
The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013 269

Query Dispatching Tool Supporting Fast

Access to Data Warehouse

Anmar Aljanabi
1
, Alaa Alhamami

2
, and Basim Alhadidi

3

1
Computer Science Department, University of Technology, Iraq

2
Computer Science and Informatics College, Amman Arab University, Jordan

3
Computer Science Department, Al-Balqa’ Applied University, Jordan

Abstract: Data warehousing hastens the process of retrieving information needed for decision making. The spider web

diversity between both end-users and data marts increases traffic, load, and delay in accessing the requested information.

In this research, we have developed a query dispatching tool facilitating the access to the information within data marts,

eventually data warehouse in fast, and an organized fashionable way. The dispatching tool takes the query, analyzes it, and

decides which data mart as a destination that query should be forwarded to. This research is based on Ralph Kimball’s

methodology. The results show that the dispatching tool reduces the check time spent in the data dictionary within a logical

side of the data warehouse deciding the intended data mart and hence, minimizing execution time.

Keywords: Data warehouse, metadata, query dispatching tool, execution time.

Received October 12, 2010; accepted May 24, 2011; published online March 1, 2012

1. Introduction

Global corporations today compete with each other in

satisfying customers through introducing better

services, and performance in the most cost effective

way. Millions of transactions had been captured

through the years in enterprises producing enormous

amounts of raw data spread among different distant

departments [1, 4]. Earlier, operational database

systems also, known as On-Line Transactional

Processing (OLTP) systems were used for decision

making resulting non accurate decisions. This

drawback urged database experts to construct database

in a way to support analysis and decision making and

that’s where the Data Warehouse (DW) came from

[2, 3].

 Several different definitions have been given of data

warehouse, according to Barry Devlin, IBM Consultant

“a data warehouse is simply a single, complete and

consistent store of data obtained from a variety of

sources and made available to end users in a way they

can understand and use it in a business context” [2, 6].

Data warehouse is segregated from transactional

databases and contains consistent cleansed data.

Modeling is an important step in a data warehouse

design process including logical data modeling,

physical data modeling, and metadata management

satisfying rapid information retrieval and ad hoc

formulations [9]. Metadata is an enabling technology

that supports the user interface to warehouse such as

R/OLAPXL (ROLAP front-end tool) which makes use

of metadata to display data warehouse tables and

fields. Access tools that utilize metadata are a powerful

evolution of a warehousing process. In this research,

we present a front-end Query Dispatching Tool (QDT)

that supports fast access to the data warehouse

exploiting metadata. This tool redirects queries to the

intended destination in a definitive way, and the most

important thing is that end-users need only a cursory

knowledge about the warehouse architecture itself. An

implementation along with the Graphical User

Interface (GUI) is presented. In the next section, we

briefly look at the data warehouse model. Section 3

examines the tool interface and implementation. The

QDT implementation and results are given in section 4

and conclusions in section 5.

2. The Warehouse Model

Data warehouse is a read-intensive database, modeled

according to enterprise requirements within different

environments. It can be seen as building blocks

involving a number of essential components glued

together consisting of source data, data staging, data

storage, and information delivery [8]. The metadata is

used to combine and manage these blocks. Different

data warehouse architectures had been conducted.

Among the most popular is Kimball’s methodology

also, known as Bottom-Up approach as shown in

Figure 1 [5, 9]. The model shows a back-end

technological component, which focuses on data at

sources and stages the required data prior to extraction,

transformation, then loading to already structured data

warehouse tables. Furthermore, a front-end component

interested with user's access to data resides within

warehouse, in other words, front-end supports

270 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

warehouse browsing, query managements and

monitoring activity. The metadata plays a major role in

data warehouse technology. It contains information

such as extraction frequencies, extraction methods,

indexes, and algorithms used in integration and

conversion of data into a warehouse repository.

Metadata helps end-users to use their own

terminologies to find the information. In other words,

metadata can be seen as a navigational map to the data

warehouse [7, 8].

The proposed tool requires from end-users nothing

but a cursory knowledge about the data warehouse

inner structure. SQL queries are auto generated leaving

no room for errors concerning the requested

information. Query dispatching tool uses a copy of

metadata to ease the access to the investigated

information. It also, shows a single image of the data

warehouse. The most important is that the tool offers

accuracy, and minimizes time for reaching

information.

Figure 1. High level technical architecture for data warehouse

(adapted from Kimball et al. [5]).

3. Interface Design and Implementation

3.1. Introduction

This section introduces the design and implementation

of the QDT user interface. This tool is designed to

work with very simple type of queries. Bus modelling

is adopted for the warehouse design. Data Marts

(DMs) are integrated using shared dimension, which is

the time dimension. The data dictionary used within

this tool contains three major tables describing DMs

used and their tables along with their contained fields.

Furthermore, metadata contains a description of the

method that QDT uses to direct queries after

investigation and knowing what data needs to be

extracted.

3.2. Interface Design

The QDT uses the concepts of tree and tabs that make

the interface user friendly. It is classified into two tabs

and three modules. The layout is shown in Figure 2. A

brief look at the main parts of the interface helps to set

up the discussion of the data warehouse access method.

Figure 2. Query dispatching tool graphical user interface.

3.2.1. Data Selection

This tab consists of three modules as shown below:

• DW_Navigator’s Module: This is an essential

module in a QDT in which users navigate through

the database system. It excels in visualizing the

entire data warehouse system. Users only have to

surf through the tree and determine data mart(s),

table(s), and field(s).

• Criteria_Values Module: After the criteria are

defined through the DW_Navigator. Information on

the specified criteria will be shown referring to the

data mart (database) number, name of the selected

table, field’s name, and description. Still one thing

that is the value of the field of criteria needs to be

specified representing the values that QDT will use

to retrieve the information based on it. This is done

throughout the select_item list retrieving data

automatically from distant data marts based on

database links, which are configured internally with

proper authentication for each of the remote DMs.

Validation of these criteria and their chosen values

is done through confirm button to commit these

values to a database table known as criteria.

• Viewing_DW_Criteria Module: In this module, all

the criteria selected earlier are exhibited here to

show users what their criterion are, which

contributes to constructing the final SQL SELECT

statement. This region also, contains

SQL_Statement sub-module that helps in viewing

the SQL command before execution, and it contains

three items. The items are:

1. Generate SQL statement button.

2. A non-editable text area (script area) displaying

data warehouse query, which is generated

internally and automatically all the way through

the proper functions and procedures.

3. View data button that executes the script and

displays results in the system outputs tab.

It is worth mentioning, criteria as well can be

reconfigured from this module.

Query Dispatching Tool Supporting Fast Access to Data Warehouse 271

3.2.2. System Outputs

This second tab does no more than showing end-user

the retrieved information based on the SQL query. It

views the information, whether it is drill down or drill

across at the same tab.

3.2.3. Query Dispatching Tool Services

This query dispatching tool also, provides some of

the built-in functions which come with oracle forms

with the ability to copy, paste, enter/execute/cancel

query, insert/remove/lock records, help, and menus

for other standard activities.

3.3. Interface Implementation

The interface of the QDT excels in simplicity. Once

again, it uses tree and tabs concepts making the layout

user friendly and easy to handle. This tool is

implemented using oracle forms developer, which is a

powerful front-end application from oracle developer

suite 10g, and is tested using oracle database as a back-

end. The proposed tool requires no more than Internet

Explorer 5 (IE5) or higher version from client’s side.

Another application known as Oracle Containers for

J2EE (OC4J) is also, needed, and is used to run oracle

forms and examine them using Java Virtual Machine

(JVM), which already exists in all systems allowing

forms to run in any operating system, thus removing

the need for oracle 10g application server, which is

used for this very same purpose.

3.4. Example

Briefly look at an example of a very simple query

concerning drill down process using QDT interface.

Example 1: Warehouse attributes: All the fields in the

fact_finance data marts.

Warehouse conditions: fiscal year=‘2004’ &

Department_Group_Name='Executive General and

Administration' & Organization_Name= 'Canadian

Division'

Query dispatching tool SQL statement:

Select To_ Char('Product_Key'),

To_Char(Time_Key),

To_Char('Reseller_Key'),

To_Char('Employee_Key'),

To_Char('Customer_Key'),

To_Char('Currency_Key'),

To_Char('Sales_Territory_Key'),

To_Char('Sales_Order_Number'),

To_Char('Sales_Order_Line_Number'),

To_Char('Sales_Line_Order_Number'),

To_Char('Order_Quantity'),

To_Char('Unit_Price'),

To_Char('Extended_Ammount'),

To_Char('Product_Standard_Cost'),

To_Char('Total_Product_Cost'),

To_Char('Tax_Ammount'), To_Char('Freight'),

To_Char('Carier_Track_Number'),

To_Char('Customer_Po_Number'),

To_Char(Organization_Key),

To_Char(Department_Group_Key),

To_Char(Account_Key), To_Char(Ammount),

From Fact_Finance@Rdm3

Where Time_Key In (Select Distinct Time_Key From Dim_Time3

@Rdm3 Where Fiscal_Year= '2004')

And Department_Group_Key In (Select Distinct

Department_Group_Key From Dim_Department_Group @Rdm3

Where Department_Group_Name = 'Executive General And

Administration')

And Organization_Key In (Select Distinct Organization_Key From

Dim_Organization @Rdm3

 Where Organization_Name='Canadian Division');

Figure 3 shows the information required from the user.

The attributes of the fact table which is the target for

analysts are generated automatically based on the data

mart selection. Warehouse conditions are formed

according to the criteria selection. The criteria are

stored within a table named criteria. The metadata

contains information about the data marts, tables,

descriptions, attributes, db_links, mechanisms of how

to get to the information remotely, and any other

necessary information regarding the data warehouse.

After end-users select their criteria they will have to

validate and confirm it through confirm button and

then press on generate SQL statement button for the

auto generation process leaving no room for errors in

query formation. Last but not least view data button

displays the requested data in system output tab as

shown in Figure 4.

Figure 3. Screen of input for example 1.

Figure 4. Screen of output for example 1.

4. QDT Implementation

4.1. Introduction

This section presents implementation of QDT. Using

oracle forms developer suite 10g environment and

PL/SQL language as a front-end and oracle 10g

database as back-end. Performance measurement is

272 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

also, presented concerning execution time on both

conventional and developed QDT data warehouse

systems. A detailed technical comparison between

performance measurements as well will be made. In

section 4.2 performance criteria will be investigated,

parameters' discipline in 4.3, and finally experimental

scenarios are presented in 4.4 considering both drill

down and drill across processes.

4.2. Performance Criteria

To have a good comparison between the old system

and QDT one, it is important to select a fixed criterion

of comparison. In this research, fetch and check times

are selected deducing execution time for a query as the

base of comparison and are evaluated by using the

following equation:

 ET(t) = CT(t) + FT(t) (1)

where ETt, CTt are total values for execution and

check times respectively, and finally FTt is the sum of

all fetch time values. The following is a presentation of

comparison criterion for this study:

• Query dispatching tool consists of a replica for data

dictionary, specifically look up tables about

database tables. Checking every single record in

metadata will increase the check time in order to

find the intended table in the SQL command,

whether it exists or not. In other words, check

time within a data dictionary is evaluated by the

following equation:

 CT(t)=CT(i)+CT(i+1)+.....+CT(n-1)+CT(n) (2)

where CTt is the total check times, CTi is a single

check time, and (i=1,2,…,n) where n is the iteration

check time.

• After checking is done and table objects are

confirmed fetching its data phase begins, the

following equation evaluates the total fetch time:

FT(t)=FT(i)+FT(i+1)+.....+FT(n−1)+FT(n) (3)

where FTt, and FTi mean the total fetch time values

and a single fetch time in a consecutive manner, and

(i=1,2,…,n) where n is the number of the table being

fetched.

4.3. Parameters Discipline

Many parameters in the test environment interact,

controlling them would help us make minimum

effects on test setup:

• Session Load: Only SQL statement is executed in

the database, within only one session. Connecting to

the database guarantees full capabilities of the

database are concentrated on executing the SQL

command.

• Connectivity: It is important to ensure that

connectivity between dispatcher database where

QDT resides and the three DMs from the other side

is flawless and authenticated properly throughout

Db_links.

• Time Estimation: This research is interested in

reducing execution time for the SQL statement via

the check times in the data dictionary. Oracle issues

an explain plan for a detailed execution every time

read/write operation is needed and an optimizer

chooses the best plan to execute the query before the

real execution. It gives many details like IO disks,

nested loops, joins, union, view, sort, connect by,

etc., but there is no information regarding how

much elapsed time has been taken to find the table

containing the investigated information within the

data dictionary.

In order to overcome this drawback, estimation for

both fetch time and check time values has been

developed based on some solid facts regarding the

nature of data warehouse and RDBMS, they are:

• Since analysts’ target has always been the fact table

meaning that records' number within fact tables is

very high, making the data block size large-

which is interesting to analyst who view/fetch data

(no inserts/updates), leaving us to reach a

conclusion that the nature of the transaction is not a

big deal in this case. In other words, leave the data

within one data block or few as possible and the

heavy load for the transaction on the database itself

is acceptable again no updating but only viewing.

• Once the query is executed, execution plan is lifted

to buffer cache to speed up the process minimizing

fetch time for the next query runs, considering that

buffer cache may choose a different actual

execution plan when the statement is executed

and there are several possible reasons for this to

happen including: bind variables, optimizer

session setting, and System Global Area (SGA)

cache so, that times are estimated considering the

minimal level for fetch time and check time, to

calculate execution time.

4.4. Experimental Scenarios

This section will go through a variety of experiments

showing advantage of the performance of QDT over

the traditional one. To have a full view of the nature of

the evaluation, the end-user will have to construct the

SQL SELECT statement and monitors: check time

values within a data dictionary, total fetch times for

data which resides within data blocks in the physical

side of the DB architecture, make a comparison

involving the total fetch times between the old

technique and the proposed one, and finally, calculate

execution time that is an accumulation of both fetch

and check times. Three experimental scenarios had

Query Dispatching Tool Supporting Fast Access to Data Warehouse 273

been taken into consideration DM1, DM2, DM3.

Moreover, drill across scenario between these data

marts has been conducted.

4.4.1. Drill Down

4.4.1.1. First Scenario

In this scenario, end-user constructs SQL statement for

requesting data. The data resides within DM1. A

comparison between execution time values of

dimensions and the subject area for data mart one is

shown in Figure 5.

Figure 5. Logarithmic pivot chart for execution times using

conventional and proposed QDT.

A comparison between check times during different

execution stages illustrated in Figure 6.

Figure 6. A comparison between old and proposed QDT check

times.

Execution time of the same SQL statement for both

old and new systems shows a slight difference because

requested information resides within DM1 depending

on the position of the tables within the data dictionary.

4.4.1.2. Second Scenario

In this scenario, investigated information resides

within DM2. Comparison between conventional and

QDT in terms of check, fetch, and execution times

within the data dictionary is shown in Figures 7 and 8.

Figure 7. Pivot chart of fetch, check, and execution times for

traditional drill down process.

Figure 8. Pivot chart of fetch, check, and execution times for QDT

drill down Process.

Comparison between old and QDT in terms of fetch

time within metadata is shown in Figure 9.

Figure 9. A comparison of check time values between traditional

and QDT.

4.4.1.3. Third Scenario

End-user asks for data kept within data DM3. System

responses to execution time for both conventional and

the proposed QDT is given in a graph in Figure 10.

Figure 10. A comparison of execution time values between

traditional method and QDT.

A comparison between the two systems showing a

drastic change in check time within the data dictionary

is exhibited in Figure 11.

Figure 11. A comparison of check time values within data

dictionary.

274 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013

4.4.2. Drill Across

Fetching data from more than one database is a

common thing, but in a data warehouse it is quite a bit

of challenge. Figure 12 exhibits check, fetch, and

execution time values of drilling across between first,

second, and the third data marts.

Figure 12. Shows check, fetch, execution times of a drill across

process between DM1, DM2, and DM3 using QDT.

The following is a detailed statistical pivot table

for the values of check, fetch, execution, and grand

total for each one of DM1, DM2, and DM3 in table 1.

generated by Excel 2007.

Table 1. A detailed statistical pivot table gives check, fetch, and

execution time values for drill across process between DM1, DM2,
and DM3.

Row Labels
Sum of

Check_Time

Sum of

Fetch_Time

Sum of

Execution_Time

Dim_currency 0.003 0.45 0.453

Dim_department_group 0.003 1.35 1.353

Dim_product 0.003 0.48 0.483

Dim_reseller 0.003 0.51 0. 513

Dim_sales_territory 0.003 0.48 0.483

Fact_finance 0.003 2.7 2.703

Fact_internet_sales 0.003 3.6 3.603

Fact_reseller_sales 0.003 3.3 3.303

Grand Total 0.024 12.87 12.894

5. Conclusions

Decision support systems not only need a data

warehouse as a central repository, but also, front-end

techniques that facilitate accessing and retrieving

information. Fast access to a data warehouse plays a

major role for decision makers. Experimental result in

this research have proven that a consumed fetch time

for requested information has been minimized within

the metadata, thus reducing execution time of end-user

queries. The accuracy in reaching investigated

information within the data dictionary has a superior

performance to the conventional system, because data

is accessed accurately and directly.

The QDT takes an end-user query, analyzes it, and

redirects it to a proper data mart as a destination. The

graphical user interface makes the architecture of the

data warehouse understandable for end-users. This

research can be seen as an avenue for some innovative

futuristic ideas. Contrary to Data Staging Area (DSA)

as a data warehouse phase where the background

processes work, a phase named Query Dispatching

Area (QDA) can be built supporting front-end

applications. Furthermore, an agent can be developed

to tune to affecting SQL statements such as finding a

better explain plan effecting fetch time, and eventually

execution time.

References

[1] Adhikari A., Ramachandrarao P., Prasad B., and

Adhikari J., “Mining Multiple Large Data

Sources,” The International Arab Journal of

Information Technology, vol. 7, no. 3, pp 241-

249, 2010.

[2] Başaran B., “A Comparison of Data Warehouse

Design Models,” MSc Thesis, Computer

Engineering, Atilim University, Turkey, 2005.

[3] Bontempo C. and Zagelow G., “The IBM

Data Warehouse Architecture,” Communications

of the ACM, vol. 41, no. 9, pp 38-48, 1998.

[4] Hamad M., “Building Data Warehouse For

Decision Support Systems,” PhD Dissertation,

Informatics Institute for Postgraduate Studies at

Iraqi Commission for Computer and

Informatics, Iraq, 2004.

[5] Kimball R., Ross W., and Thornthwaite W., The

Data Warehouse Toolkit: Expert Methods for

Designing, Developing, and Deploying Data

Warehouse, Wiley, New York, 1998.

[6] Kumar P., “The Data Warehousing: Continuing

the Evolution,” The Data Warehousing Institute

World Conference, USA,

http://www.docstoc.com/docs/23482116/The-

Data-Warehousing, 2009.

[7] Nagabhushana S., Data Warehousing: OLAP

and Data Mining, New Age International Ltd.

Publishers, India, 2006.

[8] Ponniah P., Data Warehousing Fundamentals: A

Comprehensive Guide for IT Professionals, John

Wiley & Sons, Inc., New York, 2001.

[9] Wu L., Miller L., and Nilakanta S., “Design of

Data Warehouses Using Metadata,” Information

and Software Technology, vol. 43, no. 2, pp. 109-

119, 2001.

Anmar Aljanabi is presently

assistant lecturer at Computer

Science Department, University of

Technology, Iraq. He earned his BSc

in computer science from Baghdad

University, Iraq in 2003, and his

MSc in computer science from Al-

Balqa’ Applied University, Jordan in 2010. His

research interest is in data warehouse, and image

processing.

Query Dispatching Tool Supporting Fast Access to Data Warehouse 275

Alaa Alhamami is presently

professor of database security and

dean of Computer Science and

Informatics College, Amman Arab

University, Jordan. He is a reviewer

for several national and international

journals and a keynote speaker for

many conferences. He is supervising a lot of PhD,

MSc, and Diploma theses. His research is focused on

distributed databases, data warehouse, data mining,

cryptography, steganography, and network security.

Basim Alhadidi is presently an

associate professor at The

Department of Computer Science,

Al-Balqa’ Applied University,

Jordan. He earned his PhD in 2000,

in Engineering Science (Computers,

Systems and Networks). He received

his MSc in 1996 in engineering science (Computer and

Intellectual Systems and Networks). He published

many research papers in many topics such as:

computer networks, image processing, and artificial

neural networks. He is a reviewer for several journals.

He was appointed in many conferences as keynote

speaker, reviewer, track chair and track co-chair.

