
The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004 171

A Survey on Fault Injection Techniques

Haissam Ziade 1, Rafic Ayoubi 2, and Raoul Velazco 3
1 Faculty of Engineering I, Lebanese University, Lebanon

2 Faculty of Engineering, University of Balamand, Lebanon
3 IMAG Institute, TIMA Laboratory, France

Abstract: Fault tolerant circuits are currently required in several major application sectors. Besides and in complement to
other possible approaches such as proving or analytical modeling whose applicability and accuracy are significantly
restricted in the case of complex fault tolerant systems, fault-injection has been recognized to be particularly attractive and
valuable. Fault injection provides a method of assessing the dependability of a system under test. It involves inserting faults
into a system and monitoring the system to determine its behavior in response to a fault. Several fault injection techniques have
been proposed and practically experimented. They can be grouped into hardware-based fault injection, software-based fault
injection, simulation-based fault injection, emulation-based fault injection and hybrid fault injection. This paper presents a
survey on fault injection techniques with comparison of the different injection techniques and an overview on the different
tools.

Keywords: Fault tolerance, fault injection, fault simulation, VLSI circuits, fault injector, VHDL fault models.

Received May 19, 2003; accepted October 13, 2003

1. Introduction

A system may not always perform the function it is
intended for. The causes and consequences of
deviations from the expected function of a system are
called the factors to dependability:

• Fault is a physical defect, imperfection, or flaw that
occurs within some hardware or software
component.

• Error is a deviation from accuracy or correctness
and is the manifestation of a fault.

• Failure is the non-performance of some action that
is due or expected.

When a fault causes an incorrect change in a machine
stage, an error occurs. Although a fault remains
localized in the affected code or circuitry, multiple
errors can originated from one fault site and propagate
throughout the system. When the fault-tolerance
mechanisms detect an error, they may initiate several
actions to handle the faults and contain its errors.
Otherwise, the system eventually malfunctions and a
failure occurs.

Due to the evolutions of the technologies, the
probability of faults occurring in integrated circuits is
noticeably increasing. The interest for integrated on-
line fault detection mechanisms and/or fault tolerance
is therefore rapidly increasing for circuits designed in
deep sub-micron technologies. The selection of the
right mechanisms to integrate in a circuit requires the
definition of the type of faults prone to occur and a
detailed knowledge of their potential impact on the
circuit behavior. Designing a circuit with a set of

carefully selected fault detection mechanisms is not
sufficient to ensure that all critical effects of faults are
avoided, especially because the implemented
mechanisms are in general not able to catch all
possible faults. Trade-offs have also to be made during
the design phase between the fault coverage obtained
for different types of faults and the various induced
costs (in terms of area or clock frequency, but also for
example in terms of design time and potential impacts
on the application execution if techniques based on
time redundancy is used). Making such choices, it is
necessary to ensure that the faults which are eventually
not detected or tolerated by the implemented
mechanisms do not have critical effects. However, the
level of criticality of the effect can often only be
evaluated in the application environment, taking into
account the real-time interactions of the circuit with the
other system elements. The analysis of the fault effects
must therefore often take into account not only the
internal circuit description but also the external system
definition. The final assessment of the circuit and
system dependability is classically done using fault
injections on a system prototype. In terms of cost and
time, it becomes therefore crucial to perform a
thorough analysis of the failure modes of the circuit if
possible early in the design process and at least before
any manufacturing [17, 31].

1.1. Fault Category
A fault as a deviation in a hardware or software
component from its intended function can arise during
all stages in a computer system design process:

172 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Specification, design, development, manufacturing,
assembly, and installation throughout its operational
life. Most faults that occur before full system
deployment are discovered and eliminated through
testing. Faults that are not removed can reduce a
system’s dependability when it is embedded into the
system.

Hardware/Physical Fault that arise during system
operation are best classified by their duration:
Permanent, transient, or intermittent.

• Permanent faults: Caused by irreversible
component damage, such as a semiconductor
junction that has shorted out because of thermal
aging, improper manufacture, or misuse. Since it is
possible that a chip in a network card that burns
causing the card to stop working, recovery can only
be accomplished by replacing or repairing the
damaged component or subsystem.

• Transient faults: Triggered by environmental
conditions such as power-line fluctuation,
electromagnetic interference, or radiation. These
faults rarely do any lasting damage to the
component affected, although they can induce an
erroneous state in the system. According to several
studies, transient faults occur far more often than
permanent ones, and are also far harder to detect.

• Intermittent faults: Caused by unstable hardware or
varying hardware states. They can be repaired by
replacement or redesign.

Hardware faults of almost all types are easily injected
by the devices available for the task. Dedicated
hardware tools are available to flip bits on the instant at
the pins of a chip, vary the power supply, or even
bomb the system/chips with heavy ions-methods
believed to cause faults close to real transient hardware
faults. An increasingly popular software tool is a
software-implemented fault injector, which changes
bits in processor registers or memory, in this way
producing the same effects as transient hardware faults.
All these techniques require that a system, or at least a
prototype, actually be built in order to perform the fault
testing.

Software faults are always the consequence of
incorrect design, at specification or at coding time.
Every software engineer knows that a software product
is bug free only until the next bug is found. Many of
these faults are latent in the code and show up only
during operation, especially under heavy or unusual
workloads and timing contexts.

Since they are a result of bad design, it might be
supposed that all software faults would be permanent.
Interestingly, practice shows that despite their
permanent nature, their behavior is transient; that is,
when a bad behavior of the system occurs, it cannot be
observed again, even if great care is taken to repeat the
situation in which it occurred. Such behavior is
commonly called a failure of the system. The subtleties

of the system state may mask the fault, as when the
bug is triggered by very particular timing relationships
between several system components, or by some other
rare and irreproducible situation.

Curiously, most computer failures are blamed on
either software faults or permanent hardware faults, to
the exclusion of the transient and intermittent hardware
types. Yet many studies show these types are much
more frequent than permanent faults. The problem is
that they are much harder to track down.

During the process of software development, faults
can be created in every step: Requirement definition,
requirement specifications, design, implementation,
testing, and deployment. And these faults can be
cataloged to:

• Function faults: Incorrect or missing
implementation that requires a design change to be
corrected.

• Algorithm faults: Incorrect or missing
implementation that can be fixed without the need
of design change.

• Timing/serialization faults: Missing or incorrect
serialization of shared resources.

• Checking fault: Missing or incorrect validation of
data, or incorrect loop, or incorrect conditional
statement.

• Assignment fault: Values assigned incorrectly or not
assigned.

2. An Overview of Fault Injection
Fault Injection is defined by Arlat [3] as the validation
technique of the dependability of fault tolerant systems
which consists in the accomplishment of controlled
experiments where the observation of the system’s
behavior in presence of faults is induced explicitly by
the writing introduction (injection) of faults in the
system.

The fault injection techniques have been recognized
for a long time as necessary to validate the
dependability of a system by analyzing the behavior of
the devices when a fault occurs. Several efforts have
been made to develop techniques for injecting faults
into a system prototype or model. Most of the
developed techniques fall into five main categories:

• Hardware-based fault injection: It is accomplished
at physical level, disturbing the hardware with
parameters of the environment (heavy ion radiation,
electromagnetic interferences, etc.), injecting
voltage sags on the power rails of the hardware
(power supply disturbances), laser fault injection or
modifying the value of the pins of the circuit.

• Software-based fault injection (software
implemented fault injection): The objective of this
technique consists of reproducing at software level
the errors that would have been produced upon
occurring faults in the hardware.

A Survey on Fault Injection Techniques 173

• Simulation-based fault injection: Consists in
injecting the faults in high-level models (most often,
VHDL models). It allows early evaluating the
system dependability when only a model of the
system is available. Then it addresses different
abstraction levels by using distinct description
languages. A coherent environment should be
provided to favor interoperability between the
successive abstraction levels and to integrate the
validation in the design process.

• Emulation-based fault injection: This technique has
been presented as an alternative solution for
reducing the time spent during simulation-based
fault injection campaigns. It is based on the
exploration of the use of Field Programmable Gate
Arrays (FPGAs) for speeding-up fault simulation
and exploits FPGAs for effective circuit emulation.
This technique can allow the designer to study the
actual behavior of the circuit in the application
environment, taking into account real-time
interactions. However, when an emulator is used,
the initial VHDL description must be synthesizable.

• Hybrid fault injection: This approach mix software-
implemented fault injection and hardware
monitoring.

From another point of view, the fault injection
techniques can be grouped into invasive and non-
invasive techniques. The problem with sufficiently
complex systems, particularly time dependant ones, is
that it may be impossible to remove the footprint of the
testing mechanism from the behavior of the system,
independent of the fault injected. Invasive techniques
are those which leave behind such a footprint during
testing. Non-invasive techniques are able to mask their
presence so as to have no effect on the system other
than the faults they inject.

2.1. Fault Injection Environment
A fault injection environment typically consists of the
following components:

• Fault injector: Injects fault into the target system as
it executes commands from the workload generator.

• Fault library: Stores different fault types, fault
locations, fault times, and appropriate hardware
semantics or software structures.

• Workload generator: Generates the workload for
the target system as input.

• Workload library: Stores sample workloads for the
target system.

• Controller: Controls the experiment.
• Monitor: Tracks the execution of the commands and

initiate data collection whenever necessary.
• Data collector: Performs online data collection.
• Data analyzer: Performs data processing and

analysis.

2.2. Objectives of Fault Injection

Fault injection tries to determine whether the response
of the system matches with its specifications, in
presence of a defined range of faults. Normally, faults
are injected in perfectly chosen system states and
points, previously determined by an initial system
analysis. Tester knows the design in depth and so it
designs the test cases (type of faults, test points,
injection time and state, etc.) based on a structural
criteria and usually in a deterministic way.

Fault injection techniques provide a way for fault
removal (the correction of potential fault tolerance
deficiencies in the system) and fault forecasting (the
evaluation of the coverage distribution – coverage
factor and latency – provided by the tested system).
Regarding the fault removal objective, the test should
be directed to achieve a high coverage of the possible
configurations of the system to be validated. In this
case, the selection of the faults/errors to apply and
errors to propagate is primarily based on the analysis
of the model describing the system and the information
flow in the simulation of the system. Regarding the
fault forecasting objective, the main alternatives are
either to rely on statistical testing simulating a priori
the relative distribution of the classes of faults/errors or
to statistically process a posteriori the results of the test
sequence. The data used to carry out the statistical
processing may result from available file data on the
distributions and/or from results of simulation
experiments.

Using these two methods, fault injection techniques
can yield seven benefits:

• An understanding of the effects of real faults and
thus of the rela ted behavior of the target system in
terms of functionality and performance.

• An assessment of the efficacy of the fault tolerance
mechanisms included into the target system and thus
a feedback for their enhancement and correction
(e.g., for removing designs faults in the fault
tolerance mechanisms).

• A forecasting of the faulty behavior of the target
system, in particular encompassing a measurement
of the efficiency (coverage) provided by the fault
tolerance mechanisms.

• Estimating the failure coverage and la tency (i. e
timing) of fault tolerant mechanisms.

• Exploring the effects of different workloads
(different input profiles and environments) on the
effectiveness of fault tolerant mechanisms.

• Identifying weak links in the design: For example
parts of the system within which a single fault could
lead to severe consequences.

• Studying the system's behavior in the presence of
faults, for example propagation of fault effects
between system components or the degree of fault

174 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

isolation and determining the coverage of a given
set of tests.

In practice, frequently fault removal and fault
forecasting are not used separately, but one follows the
other. For instance, after rejecting a system by fault
forecasting testing, several fault removal tests should
be applied. These new tests provide actions that will
help the designer to improve the system. Then, it will
be applied to another fault forecasting test, and so on.

3. Hardware-Based Fault Injection
Hardware-based fault injection involves augmenting
the system under analysis with specially designed test
hardware to allow for the injection of faults into the
system and examine the effects. It uses additional
hardware to introduce faults into the target system’s
hardware. Depending on the faults and their locations,
hardware-implemented fault injection methods fall into
two categories:

• Hardware fault injection with contact: The injector
has direct physical contact with the target system,
producing voltage or current changes externally to
the target chip. Examples are methods that use pin-
level active probes and socket insertion. The probe
method is usually limited to stuck-at faults, although
it is possible to attain bridging faults by placing a
probe across two or more pins. Socket insertion
technique inserts a socket between the target
hardware and its circuit board. The inserted socket
injects stuck-at, open, or more complex logic faults
into the target hardware by forcing the analog
signals that represent desired logic values onto the
pins of the target hardware. The pin signals can be
inverted, ANDed, or ORed with adjacent pin signals
or even with previous signals on the same pin.

• Hardware fault injection without contact: The
injector has no direct physical contact with the
target system. Instead, an external source produces
some physical phenomenon, such as heavy ion
radiation and electromagnetic interference, causing
spurious currents inside the target chip.

Hardware simulations typically occur in a high level
description of the circuit. This high level description is
turned into a transistor level description of the circuit,
and faults are injected into the circuit. Software
simulation is most often used to detect the response to
manufacturing defects. The system is then simulated to
evaluate the response of the circuit to that particular
fault. Since this is a simulation, a new fault can then be
easily injected, and the simulation is rerun to measure
the response to the new fault. This consumes time to
construct the model, insert the faults, and then simulate
the circuit, but modifications in the circuit are easier to
make than later in the design cycle. This sort of testing
would be used to check a circuit early in the design
cycle. These simulations are non-intrusive, since the

simulation functions normally other than the
introduction of the fault.

Hardware fault injections occur in actual examples
of the circuit after fabrication. The circuit is subjected
to some sort of interference to produce the fault, and
the resulting behavior is examined. So far, this has
been done with transient faults, as the difficulty and
expense of introducing stuck-at and bridging faults in
the circuit has not been overcome. The circuit is
attached to a testing equipment which operates it and
examines the behavior after the fault is injected. This
consumes time to prepare the circuit and test it, but
such tests generally proceed faster than simulation
does. It is, rather obviously, used to test circuit just
before or in production. These simulations are non-
intrusive, since they do not alter the behavior of the
circuit other than to introduce the fault. Special
circuitry should be included to cause or simulate faults
in the finished circuit; these would most likely affect
the timing or other characteristics of the circuit, and
therefore be intrusive.

Suppositions:

• The fault injector should have no interference with
the exercised system.

• Faults should be injected at internal locations to the
ICs in the exercised system.

• Faults that are injected into the system are
representative of the actual faults that occur within
the system. It means that both random generated and
non-random generated faults can be injected into the
system, and both permanent and transient faults can
be injected into the system.

Benefits:

• Hardware fault injection technique can access
locations that is hard to be accessed by other means.
For example, the Heavy-ion radiation method can
inject fault into VLSI circuits at locations which are
impossible to reach by other methods.

• This technique works well for the system which
needs high time-resolution for hardware triggering
and monitoring.

• Experimental evaluation by injection into actual
hardware is in many cases the only practical way to
estimate coverage and latency accurately.

• This technique injects faults which have low
perturbation.

• This technique is better suited for the low-level fault
models.

• Not intrusive: No modification of the target system
is required to inject faults.

• Experiments are fast.
• Experiments can be run in near real-time, allowing

for the possibility of running a large number of fault
injection experiments.

A Survey on Fault Injection Techniques 175

• Running the fault injection experiments on the real
hardware that is executing the real software has the
advantage of including any design faults that might
be present in the actual hardware and software
design.

• Fault injection experiments are performed using the
same software that will run in the field.

• No model development or validation required.
• Ability to model permanent faults at the pin level.

Drawbacks:

• Hardware fault injection can introduce high risk of
damage for the injected system.

• High level of device integration, multiple-chip
hybrid circuit, and dense packaging technologies
limit accessibility to injection.

• Some hardware fault injection methods, such as
state mutation, require stopping and restarting the
processor to inject a fault, it is not always effective
for measuring latencies in the physical systems.

• Low portability and observability.
• Limited set of injection points and limited set of

injectable faults.
• A recent paper indicates that the setup time for each

experiment might, in fact, offset the time gained by
the ability to perform the experiments in near real-
time.

• Requires special-purpose hardware in order to
perform the fault injection experiments. This
hardware is used to inject faults into the processor
by applying the rail voltages (representing logic one
and zero) to the Input/Output (I/O) pins of the
processor. Also, if the processor contains
appropriate special-purpose hardware known as
scan chains, then the external hardware could also
be used to inject stuck-at-1 and stuck-at-0 faults into
the internal registers of the processor. In general,
this hardware can be very difficult and costly to
build.

• Limited observability and controllability. At best,
one would be able to corrupt the I/O pins of the
processor and the internal processor registers.

Tools:

• RIFLE: A pin-level fault injection system for
dependability validation developed at University of
Coimbra, Portugal [22]. This system can be adapted
to a wide range of target systems and the faults are
mainly injected in the processor pins. The injection
of the faults is deterministic and can be reproduced
if needed. Faults of different nature can be injected
and the fault injector is able to detect whether the
injected fault has produced an error or not without
the requirement of feedback circuits. RIFLE can
also detect specific circumstances in which the
injected faults do not affect the target system. Sets

of faults with specific impact on the target system
can be generated. Fault injection results showing the
coverage and latency achieved with a set of simple
behavior based error detection mechanisms are
presented in [22]. It is shown that up to 72,5% of the
errors can be detected with fairly simple
mechanisms. Furthermore, for over 90% of the
faults the target system has behaved according to
the fail-silent model, which suggests that a
traditional computer equipped with simple error
detection mechanisms is relatively close to a fail-
silent computer.

• FOCUS: A design automation environment
developed at University of Illinois at Urbana-
Champaign [9] used for analyzing a
microprocessor-based jet-engine controller used in
the Boeing 747 and 757 aircrafts. FOCUS uses a
hierarchical simulation environment based on
SPLICE for tracing the impact of transient faults.
The fault from the simulation is automatically fed
into the analysis-software in order to quantify the
fault tolerance of the system under test. In the
controller, fault detection and reconfiguration are
performed by transactions over the communication
link. The simulation consists of the instructions
specifically designed to exercise this cross-channel
communication. The level of effectiveness of the
dual configuration of the system to single and
multiple transient faults is measured. The results are
used to identity critical design aspects from fault
tolerant viewpoint. The usefulness of state transition
models which describe the error propagation within
the chip, enabling identification of critical fault
propagation paths and the modules most sensitive to
fault propagation, are shown using the tool.

• MESSALINE: A pin-level fault forcing system
developed at LAAS-CNRS [3]. MESSALINE uses
both active probes and sockets to conduct pin-level
fault injection. It can inject stuck-at, open, bridging,
and complex logical faults, among others. It can
also control the length of fault existence and the
frequency. It is made up of four modules: Injection
module, activation module, collection module, and
management module . The injection module enables
injection on up to 32 injection points by means of
injecting elements that support two different fault
injection techniques: Forcing and insertion. The
activation module ensures the proper initialization
of the target system according to the elements of the
A set. The readout collection module is used to
collect the elements of R set. The management
module is responsible for the automatic and
parametrable generation of test sequence, for the run
time control of its execution and for result archiving
for post-test analysis.

• FIST (Fault Injection System for Study of Transient
Fault Effect): Developed at the Chalmers University
of Technology in Sweden [14], employs both

176 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

contact and contactless methods to create transient
faults inside the target system. This tool uses heavy-
ion radiation to create transient faults at random
locations inside a chip when the chip is exposed to
the radiation and can thus cause single - or multiple-
bit-flips. FIST can inject faults directly inside a
chip, which cannot be done with pin-level
injections. It can produce transient faults at random
locations evenly in a chip, which leads to a large
variation in the errors seen on the output pins. In
addition to radiation, FIST allows for the injection
of power disturbance faults.

• MARS (Maintainable Real-time System):
Developed at Technical University of Vienna
Austria [13]. MARS system is a time-triggered,
fault-tolerant, distributed system. It consists of
several computer nodes communicating by means of
a synchronous time division multiple access
strategy. The nodes contain extra hardware and
software for fault tolerance and can be configured to
operate in redundancy, i.e. when two nodes execute
the same task. The fundamental fault tolerance
property of each processing node in the MARS
system is to be fail-silent. The implementation of
the fail silence property relies on numerous Error
Detection Mechanisms (EDMs) at three levels: The
hardware software, the system software, and the
application software level.

4. Software-Based Fault Injection
Software faults are probably the major cause of system
outages. Fault injection method is a possible way to
assess the consequences of hidden bugs. Traditionally,
software-based fault injection involves the
modification of the software executing on the system
under analysis in order to provide the capability to
modify the system state according to the programmer’s
modeling view of the system. This is generally used on
code that has communicative or cooperative functions
so that there is enough interaction to make fault
injection useful. All sorts of faults may be injected,
from register and memory faults, to dropped or
replicated network packets, to erroneous error
conditions and flags. These faults may be injected into
simulations of complex systems where the interactions
are understood though not the details of
implementation, or they may be injected into operating
systems to examine the effects.

Software fault injections are more oriented towards
implementation details, and can address program state
as well as communication and interactions. Faults are
mis-timings, missing messages, replays, corrupted
memory or registers, faulty disk reads, and almost any
other state the hardware provides access to. The system
is then run with the fault to examine its behavior.
These simulations tend to take longer because they
encapsulate all of the operation and detail of the

system, but they will more accurately capture the
timing aspects of the system. This testing is performed
to verify the system's reaction to introduced faults and
catalog the faults successfully dealt with. This is done
later in the design cycle to show performance for a
final or near-final design. These simulations can be
non-intrusive, especially if timing is not a concern, but
if timing is at all involved the time required for the
injection mechanism to inject the faults can disrupt the
activity of the system, and cause timing results that are
not representative of the system without the fault
injection mechanism deployed. This occurs because
the injection mechanism runs on the same system as
the software being tested.

Suppositions:

• Faults that are injected into the system are
representative of the actual faults that occur within
the system.

• The additional software required to inject the faults
does not affect the functional behavior of the system
in response to the injected fault. Essentially, the
assumption states that the software that is used to
inject the fault is independent of the rest of the
system, and that any faults present in the fault
injection software will not affect the system under
analysis.

Benefits:

• This technique can be targeted to applications and
operating systems, which is difficult to be done
using hardware fault injection.

• Experiments can be run in near real-time, allowing
for the possibility of running a large number of fault
injection experiments.

• Running the fault injection experiments on the real
hardware that is executing the real software has the
advantage of including any design faults that might
be present in the actual hardware and software
design.

• Does not require any special-purpose hardware; low
complexity, low development and low
implementation cost.

• No model development or validation required.
• Can be expanded for new classes of faults.

Drawbacks:

• Limited set of injection instants: At assembly
instruction level, only.

• It cannot inject faults into locations that are
inaccessible to software.

• Does require a modification of the source code to
support the fault injection, which means that the
code that is executing during the fault experiment is
not the same code that will run in the field.

A Survey on Fault Injection Techniques 177

• Limited observability and controllability. At best,
one would be able to corrupt the internal processor
registers (as well as locations within the memory
map) that are visible to the programmer,
traditionally referred to as the programmer’s model
of the processor. So faults cannot be injected in the
processor pipeline or instruction queue for example.

• Very difficult to model permanent faults.
• Related to four, execution of the fault injection

software could affect the scheduling of the system
tasks in such a way as to cause hard, real-time
deadlines to be missed, which violates assumption
two.

We can categorize software injection methods on the
basis of when the faults are injected: During compile-
time or during run-time.

To inject faults at compile-time, the program
instruction must be modified before the program image
is loaded and executed. Rather than injecting faults
into the hardware of the target system, this method
injects errors into the source code or assembly code of
the target program to emulate the effect of hardware,
software, and transient faults. The modified code alters
the target program instructions, causing injection.
Injection generates an erroneous software image, and
when the system executes the fault image, it activates
the fault.

This method requires the modification of the
program that will evaluate fault effect, and it requires
no additional software during runtime. In addition, it
causes no perturbation to the target system during
execution. Because the fault effect is hard-coded,
engineers can use it to emulate permanent faults. This
method’s implementation is very simple, but it does
not allow the injection of faults as the workload
program runs.

During run-time, a mechanism is needed to trigger
fault injection. Commonly used triggering mechanisms
include:

• Time-out: In this simplest of techniques, a timer
expires at a predetermined time, triggering injection.
Specifically, the time-out event generates an
interrupt to invoke fault injection. The timer can be
a hardware or software timer.

• Exception/trap: In this case, a hardware exception or
a software trap transfer control to the fault injector.
Unlike time-out, exception/trap can inject the fault
whenever certain events or conditions occur. For
example, a software trap instruction inserted into a
target program will invoke the fault injection before
the program executes a particular instruction. A
hardware exception invokes injection when a
hardware observed event occurs (when a particular
memory location is accessed, for example). Both
mechanisms must be linked to the interrupt handler
vector.

• Code insertion: In this technique, instructions are
added to the target program that allows fault
injection to occur before particular instructions,
much like the code-modification method. Unlike
code modification, code insertion performs fault
injection during runtime and adds instructions rather
than changing original instructions. Unlike the trap
method, the fault injector may exist as part of the
target program and run at user mode rather than
system mode.

Tools:

• FERRARI (Fault and Error Automatic Real-Time
Injection) : Developed at the University of Texas at
Austin [19], uses software traps to inject CPU,
memory, and bus faults. Ferrari consists of four
components: The initializer and activator, the user
information, the fault-and-error injector, and the
data collector and analyzer. The fault-and-error
injector uses software trap and trap handling
routines. Software traps are triggered either by the
program counter when it points to the desired
program locations or by a timer. When the traps are
triggered, the trap handling routines inject faults at
the specific fault locations, typically by changing
the content of selected registers or memory
locations to emulate actual data corruptions. The
faults injected can be those permanent or transient
faults that result in an address line error, a data line
error, and a condition bit error.

• FTAPE (Fault Tolerance and Performance
Evaluator): Developed at the University of Illinois
[30]. Engineers can inject faults into user-accessible
registers in CPU modules, memory locations, and
the disk subsystem. The faults are injected as bit-
flips to emulate error as a result of faults. Disk
system faults are injected by executing a routine in
the driver code that emulates I/O errors (bus error
and timer error, for example). Fault injection drivers
added to the operating system inject the faults, so no
additional hardware or modification of application
code is needed. A synthetic workload generator
creates a workload containing specified amounts of
CPU, memory, and I/O activity, and faults are
injected with a strategy that considers the
characteristics of the workload at the time of
injection (which components are experiencing the
greatest amount of workload activity, for example).

• FIAT (Fault Injection-based Automated Testing):
Environment developed at Carnegie Mellon
University [26]. FIAT is an automated real-time
distributed accelerated fault injection environment.
The FIAT environment provides experimenters with
facilities for defining fault classes (relationships
between faults and the error patterns that they
cause); for specifying (e.g., relative to the source
code of an application) where, when, and for how

178 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

long errors will strike; and how they will interact
with executing object code or data. In its initial
version, FIAT software can fault inject user
application code and data and can inject faults into
messages (corrupted, lost delayed), tasks (delayed,
abnormal termination), and timers. Later versions
will extend these fault injection capabilities into
operating systems.

• XCEPTION: Developed at University of Coimbra,
Portugal [6] uses the advanced bugging and
performance monitoring features present in many of
today’s modern processors to inject fault. It also
uses the processors own exceptions to trigger the
faults. It requires no modification in application
software and no insertion of software traps. The
fault injector is implemented as an exception
handler and requires modification of the interrupt
handler vector. The Xception faults are trigger by
access to specific addresses. This makes the
experiments reproducible. Xception uses a fault
mask when injecting a fault into a location in the
system. The mask is compared with the
memory/register/data and then the bits that are set to
one in the mask are changed in the system by using
bit-level-operations such as: Stuck-at-zero, stuck-at-
one, bit-flip and bridging.

• DOCTOR: Integrated software fault injection
environment developed at University of Michigan
[16] allows injections into the CPU, memory and
also network-communication faults. DOCTOR uses
a more sophisticated method than the basic
technique of modifying memory contents. Memory
modification is a powerful fault injection method
because almost every fault results, sooner or later, in
some kind of contamination in the memory. Though
it is a powerful method some faults may infect the
memory in a very subtle and non-deterministic way,
hence it can be very difficult to emulate such faults
with basic memory modification. DOCTOR can use
three different triggering mechanisms: Time-out
triggered memory faults, when triggered the fault
injector overwrites memory contents to emulate
memory faults. Traps are used to create non-
permanent CPU faults. For permanent CPU faults
program instructions are changed during
compilation to emulate instruction and data
corruptions.

• EXFI: A fault injection system for embedded
microprocessor-based boards developed at
Politecnico di Torino, Italy [5]. The kernel of the
EXFI system is based on the trace exception mode
available in most microprocessors. During the fault
injection experiment, the trace exception handler
routine is in charge of computing the fault injection
time, executing the injection of the fault, and
triggering a possible time-out condition. The tool is
able to inject single bit-flip transient faults both in
the memory image of the process (data and code)

and in the user registers of the processor. The
approach can be easily extended to support different
fault models, such as permanent stuck-at, couple,
temporal and spatial multiple bit-flip, etc. The main
characteristics of EXFI are the low cost (it does not
require any hardware device), the high speed (which
allows a higher number of faults to be considered),
the low requirements in terms of features provided
by the operating systems, the flexibility (it supports
different fault types), and the high portability (it can
be easily migrated to address different target
systems).

• NFTAPE: Developed at the Center of Reliable and
High Performance Computing at the University of
Illinois at Urbana-Champaign [29]. The objective of
NFTAPE is to support several different types of
fault injection, providing the capability of targeting
several heterogeneous systems concurrently. This is
accomplished through use of a common control
mechanism and common triggers. NFTAPE
supports an arbitrary fault model. It can support a
hardware fault injector to inject network faults, a
SWIFI fault injector to inject communication faults,
and a second SWIFI injector to target a distributed
application. The first two injectors share an event-
based trigger to coordinate communication faults,
and the other uses a path-based trigger. Other fault
injectors typically use one method of fault injection
(say SWIFI or HWIFI), not to mention using
multiple injectors at the same time or sharing
triggers. In addition, NFTAPE contains a new driver
based fault injection scheme, which unlike other
SWIFI fault injectors, can inject faults into both
kernel and user space with minimum required
modifications for different operating systems.

• GOOFI (Generic Object-Oriented Fault Injection):
Developed at the Department of Computer
Engineering at Chalmers University of Technology
in Sweden [1]. GOOFI can perform fault injection
campaigns using different fault injection techniques
on different target systems. A major objective of the
tool is to provide a user-friendly fault injection
environment with a graphical user interface and an
underlying generic architecture that assists the user
when adapting the tool for new target systems and
new fault injection techniques. The GOOFI tool is
highly portable between different host platforms
since the tool was implemented us ing the Java
programming language and all data is saved in a
SQL compatible database. Furthermore, an object-
oriented approach was chosen which increases the
extensibility and maintainability of the tool. The
current version of GOOFI supports pre-runtime
Software Implemented Fault Injection (SWIFI) and
Scan-Chain Implemented Fault Injection (SCIFI).
The SCIFI technique injects faults via the built-in
test-logic, i.e. boundary scan-chains and internal
scan-chains, present in many modern VLSI circuits.

A Survey on Fault Injection Techniques 179

This enables faults to be injected into the pins and
many of the internal state elements of an integrated
circuit as well as observation of the internal state. In
pre-runtime SWIFI, faults are injected into the
program and data areas of the target system before it
starts to execute. GOOFI is capable of injecting
single or multiple transient bit-flip faults.

5. Simulation-Based Fault Injection

Simulation-based fault injection [18] involves the
construction of a simulation model of the system under
analysis, including a detailed simulation model of the
processor in use. It means that the errors or failures of
the simulated system occur according to predetermined
distribution. The simulation models are developed
using a hardware description language such as the
Very high speed integrated circuit Hardware
Description Language (VHDL). Faults are injected into
VHDL models of the design and excited by a set of
input patterns. It is important to note that VHDL
constitutes a privileged language to comply with the
goals of fault injection for the following reasons:

• Its widespread use in detailed design.
• Its inherent hierarchical abstraction description

capabilities.
• Its ability to describe both the structure and

behavior of a system in a unique syntactical
framework.

• Its recognition as a viable framework for developing
high-level models of digital systems.

• Its recognition as a viable framework for driving
test activities.

An elementary fault injection experiment corresponds
to one simulation run of the target system during which
any number of faults can be injected on single or
multiple locations of the model and at one or several
points in time during the simulation. A series of
experiments consists of a sequence of elementary fault
injection experiments.

Several techniques have been proposed in the past
to efficiently implement simulation-based fault-
injection. Two main categories can be identified, those
that require modification of VHDL code and those that
use the built-in commands of the simulator. A first
approach, based on VHDL code modification,
modifying the system description by the addition of
dedicated fault injection components called saboteurs
or the mutation of existing component descriptions in
the VHDL model which generates modified
component descriptions called mutants. So that faults
can be injected where and when desired, and their
effects observed, both inside and on the outputs of the
system.

A saboteur is a component added the VHDL model
for the sole purpose of fault injection. It is inactive
during normal system operation, while altering the

value or timing characteristics of one or more signals
when active, i.e when a fault is being injected.
Saboteurs are inserted, in series or in parallel, either
interactively at the schematic editor level or
manually/automatically directly into the VHDL source
code. Serial insertion, in its simplest form, consists of
braking up the signal path between a driver (output)
and its corresponding receiver (input) and placing a
saboteur in between. In its more complex form, it is
possible to break up the signal paths between a set of
drivers and its corresponding set of receivers and insert
a saboteur. For parallel insertion, a saboteur is simply
added as an additional driver for a resolved signal
(signal that have many drivers-signal sources –
provided that a resolution function is supplied to
resolve the values generated by the multiple sources
into a single value). Saboteurs can be used to model
most faults and to simulate environmental conditions
such as noise or ESD. However, because they have no
input pattern discrimination, saboteurs cannot model
faults below the gate level of abstraction.

A mutant is a model which contains dormant code
blocks within the normal gate description. These
blocks of code are activated by injecting faults, altering
the operation of the logic device itself. Because the
fault response is generated internally within the model,
any level of abstraction for fault injection is possible.
However, the use of mutants requires that the original
gate models be replaced by the new mutant models.
This method main advantage is its complete
independence on the adopted simulator, but it normally
provides very low performance, due to the high cost
for modification and possibly recompilation for every
fault.

A second approach uses modified simulation tools
(built-in commands of the VHDL simulators), which
support the injection and observation features. This
approach normally provides the best performance
(does not require the modification of the VHDL code),
but it can only be followed when the code of the
simulation tools is available and easily modifiable,
e.g., when fault injection is performed on zero-delay
gate-level models. Its adoption when higher-level
descriptions (e.g., RT-level VHDL descriptions) are
used is much more complex. The applicability of these
techniques depends strongly on the existing
(commercial) simulators and on the functionality of
their commands. Two techniques based on the use of
simulator commands have been identified: VHDL
signal manipulation (faults are injected by altering the
value of the signals that are used to link the
components that made up the VHDL model, this is
done by disconnecting a signal from its driver(s) and
forcing it to a new value) and VHDL variable
manipulation (faults are injected into behavioral
models by altering values of variables defined in
VHDL processes).

180 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

A third approach relies on the simulation command
language and interface provided by some specific
simulator. The main advantage of this approach lies in
the relatively low cost for its implementation, while the
obtained performance is normally intermediate
between those of the first and second approaches. It
must be noted that it is now increasingly common for
the new releases of most commercial simulation
environments to support some procedural interface,
thus allowing an efficient and portable interaction with
the simulation engine and with its data structures.
Several approaches have been presented for speeding
up the simulation process. Fault injection techniques
are compared in terms of fault modeling capacity,
effort required for setting up an experiment and
simulation time overhead.

Mutants offer the highest fault modeling capacity of
the fault injection techniques presented, Saboteurs are
generally less powerful, signal manipulation is suited
for implementing simple fault models and variable
manipulation offers a simple way for injecting
behavioral faults.

The effort for setting up an experiment is small
using signal and variable manipulation, as modification
of the VHDL model is not required. More effort is
needed for mutants and saboteurs (creation/generation,
inclusion in the model, recompilation of the VHDL
model).

The simulation time overhead imposed by signal
and variable manipulation is only due to fault injection
control, as the simulation must be stopped and started
again for each fault injected. It is important to note that
the simulation time overhead imposed by saboteurs
and mutants depends on: Amount of additional
generated events, amount of code to execute per event
and the complexity of the fault injection control.

When considering a series of fault injection
experiments, two ways can be distinguished: One way
is to generate a new configuration for each fault
location (this requires recompilation of the VHDL
model for each fault location and may also require
manual intervention to start up a simulation using the
new model), another way is to generate only one
configuration in which all required fault are included
and then activate these one at a time (this may increase
the simulation time). Thus, there is a trade-off between
the overhead in simulation time and the overhead in
compilation time.

Suppositions:

Model is an accurate representation of the actual
system under analysis.

Benefits:

• Simulated fault injection can support all system
abstraction levels-electrical, logical, functional, and

architectural. It provides the maximum flexibility in
terms of supported fault models.

• Not intrusive.
• Full control of both fault models and injection

mechanisms.
• Low cost computer automation; does not require

any special-purpose hardware.
• It provides timely feedback to system design

engineers.
• Fault injection experiments are performed using the

same software that will run in the field. Simulated
fault injection can normally be rather easily
integrated into already existing design flows.

• Maximum amount of observability and
controllability. Essentially, given sufficient detail in
the model, any signal value can be corrupted in any
desired way, with the results of the corruption easily
observable regardless of the location of the
corrupted signal within the model. This flexibility
allows any potential failure mode to be accurately
modeled.

• Allows performing reliability assessment at
different stages in the design process, well before
than a prototype is available.

• Able to model both transient and permanent faults.
• Allows modeling of timing-related faults since the

 amount of simulation time required to inject the
 fault is effectively zero.

Drawbacks:

• Large development efforts.
• Time consuming (experiment length): Being based

on the simulation of the system in its fault-free
version as well as in the presence of the enormous
number of the possible faults.

• Models are not readily available; rely on model
accuracy

• Accuracy of the results depends on the goodness of
the model used.

• No real time faults injection possible in a prototype.
• Model may not include any of the design faults that

may be present in the real hardware.

Tools:

• VERIFY (VHDL-based Evaluation of Reliability by
Injection Faults Efficiently): Developed at
University of Erlangen-Nurnberg, Germany [27].
VERIFY uses an extension of VHDL for describing
faults correlated to a component, enabling hardware
manufacturers, which provide the design libraries,
to express their knowledge of the fault behavior of
their components. Multi-threaded fault injection
which utilizes checkpoints and comparison with a
golden run is used for faster simulation of faulty
runs. The proposed extension to the VHDL
language is very interesting but unfortunately

A Survey on Fault Injection Techniques 181

requires modification of the VHDL language itself.
VERIFY uses an integrated fault model, the
dependability evaluation is very close to that of the
actual hardware.

• MEFISTO-C: A VHDL-based fault injection tool
developed at Chalmers University of Technology,
Sweden [12] that conduct fault injection
experiments using VHDL simulation models. The
tool is an improved version of the MEFISTO tool
which was developed jointly by LAAS-CNRS and
Chalmers. (A similar tool called MEFISTO-L has
been developed at LAAS-CNRS). MEFISTO-C
uses the vantage optimum VHDL simulator and
injects faults via simulator commands in variables
and signals defined in the VHDL model. It offers
the user a variety of predefined fault models as well
as other features to set-up and automatically conduct
fault injection campaigns on a network of UNIX
workstations.

• HEARTLESS: A hierarchical register-transfer-level
fault-simulator for permanent and transient faults a
simulator that was developed, by CE Group-BTU
Cottbus in Germany, to simulate the fault behavior
of complex sequential designs like processor cores
[25]. Furthermore it serves for the validation of on-
line test units for embedded processors. The input
for HEARTLESS can support structural VHDL and
ISCAS as input formats. It can support permanent
stuck-at faults, transient bit flip and delay faults.
HEARTLESS was developed in ANSI C++. The
whole design or parts (macros) can be selected for
fault simulation based on fault list generation. Fault-
lits are collapsed according to special rules derived
from logic level structure and signal traces.
HEARTLESS can be enhanced by propagation over
macros described in a C-function.

• GSTF: A VHDL-based fault injection tool
developed by Fault Tolerance Systems Group at the
Polytechnic University of Valencia, Spain [4]. This
tool is presented as an automatic and model-
independent fault injection tool to use on an IBM-
PC or compatible system to inject faults into VHDL
models (at gate, register and chip level). The tool
has been build around a commercial VHDL
simulator (V-System by Model Technology) and
can implement the main injection techniques:
Simulator commands, saboteurs and mutants. Both
transient and permanent faults, of a wide range of
types, can be injected into medium-complexity
models. The tool can inject a wide range of fault
models, surpassing the classical models of stuck-at
and bit-flip and it is able to analyze the results
obtained from the injection campaigns, in order to
study the error syndrome of the system model
and/or validate its fault-tolerance mechanisms.

• FTI (Fault Tolerance Injection): Developed at
universidad Carlos III de Madrid in Spain, for fault-
tolerant digital integrated circuits in the RT

abstraction level [11]. The main objective of FTI is
to generate a fault tolerant VHDL design
description. Designer will provide an original
VHDL design description and some guidelines
about the type of fault-tolerant techniques to be used
and their location in the design. FTI tool will
process original VHDL descriptions by automatic
insertion of hardware and information redundancy.
Therefore, a unified format to deal with descriptions
is needed. There are several intermediate formats
that represent, by means of a database, the VHDL
description in a formal way that could be accessed
and processed with some procedural interface.
Fault-tolerant components to be included into
VHDL original descriptions will be already
described and stored in a special library called FT
library. These components come from previous
researches about FT and designer just use them. FTI
use an intermediate format for VHDL descriptions
(FTL/TAURI) and it will work only with
synthesizable descriptions IEEE 1076.

• [24, 28] Present a new techniques and a platform,
developed at Politecnico di Torino – Italy, for
accelerating and speeding-up simulation-based fault
injection in VHDL descriptions and show how
simulation time can be significantly shortened. The
techniques developed analyze the faults to be
injected in order to identify the final fault effects as
early as possible and exploit the features provided
by modern commercial VHDL simulators to speed-
up injection operations. The ideas proposed in [23]
was extended by making them more general and
applying them dynamically during fault inject
campaigns. The purpose of this approach is to
minimize the time required for performing Fault
Injection campaigns. This problem is addressed by
performing fault analysis (before and during the
Fault Injection campaign) and resorting to simulator
commands that can be used to minimize the
simulation time required to drive the system to the
injection time. A prototypical version of the fault-
injection platform has been devised in ANSI C, and
consists of about 3,000 lines. Circuit analysis
exploits FTL systems Tauri (a new version of the
fault injector will be closely fastened to Auriga),
fault-list generation takes advantage of Synopsis
VHDL simulator, while the fault injector is
currently based on Modelsim software.

• [10] Presents a fault injection technique, developed
at Virginia University, USA, that allows faults to be
injected at the ISA (Instruction Set Architecture)
level where actual machine code is executed on a
behavioral model of a processor written in VHDL.
The idea of this technique is based on the use of a
Bus Resolution Function (BRF) and the ability to
communicate to the BRF when a fault is to be
injected. This allow the BRF to corrupt the new
value being assigned to a signal. A BRF is a

182 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

function associated with a signal type that will
resolve the value of a signal declared to be of said
signal type when the signal is being updated by two
different sources at the same real time. This
technique can be used with existing models with
minimal changes to the existing code and it uses
standard VHDL types to perform the fault injection
(it is simulator-independent method). The
simulation time is reduced because the level of
modeled detail is reduced. However, this method is
limited to processor fault-injection modeled in the
ISA level.

6. Emulation-Based Fault Injection

To cope with the time limitations imposed by
simulation and take into account the effects due to the
circuit environment in the application, in system
emulation using hardware prototyping on FPGA-based
logic emulation systems has been proposed [9, 20].
The circuit to analyze is implemented onto the FPGA
using a classical synthesis, placement and routing
design flow starting from the high-level circuit
description. The development board is connected to a
host computer, used to define the fault injection
campaign, control the injection experiments and
display the results.

In some limited cases, the approaches developed for
fault grading using emulators (for example [7]) may be
used to inject faults. However, such approaches are
classically limited to stuck-at fault injection. In most
cases, modifications must therefore be introduced in
the circuit description taking into account that the
description must remain synthesizable and satisfying a
set of constraints related to the emulator hardware. The
modifications are therefore not easy and furthermore it
is often necessary to generate several modified
descriptions, each of them allowing the injection of a
given subset of faults. In such a case, the hardware
emulator has in general to be completely reconfigured
several times, that is quite time-consuming and reduces
the gain in execution time compared with simulation. It
also implies additional synthesis, place and route
phases since the whole design flow has to be executed
for each modified description.

FPGAs have already been used to accelerate fault-
injection in a number of cases. In general, these
approaches aim at using the high running speed of a
hardware prototype to reduce the fault injection
experiment time with respect to simulations. New
methodologies were also introduced combining
hardware-based and software-based techniques in
order to exploit the speed of hardware-based
techniques and at the same time take profit of the
flexibility of software-based techniques. In general,
additional control inputs and specific elements are
introduced by modifying either the initial high-level
circuit description or the gate-level description so that

the targeted faults can be injected into the prototype.
This is sometimes called “instrumenting” the circuit
description. As previously mentioned, the emulator
characteristics can preclude generating a single
instrumented description allowing injecting all the
targeted faults. This may be due to the limited number
of available I/Os, or to the amount of hardware
overhead induced by the logic elements added in the
circuit for fault injection. In that case, each version of
the instrumented description targets a given subset of
faults and has to be separately synthesized, placed,
routed and downloaded onto the emulator at different
phases of the injection campaign.

To avoid any instrumentation of the circuit
description, another approach, called run-time
reconfiguration emulation-based fault injection has
proposed in [21]. Instead of injecting the faults by
means of specific external signals controlling
additional logic, these approaches rely on built-in
reconfiguration capabilities of the FPGA devices. This
means that some run-time reconfiguration has to be
done for each fault to inject; however, this avoids the
extra time spent in preparing the instrumented
versions. The bit stream modification necessary to
perform the reconfigurations is a very quick process
compared for example with synthesis. Also, the
reconfiguration time globally spent when running a
fault injection campaign on the hardware emulator
(FPGA) can be reduced by means of a partial
reconfiguration of the emulator when such capabilities
are available.

The initial VHDL description is therefore
synthesized, placed & routed and a bit file is generated,
corresponding to the targeted circuit without any
additional elements. The generated file is downloaded
onto the FPGA and the injection campaign begins by
an execution of the studied workload (or test bench) on
the implemented prototype. The result of this execution
is later used as reference for analyzing the effects of
faults. Then, the same workload is run again as many
times as there are faults (or fault configurations) to
inject. Run-Time Reconfiguration (RTR) had been
proposed as a technique to inject the faults. This
methodology propose to inject the faults at “low-
level”, directly in the reconfigurable hardware, by
modification of the design previously implemented in
the FPGA. So any fault injection can be realized
without changing the initial description and without
additional hardware. The first advantage is to avoid
any hardware overhead for fault injection, that may
allow the designer to perform the emulation on a
smaller FPGA. Also, carrying out the modifications
directly in the reconfigurable device can only take a
fraction of a second if partial reconfiguration can be
achieved. So noticeable time gains can be expected
with respect to “classical” fault injection techniques,
although a reconfiguration is required for each fault
configuration to inject. Then an extra time is needed in

A Survey on Fault Injection Techniques 183

each fault injection experiment, as a partial read back
and a partial reconfiguration is needed to inject a fault.
This extra time could be however relatively low
compared with a classical simulation cycle time.

Noticeable gains could be expected compared with
simulation-based injection experiments, provided that
the configuration of the FPGA is quick enough. This
implies to optimize several implementation
characteristics:

• Intrinsic reconfiguration time of the reconfigurable
device (related to its architecture and to the place
and route algorithms used); a good solution would
be to use a device not only with partial
reconfigurability but also with some kind of random
access to the configuration data

• High configuration bandwidth on the development
board (high frequency configuration clock and/or
configuration data sent in parallel mode onto the
FPGA)

• High bandwidth interface between the development
board and the host computer.

In conclusion, let us summarize the advantages and
disadvantages of this technique.

Benefits:

• Injection time is more quickly compared with
simulation-based techniques possibility of in-system
emulation, allowing the designer to evaluate much
more precisely the behavior which can be expected
in the final circuit environment.

• Would especially be interesting in the context of a
system-on-chip development since it may lead to
efficient but low cost dependability analysis of re-
usable components (most often called IP blocks),
before they are used in a given circuit.

• The experimentation time can be reduced by
implementing partially or totally the input pattern
generation in the FPGA. These patterns are already
known when the circuit to analyze is synthesized.

Drawbacks:

• The initial VHDL description must be synthesizable
and optimized to avoid requiring a too large and
costly emulator and to reduce the total running time
during the injection campaign.

• The cost of a general hardware emulation system
and/or the implementation complexity of a
dedicated FPGA based emulation board. A low cost
can be reached but at the expense of a reduced
speed of the injection fault campaign.

• The emulation is only used to analyze the functional
consequences of a fault, the temporal impacts of the
faults are not considered. They are looking only at
steady states of the signals at some particular
moments (in general just before the rising and/or
falling edge of the clock).

• Since the algorithmic description are not yet widely
accepted by synthesis tools in classical industrial
design flows, the approach using the emulation can
often only be applied starting from RT-level
descriptions.

• I/Os problems: When using a FPGA-based
development board, the main limitation becomes the
number of I/Os of the programmable hardware,
which can be connected between the FPGA and the
host computer, that can restricts the number of fault
injection signals and the number of monitored
signals.

• Necessity of high speed communication link
between the host computer and the emulation board:
This is the actual critical part of the emulation set-
up.

7. Hybrid Fault Injection
A hybrid approach combines two or more of the other
fault injection techniques to more fully exercise the
system under analysis. For instance, performing
hardware-based or software-based fault injection
experiments can provide significant benefit in terms of
time to perform the fault injection experiments, can
reduce the initial amount of setup time before
beginning the experiments, and so forth. The hybrid
approach combines the versatility of software fault
injection and the accuracy of hardware monitoring.
The hybrid approach is well suited for measuring
extremely short latencies. However, given the
significant gain in controllability and observability
with a simulation-based approach, it might be useful to
combine a simulation-based approach with one of the
others in order to more fully exercise the system under
analysis. For instance, most researchers and
practitioners might choose to model a portion of the
system under analysis, such as the Arithmetic and
Logic Unit (ALU) within the microprocessor, at a very
detailed level, and perform simulation-based fault
injection experiments due to the fact that the internal
nodes of an ALU are not accessible using a hardware-
based or software-based approach.

Tools:

• LIVE: Experimental evaluation of computer-based
railway control systems, developed at Ansaldo-Cris,
Italy integrates fault injection and software testing
techniques to achieve an accurate and non-intrusive
analysis of a system prototype [2]. It uses pin-level
forcing or generates interrupts to activate software
fault injection procedures. A method combining
software-based and simulation-based fault injection
developed at Chalmers University of Technology,
Sweden [15]. This hybrid fault injection technique,
also known as mixed-mode fault injection, allows
the advantages of both SWIFI (Software

184 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Implemented Fault Injection tool) and simulation
based fault injection to be utilized, i.e. the actual
target system may be executed at full speed except
during the injection of a fault when a simulator
providing detailed access to the target system is
used instead. The technique is combined with
operational-profile-based fault injection which only
injects faults in those parts (e.g. registers) which
contain live data, i.e. which will not be overwritten.

8. Conclusions
The last years marked growing demand for new
techniques to be applied in the design of fault tolerant
electronic systems, and for new tools for supporting
the designers of these systems. The increased interest
for the domain of fault tolerant electronic systems
design stems primarily from the extension in their use
to many new areas. At the same time, the cost and
time-to-market minimization constraints obviously
affect the design of fault tolerant systems, and new
techniques and new tools are continuously needed to
face these constraints.

 Fault injection is an important technique for the
evaluation of design metrics such as reliability, safety
and fault coverage. Fault injection involves inserting
faults into a system and monitoring the system to
determine its behavior in response to the fault.
 In this paper we have described several techniques
that have been made to develop techniques for
injecting fault into a system prototype or model. These
techniques fall into five categories: Hardware-based
fault injection, software-based fault injection,
simulation-based fault injection, emulation-based fault
injection and hybrid fault injection. In table 1, we
summarize the main advantages and disadvantages of
these techniques.

Most recent research in this area is converging
towards hybrid fault injection combining the benefits
of both hardware and software fault injection
techniques, while avoiding most of their disadvantages.
This is becoming feasible due to the latest
advancements in the FPGA technology. Modern FGPA
devices can be fruitfully exploited to emulate systems
composed of hundreds of thousands of gates at a
reasonable cost.

Techniques Advantages Disadvantages

Hardware-
Based

• Can access locations that is hard to be accessed by other
means.

• High time-resolution for hardware triggering and
monitoring.

• Well suited for the low-level fault models.
• Not intrusive.
• Experiments are fast.
• No model development or validation required.
• Able to model permanent faults at the pin level.

• Can introduce high risk of damage for the injected system.
• High level of device integration, multiple-chip hybrid circuit, and

dense packaging technologies limit accessibility to injection.
• Low portability and observability.
• Limited set of injection points and limited set of injectable faults.
• Requires special-purpose hardware in order to perform the fault

injection experiments.

Software-
Based

• Can be targeted to applications and operating systems.
• Experiments can be run in near real-time.
• Does not require any special-purpose hardware; low

complexity, low development and low implementation
cost.

• No model development or validation required.
• Can be expanded for new classes of faults.

• Limited set of injection instants.
• It cannot inject faults into locations that are inaccessible to software.
• Does require a modification of the source code to support the fault

injection.
• Limited observability and controllability.
• Very difficult to model permanent faults.

Simulation-
Based

• Can support all system abstraction levels.
• Not intrusive.
• Full control of both fault models and injection

mechanisms.
• Low cost computer automation; does not require any

special-purpose hardware.
• Maximum amount of observability and controllability.
• Allows performing reliability assessment at different

stages in the design process.
• Able to model both transient and permanent faults.

• Large development efforts.
• Time consuming (experiment length).
• Model is not readily available.
• Accuracy of the results depends on the goodness of the model used.
• No real time faults injection possible in a prototype.
• Model may not include any of the design faults that may be present

in the real hardware.

Emulation-
Based

• Injection time is more quickly compared with simulation-
based techniques.

• The experimentation time can be reduced by
implementing partially or totally the input pattern
generation in the FPGA. These patterns are already
known when the circuit to analyze is synthesized.

• The initial VHDL description must be synthesizable and optimized
to avoid requiring a too large and costly emulator and to reduce the
total running time during the injection campaign.

• The cost of a general hardware emulation system and/or the
implementation complexity of a dedicated FPGA based emulation
board.

• The emulation is only used to analyze the functional consequences
of a fault.

• When using a FPGA-based development board, the main limitation
becomes the number of I/Os of the programmable hardware.

Necessity of high speed communication link between the host computer
and the emulation board.

Table 1. Summary of main advantages and disadvantages of fault injection techniques.

A Survey on Fault Injection Techniques 185

Acknowledgements
This work is supported by the Lebanese University
research program and the French/Lebanon CEDRE
program. We would like to acknowledge the support of
all these organizations for their help and contributions.

References
[1] Aidemark J., Vinter J., Folkesson P., and

Karlsson J., “GOOFI: Generic Object-Oriented
Fault Injection Tool,” in Proceedings of
International Conference on Dependable Systems
and Networks (DSN'2001), Gothenburg, Sweden,
July 2001.

[2] Amendola A., Impagliazzo L., Marmo P., and
Poli F., “Experimental Evaluation of Computer-
Based Railway Control Systems,” in Proceedings
of 27th International Symposium on Fault-
Tolerant Computing (FTCS-27), Seattle, WA,
USA, pp. 380-384, June 1997.

[3] Arlat J., “Validation de la Sûreté de
Fonctionnement Par Injection de Fautes.
Méthode Mise en Œuvre et Application,” Thèse
Présentée à l’INP Toulouse, Rapport de
Recherche LAAS, no. 90-399, December 1990.

[4] Baraza J. C., Gracia J., Gil D., and Gil P. J., “A
Prototype of a VHDL-Based Fault Injection
Tool,” in Proceedings of DFT'2000 Conference,
pp. 396-404, October 2000.

[5] Benso A., Prinetto P., Rebaudengo M., and
Reorda M., “EXFI: A Low-Cost Fault Injection
System for Embedded Microprocessor-Based
Boards,” ACM Transactions on Design
Automation of Electronic Systems, vol. 3, no. 4,
pp. 626-634, October 1998.

[6] Carreira J., Madeira H., and Silva J., “Xception:
A Technique for the Experimental Evaluation of
Dependability in Modern Computers,” IEEE
Transactions on Software Engineering, vol. 24,
no. 2, pp. 125-136, February 1998.

[7] Cheng K. T., Huang S. Y., and Dai W. J., “Fault
Emulation: A New Methodology for Fault
Grading,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 18, no. 10, pp. 1487-1495, October 1999.

[8] Choi G. S. and Iyer R. K., “FOCUS: An
Experimental Environment for Fault Sensitivity
Analysis,” IEEE Transactions on Computers,
vol. 41, no. 12, pp. 1515-1526, December 1992.

[9] Civera P., Macchiarulo L., Rebaudengo M.,
Reorda S. M., and Violante M., “Exploiting
FPGA for Accelerating Fault Injection
Experiments,” in Proceedings of 6th International
On-Line Testing Workshop, Palma de Mallorca,
Spain, July 2000.

[10] Delong T. A., Johnson B. W., and Profetan J. A.,
“A Fault Injection Technique for VHDL

Behavioral-Level Models,” IEEE Design & Test
of Computers, vol. 13, pp. 24-33, 1996.

[11] Entrena L., López C., and Olías E., “Automatic
Generation of Fault Tolerant VHDL Designs in
RTL,” FDL (Forum on Design Languages),
Lyon, France, September 2001.

[12] Folkesson P., Svensson S., and Karlsson J., “A
Comparison of Simulation Based and Scan Chain
Implemented Fault Injection,” in Proceedings of
28th International Symposium on Fault-Tolerant
Computing (FTCS-28), Munich, Germany, pp.
284-293, June 1998.

[13] Fuchs E., “An Evaluation of the Error Detection
Mechanisms in MARS Using Software
Implemented Fault Injection,” in Proceedings of
2nd European Dependable Computing
Conference (EDCC-2), Taormina, Italy, October
1996.

[14] Gunneflo U., Karlsson J., and Johansson R.,
“Using Heavy-Ion Radiation to Validate Fault-
Handling Mechanisms,” IEEE Micro, vol. 14, no.
1, pp. 8-23, February 1994.

[15] Guthoff J. and Sieh V., “Combining Software-
Implemented and Simulation-Based Fault
Injection into a Single Fault Injection Method,”
in Proceedings of 25th Symposium on Fault-
Tolerant Computing (FTCS), pp. 196-206, 1995.

[16] Han S., Rosenberg H., and Shin K., “DOCTOR:
An Integrated Software Fault Injection
Environment,” Technical Report CSE-TR-192-
93, University of Michigan, 1993.

[17] Hsueh M. C., Tsai T. K., and Iyer R. K., “Fault
Injection Techniques and Tools,” IEEE
Computer, vol. 30, no. 4, pp. 75-82, April 1997.

[18] Jenn E., Rimen M., Ohlsson J., Karlsson J., and
Arlat J., “Design Guidelines of a VHDL-Based
Simulation Tool for the Validation of Fault
Tolerance,” in Proceedings of 1st ESPRIT Basic
Research Project PDCS-2 Open Workshop,
LAAS/CNRS, Toulouse, pp. 461-483, September
1993.

[19] Kanawati G. A., Kanawati N. A., and Abraham J.
A., “FERRARI: A Tool for the Validation of
System Dependability Properties,” in
Proceedings of 22nd Annual International
Symposium Fault-Tolerant Computing, IEEE CS
Press, Los Alamitos, California, pp. 336-344,
1992.

[20] Leveugle R., “Fault Injection in VHDL
Descriptions and Emulations,” in Proceedings of
DFT'2000 Conference, pp. 414-419, October
2000.

[21] Leveugle R., Antoni L., and Feher B., “Using
Run-Time Reconfiguration for Fault Injection in
Hardware Prototypes,” in Proceedings of
DFT'2000 Conference, November 2002.

[22] Madeira H., Rela M., Moreira F., and Silva J. G.,
“RIFLE: A General Purpose Pin-level Fault

186 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Injector,” in Proceedings of 1st European
Dependable Computing Conference (EDCC-1),
(Berlin, Germany), Springer-Verlag, pp. 199-
216, 1994.

[23] Rebaudengo M., Benso A., Marmo P., and
Impagliazzo L., “Fault-List Collapsing for Fault
Injection Experiments,” in Proceedings of
Annual Reliability and Maintainability
Symposium (RAMS'98), pp. 383-388, January
1998.

[24] Rebaudengo M., Prrota B., Violante M., and
Sonza R. M., “New Techniques for Accelerating
Fault Injectioning VHDL Description,” in
Proceedings of International On-Line Test
Workshop (IOLTW'2000), Mallorca, Spain, pp.
61-66, July 2000.

[25] Rousselle C., Pflanz M., Behling A., Mohaupt T.,
and Vierhaus H. T., “A Register-Transfer-Level
Fault Simulator for Permanent and Transient
Faults in Embedded Processors,” in Proceedings
of DATE'2001 Conference, Munich, Germany,
2001

[26] Segall Z., Vrsalovic D., Siewiorek D., Yaskin D.,
Kownacki J., Barton J., Dancey R., Robinson A.,
and Lin T., “FIAT-Fault Injection Based
Automated Testing Environment,” in
Proceedings of 18th International Symposium on
Fault-Tolerant Computing (FTCS-18), pp. 102-
107, 1988.

[27] Sieh V., Tschäche O., and Balbach F., “VERIFY:
Evaluation of Reliability Using VHDL-Models
with Embedded Fault Descriptions,” in
Proceedings of 27th International Symposium on
Fault-Tolerant Computing (FTCS-27), Seattle,
WA, USA, pp. 32-36, June 1997.

[28] Sonza Reorda M., Berrojo L., González I., and
Corno F., “New Techniques for Speeding-up
Fault-Injection Campaigns,” in Proceedings of
(DATE'2002) Design Automation and Test in
Europe, Paris, France, pp. 847-852, March 2002.

[29] Stott D. T., Kalbarczyk Z., and Iyer R. K, “Using
NFTAPE for Rapid Development of Automated
Fault Injection Experiments,” Research Report,
Center for Reliable and High-Performance
Computing, University of Illinois at Urbana-
Champaign, 1999.

[30] Tsai T. K. and Iyer R. K., “An Approach to
Benchmarking of Fault-Tolerant Commercial
Systems,” in Proceedings of 26th Annual
International Symposium Fault-Tolerant
Computing, IEEE CS Press, Los Alamitos,
California, pp. 314-323, 1996.

[31] Yu Y., “A Perspective on the State of Research
on Fault Injection Techniques,” Research Report,
University of Virginia, May 2001.

Haissam Ziade received his BSc in
physics from Lebanese University in
1979, his engineering diploma from
ENSERG in Grenoble France in
1982, and his PhD in engineering
from INSA/ Toulouse in 1986. Since
1986, he has been in the Electrical

and Electronics Department at the Lebanese University
at Tripoli/Lebanon, where he is currently an associate
professor. He is an assistant researcher at TIMA
Laboratory (Grenoble, France) in “Qualification of
Circuits” research group since 1986. His main research
topics are the study of the test and validation of
complex integrated circuits, the fault injection
methodologies and the design with programmable
circuits and systems.

Rafic Ayoubi received his BSc
degree in electrical engineering, the
MSc and PhD degrees in computer
engineering from the University of
Louisiana, Lafayette, Louisiana in
1988, 1990, and 1995, respectively.
He joined The University of

Balamand, Tripoli, Lebanon, in 1996 where he is
currently an assistant professor. Dr. Ayoubi's current
research interests are parallel architectures, parallel
algorithms, fault tolerance, artificial neural networks,
and FPGA technology. In these areas, he published
several research papers in several journals and
conferences. He has received the first prize in the 2nd
Annual Exhibition for Industrial Research
Achievements in Lebanon.

Raoul Velazco has been with CNRS
(French Research Agency) since
1984. Leader at TIMA Laboratory
(Grenoble, France) of “Qualification
of Circuits” research group. His
main research topics are the study of
the effects of radiation on integrated

circuits, the development of test methods for complex
circuits (processors, microcontrollers,...) and the design
of dedicated functional test systems. He has more than
170 publications, 32 of them in IEEE Transactions on
Nuclear Science.

