

(PCA), also known as the discrete Karhunen-Loeve 

transform. The PCA is based on the statistical 

representation of a random variable. This method is to 

replace the original data with less data. The less data 

can reflect more object information. In this paper, we 

solve the normalization of rotation by applying this 

method. The procedure of normalization can be 

obtained by applying following mapping τ  finally. 

The mapping τ is defined by τ(p)=s
-1

·F·R·(p-c)·p. p is 

the set of vertices. c is the center of gravity of a model. 

s is the scaling factor of a model. F is a matrix on 

reflection. R is a rotation matrix. 

 

4.2. Voxelization of Model 
 

After the pose normalization of a model, the next step 

is voxelization. In this paper, the approach of feature 

extraction of model is based on volume. The 

volumetric representation plays an important role in 

computer graphics community. Voxelization transforms 

the continuous 3D-space, which contains models 

represented as polygonal meshes, into the discrete 3D 

voxel space. Its process mainly has three steps, which 

are discretization, sampling, and storing. The step of 

discretization yields the cellular subdivision of the 

continuous 3D-space into voxels (volume elements). 

Generally, a model is discretized into a N*M*P grid of 

voxels. We discretize the models into 128*128*128 

and 64*64*64 grid of voxels in this paper. After the 

sampling, the voxel is attributed a value vijk∈{0,1}  

depending on positions of the polygons of a 3D-mesh 

model. Thus, if there is a point P laying inside, then we 

set vijk=1, otherwise vijk=0. Voxel values are stored in a 

3D-array [vijk]N*M*P.These models are converted into 

3D-array [vijk]N*M*P by the above. In this paper, we 

apply the algorithm [20], of voxelization to voxelize 

these objects. 

 

4.3. Feature Vector Based on 3DDFRFT 
 

The last step accomplishes the conversion from 

continuous 3D-space to voxels. And then the goal is 

the feature extraction based on 3DDFRFT. FRFT have 

been described in detail in section 3.  

FRFT is a generalization of the classical FT, and can 

be interpreted as a rotation in the time-frequency plane. 

With the order from 0 increasing to 1, the FRFT can 

show the characteristics of the signal changing from 

the time domain to the frequency domain. For 

3DDFRFT, it has three orders in three directions 

respectively. Thus we can extract feature with different 

order.   Let  
2 2

{ | {0,1}, , , }N N
ijk ijk

V v v i j k= ∈ − ≤ ≤                

be the set of all voxels,  
0 1 2 0 1 2

, , , ,
{ |

p p p p p p

i j k i j k
G g g=

0 1 22 2
, , , ,0 , , 1}N NC i j k p p p∈ − ≤ ≤ ≤ ≤  

be the set of coefficients, which is transformed from V 

by 3DDFRFT, and p0, p1, p2 be the order of 3DDFRFT 

in three directions, such as x-axis, y-axis and z-axis. 

Let: 

 0 1 2

0 1 2

, ,

, ,[ ]( , , ) ( , , ) ( , , , , , )
p p p

p p pF x u v w x s t q k s t q u v w dsdtdq= ∫∫∫   

be 3DFRFT. Due to the variety of the digital 

computation of FRFT, 3DDFRFT has not uniform 

formula like 3DFFT. Thus, the equation of model 

voxels spectrum in the fractional domain is given as 

follows: G=F
 p0, p1, p2 [V]. Owing to increasing three 

variables (order), 3DDFRFT become more flexible. 

With these orders from 0 increasing to 1, we can 

process different transform from the time domain to 

the frequency domain. Thus, in different order, we can 

obtain different the feature of models. When the orders 

are  p0, p1, p2, G is obtained finally. We take a part of 

low-frequency coefficients as components of the 

feature vector in the fractional domain. Feature vector 

of model in orders that are p0, p1, p2 is denoted by 

(4)  
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0 1 2p p p

VF  as shown below: 
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dimension of the voxel feature vector in a direction. 

Thus, its total amount dimensions is D*D*D.  

With the change of order, we can extract different 

feature in different order. Thus, we can integrate the 

different features in different orders. Multi-Order 

Fractional Fourier Feature Vector (MOFFFV) is 

combined with the features in different orders, and 

given by the formula.  

 
0,0 1,0 2,0 0 , 1, 2 , 0 , 1 1, 1 2 , 1

0 10 1... ...i i i n n n

i n

p p p p p p p p p

v i v n vMOFFFV w F w F w F − − −

−−= + + +
  (6) 

where n is the count of feature vector in different order, 

wi is the weight of each feature vector. 

 

5. Experiments 
 

In this section, we present results of experiments with 

feature vector based on 3DDFRFT. We investigate the 

performance of feature vector in arbitrary order and 

Multi-Order fractional Fourier Feature Vector. And we 

also compare the performance of feature vector based 

on 3DDFRFT and the traditional 3D Fourier Transform 

(3DFT). All experiments were based on the 3D data 

provided in the Princeton Shape Benchmark (PSB) 

[13]. The database consists of 1814 manually 

categorized 3D models collected from the Web. The 

database is segregated into a training set consisting of 

907 models and spanning 90 model classes, and a test 

set consisting of the remaining 907 models and 

spanning 92 model classes.  

 

 
a) Query for an airplane using PSB database. 

   
b) Query for an person using PSB database. 

Figure 3. The retrieval results. 

In our experiment, we will evaluate all algorithms 

through the training set and the test set of PSB. We use 

the average Precision versus Recall (PR) plots to 

evaluate our method. PR plot describe the relationship 

between precision and recall in a ranked list of 

matches. The horizontal axis represent the recall while 

the vertical axis representing the precision. The recall 

and precision are computed by formula. 

N N
Precision , Recall

K T
= =                       (7) 

where N is the number of relevant models retrieved, K 

is the total number of retrieved models, and T is the 

total number of relevant models in the database. 

We apply our 3D retrieval system with all models of 

PSB as the model library. Figure 3 shows the retrieval 

results. The results illustrate that our retrieval system 

has brilliant performance. 

 

5.1. Feature Vector in Arbitrary Order 

In our experiment, three orders (p0, p1, p2) of 

3DDFRFT are same in three directions for symmetry. 

We take the orders (p), which are 1, 0.98, 0.95, 0.9, 0.8 

and 0.7. When the order is 1, 3DDFRFT become the 

traditional 3DFT, feature vector only contain the 

information of frequency domain. The 3DFT-based 

approache is proposed by Vrani´c [6]. When the orders 

are others, feature vector contain the information of 

time and frequency domain. The experiments results in 

different orders are shown in following figure. 

 

 
Figure 4. The precision-recall plot comparing p=1(3DFT), p=0.98 

and p=0.8 in D=8 using the test set of PSB database. 
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Figure 5. The precision-recall plot comparing p=1(3DFT), p=0.95, 

p=0.9, p=0.8 and p=0.7 in D=16 using the test set of PSB database. 

 

From the Figures 4, 5 and 6, we can see that the 

performance of retrieval decrease with the decline of 
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orders. The performance in p=1(3DFT) is best. The 

performances in other orders are worse than in 

p=1(3DFT). 
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Figure 6. The precision-recall plot comparing p=1(3DFT), p=0.98 

and p=0.95 in D=16 using the training set of PSB database. 

 

 

5.2. Multi-Order Fractional Fourier Feature   

       Vector 

Although the performances in other orders are worse 

than in p=1(3DFT), the feature vector of each order 

should contain much the information of model. Thus, 

we can integrate the different features in different 

orders into a feature. In our experiment, we combine 

the feature vectors in different orders. These orders 

include 1, 0.98, and 0.95. The mixed feature vector is 

Multi-Order Fractional Fourier Feature Vector 

(MOFFFV). The following figure shows the 

experiments results of MOFFFV. 

According to the precision-recall plot shown in 

Figure 7 and Figure 8, MOFFFV performs better than 

the feature vector based on the traditional 3D Fourier 

transform. That is because MOFFFV contain more the 

information of model.  
 

 
Figure 7. The precision-recall plot comparing the MOFFFV of p=1, 

p=0.98 and p=0.95 (w0=0.61, w1=0.23, w2=0.15) and the feature 

vector of p=1 (3DFT) using the test set of PSB database. 

 

 
Figure 8. The precision-recall plot comparing the MOFFFV of p=1, 

p=0.98 and p=0.95 (w0=0.61, w1=0.23, w2=0.15) and the feature 

vector of p=1 (3DFT) using the training set of PSB database. 

6. Conclusions and Future Work 

In this paper, we introduce a new tool to 3D model 

retrieval and propose a 3D model descriptor based on 

the FRFT. The performances of extracting feature 

vector in arbitrary order are worse than the feature 

vector based on the traditional 3DFT. For the energy 

distribution of the FRFT, aggregation level of energy 

increase with the increasing order. When the order is 

smaller than 1, the energy of low-frequency 

coefficients in the fractional domain is less than in 

frequency domain. Thus the information of feature 

vector in arbitrary order is less than the feature vector 

based on the traditional FT. However, we can obtain 

the different feature in different order. So, we can 

integrate the information. MOFFFV is the mixed 

feature vector. The information of MOFFFV is more 

than the feature vector based on the traditional Fourier 

transform. Therefore, MOFFFV performs much better 

than the feature vector based on the traditional 3DFT.  

A drawback of the presented descriptor is the 

increase of MOFFFV dimensions. The feature vector 

in arbitrary order has much redundancy. It bring about 

that the performance of MOFFFV is difficult to be 

raised. 

In the future, we would like to introduce the FRFT 

to image-based approach. In addition, we introduce 

other methods to lessen the redundancy. 
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