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Abstract: Fault tolerant circuits are currently required in several major application sectors. Besides and in complement to 
other possible approaches such as proving or analytical modeling whose applicability and accuracy are significantly 
restricted in the case of complex fault tolerant systems, fault-injection has been recognized to be particularly attractive and 
valuable. Fault injection provides a method of assessing the dependability of a system under test. It involves inserting faults 
into a system and monitoring the system to determine its behavior in response to a fault. Several fault injection techniques have 
been proposed and practically experimented. They can be grouped into hardware-based fault injection, software-based fault 
injection, simulation-based fault injection, emulation-based fault injection and hybrid fault injection. This paper presents a 
survey on fault injection techniques with comparison of the different injection techniques and an overview on the different 
tools. 
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1. Introduction  

A system may not always perform the function it is 
intended for. The causes and consequences of 
deviations from the expected function of a system are 
called the factors to dependability: 

• Fault is a physical defect, imperfection, or flaw that 
occurs within some hardware or software 
component. 

• Error is a deviation from accuracy or correctness 
and is the manifestation of a fault. 

• Failure is the non-performance of some action that 
is due or expected. 

When a fault causes an incorrect change in a machine 
stage, an error occurs. Although a fault remains 
localized in the affected code or circuitry, multiple 
errors can originated from one fault site and propagate 
throughout the system. When the fault-tolerance 
mechanisms detect an error, they may initiate several 
actions to handle the faults and contain its errors. 
Otherwise, the system eventually malfunctions and a 
failure occurs. 

Due to the evolutions of the technologies, the 
probability of faults occurring in integrated circuits is 
noticeably increasing. The interest for integrated on-
line fault detection mechanisms and/or fault tolerance 
is therefore rapidly increasing for circuits designed in 
deep sub-micron technologies. The selection of the 
right mechanisms to integrate in a circuit requires the 
definition of the type of faults prone to occur and a 
detailed knowledge of their potential impact on the 
circuit behavior. Designing a circuit with a set of           

carefully selected fault detection mechanisms is not 
sufficient to ensure that all critical effects of faults are 
avoided, especially because the implemented 
mechanisms are in general not able to catch all 
possible faults. Trade-offs have also to be made during 
the design phase between the fault coverage obtained 
for different types of faults and the various induced 
costs (in terms of area or clock frequency, but also for 
example in terms of design time and potential impacts 
on the application execution if techniques based on 
time redundancy is used). Making such choices, it is 
necessary to ensure that the faults which are eventually 
not detected or tolerated by the implemented 
mechanisms do not have critical effects. However, the 
level of criticality of the effect can often only be 
evaluated in the application environment, taking into 
account the real-time interactions of the circuit with the 
other system elements. The analysis of the fault effects 
must therefore often take into account not only the 
internal circuit description but also the external system 
definition. The final assessment of the circuit and 
system dependability is classically done using fault 
injections on a system prototype. In terms of cost and 
time, it becomes therefore crucial to perform a 
thorough analysis of the failure modes of the circuit if 
possible early in the design process and at least before 
any manufacturing [17, 31]. 
 
1.1. Fault Category 
A fault as a deviation in a hardware or software 
component from its intended function can arise during 
all stages in a computer system design process: 
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Specification, design, development, manufacturing, 
assembly, and installation throughout its operational 
life. Most faults that occur before full system 
deployment are discovered and eliminated through 
testing. Faults that are not removed can reduce a 
system’s dependability when it is embedded into the 
system. 

Hardware/Physical Fault that arise during system 
operation are best classified by their duration: 
Permanent, transient, or intermittent.  

• Permanent faults: Caused by irreversible 
component damage, such as a semiconductor 
junction that has shorted out because of thermal 
aging, improper manufacture, or misuse. Since it is 
possible that a chip in a network card that burns 
causing the card to stop working, recovery can only 
be accomplished by replacing or repairing the 
damaged component or subsystem. 

• Transient faults: Triggered by environmental 
conditions such as power-line fluctuation, 
electromagnetic interference, or radiation. These 
faults rarely do any lasting damage to the 
component affected, although they can induce an 
erroneous state in the system. According to several 
studies, transient faults occur far more often than 
permanent ones, and are also far harder to detect. 

• Intermittent faults: Caused by unstable hardware or 
varying hardware states. They can be repaired by 
replacement or redesign. 

Hardware faults of almost all types are easily injected 
by the devices available for the task. Dedicated 
hardware tools are available to flip bits on the instant at 
the pins of a chip, vary the power supply, or even 
bomb the system/chips with heavy ions-methods 
believed to cause faults close to real transient hardware 
faults. An increasingly popular software tool is a 
software-implemented fault injector, which changes 
bits in processor registers or memory, in this way 
producing the same effects as transient hardware faults. 
All these techniques require that a system, or at least a 
prototype, actually be built in order to perform the fault 
testing. 

Software faults are always the consequence of 
incorrect design, at specification or at coding time. 
Every software engineer knows that a software product 
is bug free only until the next bug is found. Many of 
these faults are latent in the code and show up only 
during operation, especially under heavy or unusual 
workloads and timing contexts. 

Since they are a result of bad design, it might be 
supposed that all software faults would be permanent. 
Interestingly, practice shows that despite their 
permanent nature, their behavior is transient; that is, 
when a bad behavior of the system occurs, it cannot be 
observed again, even if great care is taken to repeat the 
situation in which it occurred. Such behavior is 
commonly called a failure of the system. The subtleties 

of the system state may mask the fault, as when the 
bug is triggered by very particular timing relationships 
between several system components, or by some other 
rare and irreproducible situation. 

Curiously, most computer failures are blamed on 
either software faults or permanent hardware faults, to 
the exclusion of the transient and intermittent hardware 
types. Yet many studies show these types are much 
more frequent than permanent faults. The problem is 
that they are much harder to track down. 

During the process of software development, faults 
can be created in every step: Requirement definition, 
requirement specifications, design, implementation, 
testing, and deployment. And these faults can be 
cataloged to: 

• Function faults: Incorrect or missing 
implementation that requires a design change to be 
corrected. 

• Algorithm faults: Incorrect or missing 
implementation that can be fixed without the need 
of design change. 

• Timing/serialization faults: Missing or incorrect 
serialization of shared resources. 

• Checking fault: Missing or incorrect validation of 
data, or incorrect loop, or incorrect conditional 
statement. 

• Assignment fault: Values assigned incorrectly or not 
assigned. 

 
2. An Overview of Fault Injection 
Fault Injection is defined by Arlat [3] as the validation 
technique of the dependability of fault tolerant systems 
which consists in the accomplishment of controlled 
experiments where the observation of the system’s 
behavior in presence of faults is induced explicitly by 
the writing introduction (injection) of faults in the 
system. 

The fault injection techniques have been recognized 
for a long time as necessary to validate the 
dependability of a system by analyzing the behavior of 
the devices when a fault occurs. Several efforts have 
been made to develop techniques for injecting faults 
into a system prototype or model. Most of the 
developed techniques fall into five main categories: 

• Hardware-based fault injection: It is accomplished 
at physical level, disturbing the hardware with 
parameters of the environment (heavy ion radiation, 
electromagnetic interferences, etc.), injecting 
voltage sags on the power rails of the hardware 
(power supply disturbances), laser fault injection or 
modifying the value of the pins of the circuit. 

• Software-based fault injection (software 
implemented fault injection): The objective of this 
technique consists of reproducing at software level 
the errors that would have been produced upon 
occurring faults in the hardware. 
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• Simulation-based fault injection: Consists in 
injecting the faults in high-level models (most often, 
VHDL models). It allows early evaluating the 
system dependability when only a model of the 
system is available. Then it addresses different 
abstraction levels by using distinct description 
languages. A coherent environment should be 
provided to favor interoperability between the 
successive abstraction levels and to integrate the 
validation in the design process. 

• Emulation-based fault injection: This technique has 
been presented as an alternative solution for 
reducing the time spent during simulation-based 
fault injection campaigns. It is based on the 
exploration of the use of Field Programmable Gate 
Arrays (FPGAs) for speeding-up fault simulation 
and exploits FPGAs for effective circuit emulation. 
This technique can allow the designer to study the 
actual behavior of the circuit in the application 
environment, taking into account real-time 
interactions. However, when an emulator is used, 
the initial VHDL description must be synthesizable. 

• Hybrid fault injection: This approach mix software-
implemented fault injection and hardware 
monitoring. 

From another point of view, the fault injection 
techniques can be grouped into invasive and non-
invasive techniques. The problem with sufficiently 
complex systems, particularly time dependant ones, is 
that it may be impossible to remove the footprint of the 
testing mechanism from the behavior of the system, 
independent of the fault injected. Invasive techniques 
are those which leave behind such a footprint during 
testing. Non-invasive techniques are able to mask their 
presence so as to have no effect on the system other 
than the faults they inject. 
 
2.1. Fault Injection Environment  
A fault injection environment typically consists of the 
following components: 

• Fault injector: Injects fault into the target system as 
it executes commands from the workload generator. 

• Fault library: Stores different fault types, fault 
locations, fault times, and appropriate hardware 
semantics or software structures. 

• Workload generator: Generates the workload for 
the target system as input. 

• Workload library: Stores sample workloads for the 
target system. 

• Controller: Controls the experiment. 
• Monitor: Tracks the execution of the commands and 

initiate data collection whenever necessary. 
• Data collector: Performs online data collection. 
• Data analyzer: Performs data processing and 

analysis. 
 

2.2. Objectives of Fault Injection 

Fault injection tries to determine whether the response 
of the system matches with its specifications, in 
presence of a defined range of faults. Normally, faults 
are injected in perfectly chosen system states and 
points, previously determined by an initial system 
analysis. Tester knows the design in depth and so it 
designs the test cases (type of faults, test points, 
injection time and state, etc.) based on a structural 
criteria and usually in a deterministic way. 

Fault injection techniques provide a way for fault 
removal (the correction of potential fault tolerance 
deficiencies in the system) and fault forecasting (the 
evaluation of the coverage distribution – coverage 
factor and latency – provided by the tested system). 
Regarding the fault removal objective, the test should 
be directed to achieve a high coverage of the possible 
configurations of the system to be validated. In this 
case, the selection of the faults/errors to apply and 
errors to propagate is primarily based on the analysis 
of the model describing the system and the information 
flow in the simulation of the system. Regarding the 
fault forecasting objective, the main alternatives are 
either to rely on statistical testing simulating a priori 
the relative distribution of the classes of faults/errors or 
to statistically process a posteriori the results of the test 
sequence. The data used to carry out the statistical 
processing may result from available file data on the 
distributions and/or from results of simulation 
experiments. 

Using these two methods, fault injection techniques 
can yield seven benefits: 

• An understanding of the effects of real faults and 
thus of the rela ted behavior of the target system in 
terms of functionality and performance. 

• An assessment of the efficacy of the fault tolerance 
mechanisms included into the target system and thus 
a feedback for their enhancement and correction 
(e.g., for removing designs faults in the fault 
tolerance mechanisms). 

• A forecasting of the faulty behavior of the target 
system, in particular encompassing a measurement 
of the efficiency (coverage) provided by the fault 
tolerance mechanisms. 

• Estimating the failure coverage and la tency (i. e 
timing) of fault tolerant mechanisms. 

• Exploring the effects of different workloads 
(different input profiles and environments) on the 
effectiveness of fault tolerant mechanisms. 

• Identifying weak links in the design: For example 
parts of the system within which a single fault could 
lead to severe consequences. 

• Studying the system's behavior in the presence of 
faults, for example propagation of fault effects 
between system components or the degree of fault 
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isolation and determining the coverage of a given 
set of tests. 

In practice, frequently fault removal and fault 
forecasting are not used separately, but one follows the 
other. For instance, after rejecting a system by fault 
forecasting testing, several fault removal tests should 
be applied. These new tests provide actions that will 
help the designer to improve the system. Then, it will 
be applied to another fault forecasting test, and so on. 
 
3. Hardware-Based Fault Injection 
Hardware-based fault injection involves augmenting 
the system under analysis with specially designed test 
hardware to allow for the injection of faults into the 
system and examine the effects. It uses additional 
hardware to introduce faults into the target system’s 
hardware. Depending on the faults and their locations, 
hardware-implemented fault injection methods fall into 
two categories: 

• Hardware fault injection with contact: The injector 
has direct physical contact with the target system, 
producing voltage or current changes externally to 
the target chip. Examples are methods that use pin-
level active probes and socket insertion. The probe 
method is usually limited to stuck-at faults, although 
it is possible to attain bridging faults by placing a 
probe across two or more pins. Socket insertion 
technique inserts a socket between the target 
hardware and its circuit board. The inserted socket 
injects stuck-at, open, or more complex logic faults 
into the target hardware by forcing the analog 
signals that represent desired logic values onto the 
pins of the target hardware. The pin signals can be 
inverted, ANDed, or ORed with adjacent pin signals 
or even with previous signals on the same pin. 

• Hardware fault injection without contact: The 
injector has no direct physical contact with the 
target system. Instead, an external source produces 
some physical phenomenon, such as heavy ion 
radiation and electromagnetic interference, causing 
spurious currents inside the target chip. 

Hardware simulations typically occur in a high level 
description of the circuit. This high level description is 
turned into a transistor level description of the circuit, 
and faults are injected into the circuit. Software 
simulation is most often used to detect the response to 
manufacturing defects. The system is then simulated to 
evaluate the response of the circuit to that particular 
fault. Since this is a simulation, a new fault can then be 
easily injected, and the simulation is rerun to measure 
the response to the new fault. This consumes time to 
construct the model, insert the faults, and then simulate 
the circuit, but modifications in the circuit are easier to 
make than later in the design cycle. This sort of testing 
would be used to check a circuit early in the design 
cycle. These simulations are non-intrusive, since the 

simulation functions normally other than the 
introduction of the fault. 

Hardware fault injections occur in actual examples 
of the circuit after fabrication. The circuit is subjected 
to some sort of interference to produce the fault, and 
the resulting behavior is examined. So far, this has 
been done with transient faults, as the difficulty and 
expense of introducing stuck-at and bridging faults in 
the circuit has not been overcome. The circuit is 
attached to a testing equipment which operates it and 
examines the behavior after the fault is injected. This 
consumes time to prepare the circuit and test it, but 
such tests generally proceed faster than simulation 
does. It is, rather obviously, used to test circuit just 
before or in production. These simulations are non-
intrusive, since they do not alter the behavior of the 
circuit other than to introduce the fault. Special 
circuitry should be included to cause or simulate faults 
in the finished circuit; these would most likely affect 
the timing or other characteristics of the circuit, and 
therefore be intrusive. 

 
Suppositions: 

• The fault injector should have no interference with 
the exercised system. 

• Faults should be injected at internal locations to the 
ICs in the exercised system. 

• Faults that are injected into the system are 
representative of the actual faults that occur within 
the system. It means that both random generated and 
non-random generated faults can be injected into the 
system, and both permanent and transient faults can 
be injected into the system. 

 
Benefits: 

• Hardware fault injection technique can access 
locations that is hard to be accessed by other means. 
For example, the Heavy-ion radiation method can 
inject fault into VLSI circuits at locations which are 
impossible to reach by other methods. 

• This technique works well for the system which 
needs high time-resolution for hardware triggering 
and monitoring. 

• Experimental evaluation by injection into actual 
hardware is in many cases the only practical way to 
estimate coverage and latency accurately. 

• This technique injects faults which have low 
perturbation. 

• This technique is better suited for the low-level fault 
models. 

• Not intrusive: No modification of the target system 
is required to inject faults. 

• Experiments are fast. 
• Experiments can be run in near real-time, allowing 

for the possibility of running a large number of fault 
injection experiments. 
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• Running the fault injection experiments on the real 
hardware that is executing the real software has the 
advantage of including any design faults that might 
be present in the actual hardware and software 
design. 

• Fault injection experiments are performed using the 
same software that will run in the field. 

• No model development or validation required. 
• Ability to model permanent faults at the pin level. 
 
Drawbacks: 

• Hardware fault injection can introduce high risk of 
damage for the injected system. 

• High level of device integration, multiple-chip 
hybrid circuit, and dense packaging technologies 
limit accessibility to injection. 

• Some hardware fault injection methods, such as 
state mutation, require stopping and restarting the 
processor to inject a fault, it is not always effective 
for measuring latencies in the physical systems. 

• Low portability and observability. 
• Limited set of injection points and limited set of 

injectable faults. 
• A recent paper indicates that the setup time for each 

experiment might, in fact, offset the time gained by 
the ability to perform the experiments in near real-
time. 

• Requires special-purpose hardware in order to 
perform the fault injection experiments. This 
hardware is used to inject faults into the processor 
by applying the rail voltages (representing logic one 
and zero) to the Input/Output (I/O) pins of the 
processor. Also, if the processor contains 
appropriate special-purpose hardware known as 
scan chains, then the external hardware could also 
be used to inject stuck-at-1 and stuck-at-0 faults into 
the internal registers of the processor. In general, 
this hardware can be very difficult and costly to 
build. 

• Limited observability and controllability. At best, 
one would be able to corrupt the I/O pins of the 
processor and the internal processor registers. 

 
Tools: 

• RIFLE: A pin-level fault injection system for 
dependability validation developed at University of 
Coimbra, Portugal [22]. This system can be adapted 
to a wide range of target systems and the faults are 
mainly injected in the processor pins. The injection 
of the faults is deterministic and can be reproduced 
if needed. Faults of different nature can be injected 
and the fault injector is able to detect whether the 
injected fault has produced an error or not without 
the requirement of feedback circuits. RIFLE can 
also detect specific circumstances in which the 
injected faults do not affect the target system. Sets 

of faults with specific impact on the target system 
can be generated. Fault injection results showing the 
coverage and latency achieved with a set of simple 
behavior based error detection mechanisms are 
presented in [22]. It is shown that up to 72,5% of the 
errors can be detected with fairly simple 
mechanisms. Furthermore, for over 90% of the 
faults the target system has behaved according to 
the fail-silent model, which suggests that a 
traditional computer equipped with simple error 
detection mechanisms is relatively close to a fail-
silent computer. 

• FOCUS: A design automation environment 
developed at University of Illinois at Urbana-
Champaign [9] used for analyzing a 
microprocessor-based jet-engine controller used in 
the Boeing 747 and 757 aircrafts. FOCUS uses a 
hierarchical simulation environment based on 
SPLICE for tracing the impact of transient faults. 
The fault from the simulation is automatically fed 
into the analysis-software in order to quantify the 
fault tolerance of the system under test. In the 
controller, fault detection and reconfiguration are 
performed by transactions over the communication 
link. The simulation consists of the instructions 
specifically designed to exercise this cross-channel 
communication. The level of effectiveness of the 
dual configuration of the system to single and 
multiple transient faults is measured. The results are 
used to identity critical design aspects from fault 
tolerant viewpoint. The usefulness of state transition 
models which describe the error propagation within 
the chip, enabling identification of critical fault 
propagation paths and the modules most sensitive to 
fault propagation, are shown using the tool. 

• MESSALINE: A pin-level fault forcing system 
developed at LAAS-CNRS [3]. MESSALINE uses 
both active probes and sockets to conduct pin-level 
fault injection. It can inject stuck-at, open, bridging, 
and complex logical faults, among others. It can 
also control the length of fault existence and the 
frequency. It is made up of four modules: Injection 
module, activation module, collection module, and 
management module . The injection module enables 
injection on up to 32 injection points by means of 
injecting elements that support two different fault 
injection techniques: Forcing and insertion. The 
activation module ensures the proper initialization 
of the target system according to the elements of the 
A set. The readout collection module is used to 
collect the elements of R set. The management 
module is responsible for the automatic and 
parametrable generation of test sequence, for the run 
time control of its execution and for result archiving 
for post-test analysis. 

• FIST (Fault Injection System for Study of Transient 
Fault Effect): Developed at the Chalmers University 
of Technology in Sweden [14], employs both 
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contact and contactless methods to create transient 
faults inside the target system. This tool uses heavy-
ion radiation to create transient faults at random 
locations inside a chip when the chip is exposed to 
the radiation and can thus cause single - or multiple-
bit-flips. FIST can inject faults directly inside a 
chip, which cannot be done with pin-level 
injections. It can produce transient faults at random 
locations evenly in a chip, which leads to a large 
variation in the errors seen on the output pins. In 
addition to radiation, FIST allows for the injection 
of power disturbance faults. 

• MARS (Maintainable Real-time System): 
Developed at Technical University of Vienna 
Austria [13]. MARS system is a time-triggered, 
fault-tolerant, distributed system. It consists of 
several computer nodes communicating by means of 
a synchronous time division multiple access 
strategy. The nodes contain extra hardware and 
software for fault tolerance and can be configured to 
operate in redundancy, i.e. when two nodes execute 
the same task. The fundamental fault tolerance 
property of each processing node in the MARS 
system is to be fail-silent. The implementation of 
the fail silence property relies on numerous Error 
Detection Mechanisms (EDMs) at three levels: The 
hardware software, the system software, and the 
application software level. 

 
4. Software-Based Fault Injection 
Software faults are probably the major cause of system 
outages. Fault injection method is a possible way to 
assess the consequences of hidden bugs. Traditionally, 
software-based fault injection involves the 
modification of the software executing on the system 
under analysis in order to provide the capability to 
modify the system state according to the programmer’s 
modeling view of the system. This is generally used on 
code that has communicative or cooperative functions 
so that there is enough interaction to make fault 
injection useful. All sorts of faults may be injected, 
from register and memory faults, to dropped or 
replicated network packets, to erroneous error 
conditions and flags. These faults may be injected into 
simulations of complex systems where the interactions 
are understood though not the details of 
implementation, or they may be injected into operating 
systems to examine the effects. 

Software fault injections are more oriented towards 
implementation details, and can address program state 
as well as communication and interactions. Faults are 
mis-timings, missing messages, replays, corrupted 
memory or registers, faulty disk reads, and almost any 
other state the hardware provides access to. The system 
is then run with the fault to examine its behavior. 
These simulations tend to take longer because they 
encapsulate all of the operation and detail of the 

system, but they will more accurately capture the 
timing aspects of the system. This testing is performed 
to verify the system's reaction to introduced faults and 
catalog the faults successfully dealt with. This is done 
later in the design cycle to show performance for a 
final or near-final design. These simulations can be 
non-intrusive, especially if timing is not a concern, but 
if timing is at all involved the time required for the 
injection mechanism to inject the faults can disrupt the 
activity of the system, and cause timing results that are 
not representative of the system without the fault 
injection mechanism deployed. This occurs because 
the injection mechanism runs on the same system as 
the software being tested. 

 
Suppositions: 

• Faults that are injected into the system are 
representative of the actual faults that occur within 
the system. 

• The additional software required to inject the faults 
does not affect the functional behavior of the system 
in response to the injected fault. Essentially, the 
assumption states that the software that is used to 
inject the fault is independent of the rest of the 
system, and that any faults present in the fault 
injection software will not affect the system under 
analysis. 

 
Benefits: 

• This technique can be targeted to applications and 
operating systems, which is difficult to be done 
using hardware fault injection. 

• Experiments can be run in near real-time, allowing 
for the possibility of running a large number of fault 
injection experiments. 

• Running the fault injection experiments on the real 
hardware that is executing the real software has the 
advantage of including any design faults that might 
be present in the actual hardware and software 
design. 

• Does not require any special-purpose hardware; low 
complexity, low development and low 
implementation cost. 

• No model development or validation required. 
• Can be expanded for new classes of faults. 
 
Drawbacks: 

• Limited set of injection instants: At assembly 
instruction level, only. 

• It cannot inject faults into locations that are 
inaccessible to software. 

• Does require a modification of the source code to 
support the fault injection, which means that the 
code that is executing during the fault experiment is 
not the same code that will run in the field. 
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• Limited observability and controllability. At best, 
one would be able to corrupt the internal processor 
registers (as well as locations within the memory 
map) that are visible to the programmer, 
traditionally referred to as the programmer’s model 
of the processor. So faults cannot be injected in the 
processor pipeline or instruction queue for example. 

• Very difficult to model permanent faults. 
• Related to four, execution of the fault injection 

software could affect the scheduling of the system 
tasks in such a way as to cause hard, real-time 
deadlines to be missed, which violates assumption 
two. 

We can categorize software injection methods on the 
basis of when the faults are injected: During compile-
time or during run-time. 

To inject faults at compile-time, the program 
instruction must be modified before the program image 
is loaded and executed. Rather than injecting faults 
into the hardware of the target system, this method 
injects errors into the source code or assembly code of 
the target program to emulate the effect of hardware, 
software, and transient faults. The modified code alters 
the target program instructions, causing injection. 
Injection generates an erroneous software image, and 
when the system executes the fault image, it activates 
the fault. 

This method requires the modification of the 
program that will evaluate fault effect, and it requires 
no additional software during runtime. In addition, it 
causes no perturbation to the target system during 
execution. Because the fault effect is hard-coded, 
engineers can use it to emulate permanent faults. This 
method’s implementation is very simple, but it does 
not allow the injection of faults as the workload 
program runs. 

During run-time, a mechanism is needed to trigger 
fault injection. Commonly used triggering mechanisms 
include: 

• Time-out: In this simplest of techniques, a timer 
expires at a predetermined time, triggering injection. 
Specifically, the time-out event generates an 
interrupt to invoke fault injection. The timer can be 
a hardware or software timer. 

• Exception/trap: In this case, a hardware exception or 
a software trap transfer control to the fault injector. 
Unlike time-out, exception/trap can inject the fault 
whenever certain events or conditions occur. For 
example, a software trap instruction inserted into a 
target program will invoke the fault injection before 
the program executes a particular instruction. A 
hardware exception invokes injection when a 
hardware observed event occurs (when a particular 
memory location is accessed, for example). Both 
mechanisms must be linked to the interrupt handler 
vector. 

• Code insertion: In this technique, instructions are 
added to the target program that allows fault 
injection to occur before particular instructions, 
much like the code-modification method. Unlike 
code modification, code insertion performs fault 
injection during runtime and adds instructions rather 
than changing original instructions. Unlike the trap 
method, the fault injector may exist as part of the 
target program and run at user mode rather than 
system mode. 

 
Tools: 

• FERRARI (Fault and Error Automatic Real-Time 
Injection) : Developed at the University of Texas at 
Austin [19], uses software traps to inject CPU, 
memory, and bus faults. Ferrari consists of four 
components: The initializer and activator, the user 
information, the fault-and-error injector, and the 
data collector and analyzer. The fault-and-error 
injector uses software trap and trap handling 
routines. Software traps are triggered either by the 
program counter when it points to the desired 
program locations or by a timer. When the traps are 
triggered, the trap handling routines inject faults at 
the specific fault locations, typically by changing 
the content of selected registers or memory 
locations to emulate actual data corruptions. The 
faults injected can be those permanent or transient 
faults that result in an address line error, a data line 
error, and a condition bit error. 

• FTAPE (Fault Tolerance and Performance 
Evaluator): Developed at the University of Illinois 
[30]. Engineers can inject faults into user-accessible 
registers in CPU modules, memory locations, and 
the disk subsystem. The faults are injected as bit-
flips to emulate error as a result of faults. Disk 
system faults are injected by executing a routine in 
the driver code that emulates I/O errors (bus error 
and timer error, for example). Fault injection drivers 
added to the operating system inject the faults, so no 
additional hardware or modification of application 
code is needed. A synthetic workload generator 
creates a workload containing specified amounts of 
CPU, memory, and I/O activity, and faults are 
injected with a strategy that considers the 
characteristics of the workload at the time of 
injection (which components are experiencing the 
greatest amount of workload activity, for example).   

• FIAT (Fault Injection-based Automated Testing): 
Environment developed at Carnegie Mellon 
University [26]. FIAT is an automated real-time 
distributed accelerated fault injection environment. 
The FIAT environment provides experimenters with 
facilities for defining fault classes (relationships 
between faults and the error patterns that they 
cause); for specifying (e.g., relative to the source 
code of an application) where, when, and for how 
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long errors will strike; and how they will interact 
with executing object code or data. In its initial 
version, FIAT software can fault inject user 
application code and data and can inject faults into 
messages (corrupted, lost delayed), tasks (delayed, 
abnormal termination), and timers. Later versions 
will extend these fault injection capabilities into 
operating systems. 

• XCEPTION: Developed at University of Coimbra, 
Portugal [6] uses the advanced bugging and 
performance monitoring features present in many of 
today’s modern processors to inject fault. It also 
uses the processors own exceptions to trigger the 
faults. It requires no modification in application 
software and no insertion of software traps. The 
fault injector is implemented as an exception 
handler and requires modification of the interrupt 
handler vector. The Xception faults are trigger by 
access to specific addresses. This makes the 
experiments reproducible. Xception uses a fault 
mask when injecting a fault into a location in the 
system. The mask is compared with the 
memory/register/data and then the bits that are set to 
one in the mask are changed in the system by using 
bit-level-operations such as: Stuck-at-zero, stuck-at-
one, bit-flip and bridging. 

• DOCTOR: Integrated software fault injection 
environment developed at University of Michigan 
[16] allows injections into the CPU, memory and 
also network-communication faults. DOCTOR uses 
a more sophisticated method than the basic 
technique of modifying memory contents. Memory 
modification is a powerful fault injection method 
because almost every fault results, sooner or later, in 
some kind of contamination in the memory. Though 
it is a powerful method some faults may infect the 
memory in a very subtle and non-deterministic way, 
hence it can be very difficult to emulate such faults 
with basic memory modification. DOCTOR can use 
three different triggering mechanisms: Time-out 
triggered memory faults, when triggered the fault 
injector overwrites memory contents to emulate 
memory faults. Traps are used to create non-
permanent CPU faults. For permanent CPU faults 
program instructions are changed during 
compilation to emulate instruction and data 
corruptions. 

• EXFI: A fault injection system for embedded 
microprocessor-based boards developed at 
Politecnico di Torino, Italy [5]. The kernel of the 
EXFI system is based on the trace exception mode 
available in most microprocessors. During the fault 
injection experiment, the trace exception handler 
routine is in charge of computing the fault injection 
time, executing the injection of the fault, and 
triggering a possible time-out condition. The tool is 
able to inject single bit-flip transient faults both in 
the memory image of the process (data and code) 

and in the user registers of the processor. The 
approach can be easily extended to support different 
fault models, such as permanent stuck-at, couple, 
temporal and spatial multiple bit-flip, etc. The main 
characteristics of EXFI are the low cost (it does not 
require any hardware device), the high speed (which 
allows a higher number of faults to be considered), 
the low requirements in terms of features provided 
by the operating systems, the flexibility (it supports 
different fault types), and the high portability (it can 
be easily migrated to address different target 
systems). 

• NFTAPE: Developed at the Center of Reliable and 
High Performance Computing at the University of 
Illinois at Urbana-Champaign [29]. The objective of 
NFTAPE is to support several different types of 
fault injection, providing the capability of targeting 
several heterogeneous systems concurrently. This is 
accomplished through use of a common control 
mechanism and common triggers. NFTAPE 
supports an arbitrary fault model. It can support a 
hardware fault injector to inject network faults, a 
SWIFI fault injector to inject communication faults, 
and a second SWIFI injector to target a distributed 
application. The first two injectors share an event-
based trigger to coordinate communication faults, 
and the other uses a path-based trigger. Other fault 
injectors typically use one method of fault injection 
(say SWIFI or HWIFI), not to mention using 
multiple injectors at the same time or sharing 
triggers. In addition, NFTAPE contains a new driver 
based fault injection scheme, which unlike other 
SWIFI fault injectors, can inject faults into both 
kernel and user space with minimum required 
modifications for different operating systems. 

• GOOFI (Generic Object-Oriented Fault Injection): 
Developed at the Department of Computer 
Engineering at Chalmers University of Technology 
in Sweden [1]. GOOFI can perform fault injection 
campaigns using different fault injection techniques 
on different target systems. A major objective of the 
tool is to provide a user-friendly fault injection 
environment with a graphical user interface and an 
underlying generic architecture that assists the user 
when adapting the tool for new target systems and 
new fault injection techniques. The GOOFI tool is 
highly portable between different host platforms 
since the tool was implemented us ing the Java 
programming language and all data is saved in a 
SQL compatible database. Furthermore, an object-
oriented approach was chosen which increases the 
extensibility and maintainability of the tool. The 
current version of GOOFI supports pre-runtime 
Software Implemented Fault Injection (SWIFI) and 
Scan-Chain Implemented Fault Injection (SCIFI). 
The SCIFI technique injects faults via the built-in 
test-logic, i.e. boundary scan-chains and internal 
scan-chains, present in many modern VLSI circuits. 
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This enables faults to be injected into the pins and 
many of the internal state elements of an integrated 
circuit as well as observation of the internal state. In 
pre-runtime SWIFI, faults are injected into the 
program and data areas of the target system before it 
starts to execute. GOOFI is capable of injecting 
single or multiple transient bit-flip faults. 

 
5. Simulation-Based Fault Injection 

Simulation-based fault injection [18] involves the 
construction of a simulation model of the system under 
analysis, including a detailed simulation model of the 
processor in use. It means that the errors or failures of 
the simulated system occur according to predetermined 
distribution. The simulation models are developed 
using a hardware description language such as the 
Very high speed integrated circuit Hardware 
Description Language (VHDL). Faults are injected into 
VHDL models of the design and excited by a set of 
input patterns. It is important to note that VHDL 
constitutes a privileged language to comply with the 
goals of fault injection for the following reasons: 

• Its widespread use in detailed design. 
• Its inherent hierarchical abstraction description 

capabilities. 
• Its ability to describe both the structure and 

behavior of a system in a unique syntactical 
framework. 

• Its recognition as a viable framework for developing 
high-level models of digital systems. 

• Its recognition as a viable framework for driving 
test activities. 

An elementary fault injection experiment corresponds 
to one simulation run of the target system during which 
any number of faults can be injected on single or 
multiple locations of the model and at one or several 
points in time during the simulation. A series of 
experiments consists of a sequence of elementary fault 
injection experiments. 

Several techniques have been proposed in the past 
to efficiently implement simulation-based fault-
injection. Two main categories can be identified, those 
that require modification of VHDL code and those that 
use the built-in commands of the simulator. A first 
approach, based on VHDL code modification, 
modifying the system description by the addition of 
dedicated fault injection components called saboteurs 
or the mutation of existing component descriptions in 
the VHDL model which generates modified 
component descriptions called mutants. So that faults 
can be injected where and when desired, and their 
effects observed, both inside and on the outputs of the 
system. 

A saboteur is a component added the VHDL model 
for the sole purpose of fault injection. It is inactive 
during normal system operation, while altering the 

value or timing characteristics of one or more signals 
when active, i.e when a fault is being injected. 
Saboteurs are inserted, in series or in parallel, either 
interactively at the schematic editor level or 
manually/automatically directly into the VHDL source 
code. Serial insertion, in its simplest form, consists of 
braking up the signal path between a driver (output) 
and its corresponding receiver (input) and placing a 
saboteur in between. In its more complex form, it is 
possible to break up the signal paths between a set of 
drivers and its corresponding set of receivers and insert 
a saboteur. For parallel insertion, a saboteur is simply 
added as an additional driver for a resolved signal 
(signal that have many drivers-signal sources – 
provided that a resolution function is supplied to 
resolve the values generated by the multiple sources 
into a single value). Saboteurs can be used to model 
most faults and to simulate environmental conditions 
such as noise or ESD. However, because they have no 
input pattern discrimination, saboteurs cannot model 
faults below the gate level of abstraction.  

A mutant is a model which contains dormant code 
blocks within the normal gate description. These 
blocks of code are activated by injecting faults, altering 
the operation of the logic device itself. Because the 
fault response is generated internally within the model, 
any level of abstraction for fault injection is possible. 
However, the use of mutants requires that the original 
gate models be replaced by the new mutant models. 
This method main advantage is its complete 
independence on the adopted simulator, but it normally 
provides very low performance, due to the high cost 
for modification and possibly recompilation for every 
fault.  

A second approach uses modified simulation tools 
(built-in commands of the VHDL simulators), which 
support the injection and observation features. This 
approach normally provides the best performance 
(does not require the modification of the VHDL code), 
but it can only be followed when the code of the 
simulation tools is available and easily modifiable, 
e.g., when fault injection is performed on zero-delay 
gate-level models. Its adoption when higher-level 
descriptions (e.g., RT-level VHDL descriptions) are 
used is much more complex.  The applicability of these 
techniques depends strongly on the existing 
(commercial) simulators and on the functionality of 
their commands. Two techniques based on the use of 
simulator commands have been identified: VHDL 
signal manipulation (faults are injected by altering the 
value of the signals that are used to link the 
components that made up the VHDL model, this is 
done by disconnecting a signal from its driver(s) and 
forcing it to a new value) and VHDL variable 
manipulation (faults are injected into behavioral 
models by altering values of variables defined in 
VHDL processes). 
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A third approach relies on the simulation command 
language and interface provided by some specific 
simulator. The main advantage of this approach lies in 
the relatively low cost for its implementation, while the 
obtained performance is normally intermediate 
between those of the first and second approaches. It 
must be noted that it is now increasingly common for 
the new releases of most commercial simulation 
environments to support some procedural interface, 
thus allowing an efficient and portable interaction with 
the simulation engine and with its data structures. 
Several approaches have been presented for speeding 
up the simulation process. Fault injection techniques 
are compared in terms of fault modeling capacity, 
effort required for setting up an experiment and 
simulation time overhead.  

Mutants offer the highest fault modeling capacity of 
the fault injection techniques presented, Saboteurs are 
generally less powerful, signal manipulation is suited 
for implementing simple fault models and variable 
manipulation offers a simple way for injecting 
behavioral faults. 

The effort for setting up an experiment is small 
using signal and variable manipulation, as modification 
of the VHDL model is not required. More effort is 
needed for mutants and saboteurs (creation/generation, 
inclusion in the model, recompilation of the VHDL 
model). 

The simulation time overhead imposed by signal 
and variable manipulation is only due to fault injection 
control, as the simulation must be stopped and started 
again for each fault injected. It is important to note that 
the simulation time overhead imposed by saboteurs 
and mutants depends on: Amount of additional 
generated events, amount of code to execute per event 
and the complexity of the fault injection control. 

When considering a series of fault injection 
experiments, two ways can be distinguished: One way 
is to generate a new configuration for each fault 
location (this requires recompilation of the VHDL 
model for each fault location and may also require 
manual intervention to start up a simulation using the 
new model), another way is to generate only one 
configuration in which all required fault are included 
and then activate these one at a time (this may increase 
the simulation time). Thus, there is a trade-off between 
the overhead in simulation time and the overhead in 
compilation time. 

 
Suppositions: 

Model is an accurate representation of the actual 
system under analysis. 
 
Benefits: 

• Simulated fault injection can support all system 
abstraction levels-electrical, logical, functional, and 

architectural. It provides the maximum flexibility in 
terms of supported fault models. 

• Not intrusive. 
• Full control of both fault models and injection 

mechanisms. 
• Low cost computer automation; does not require 

any special-purpose hardware. 
• It provides timely feedback to system design 

engineers. 
• Fault injection experiments are performed using the 

same software that will run in the field. Simulated 
fault injection can normally be rather easily 
integrated into already existing design flows. 

• Maximum amount of observability and 
controllability. Essentially, given sufficient detail in 
the model, any signal value can be corrupted in any 
desired way, with the results of the corruption easily 
observable regardless of the location of the 
corrupted signal within the model. This flexibility 
allows any potential failure mode to be accurately 
modeled. 

• Allows performing reliability assessment at 
different stages in the design process, well before 
than a prototype is available. 

• Able to model both transient and permanent faults. 
• Allows modeling of timing-related faults since the   

 amount of simulation time required to inject the  
 fault is effectively zero. 

 
Drawbacks: 

• Large development efforts. 
• Time consuming (experiment length): Being based 

on the simulation of the system in its fault-free 
version as well as in the presence of the enormous 
number of the possible faults. 

• Models are not readily available; rely on model 
accuracy 

• Accuracy of the results depends on the goodness of 
the model used. 

• No real time faults injection possible in a prototype. 
• Model may not include any of the design faults that 

may be present in the real hardware. 
 
Tools: 

• VERIFY (VHDL-based Evaluation of Reliability by 
Injection Faults Efficiently): Developed at 
University of Erlangen-Nurnberg, Germany [27]. 
VERIFY uses an extension of VHDL for describing 
faults correlated to a component, enabling hardware 
manufacturers, which provide the design libraries, 
to express their knowledge of the fault behavior of 
their components. Multi-threaded fault injection 
which utilizes checkpoints and comparison with a 
golden run is used for faster simulation of faulty 
runs. The proposed extension to the VHDL 
language is very interesting but unfortunately 
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requires modification of the VHDL language itself. 
VERIFY uses an integrated fault model, the 
dependability evaluation is very close to that of the 
actual hardware. 

• MEFISTO-C: A VHDL-based fault injection tool 
developed at Chalmers University of Technology, 
Sweden [12] that conduct fault injection 
experiments using VHDL simulation models. The 
tool is an improved version of the MEFISTO tool 
which was developed jointly by LAAS-CNRS and 
Chalmers. (A similar tool called MEFISTO-L has 
been developed at LAAS-CNRS). MEFISTO-C 
uses the vantage optimum VHDL simulator and 
injects faults via simulator commands in variables 
and signals defined in the VHDL model. It offers 
the user a variety of predefined fault models as well 
as other features to set-up and automatically conduct 
fault injection campaigns on a network of UNIX 
workstations. 

• HEARTLESS: A hierarchical register-transfer-level 
fault-simulator for permanent and transient faults a 
simulator that was developed, by CE Group-BTU 
Cottbus in Germany, to simulate the fault behavior 
of complex sequential designs like processor cores 
[25]. Furthermore it serves for the validation of on-
line test units for embedded processors. The input 
for HEARTLESS can support structural VHDL and 
ISCAS as input formats. It can support permanent 
stuck-at faults, transient bit flip and delay faults. 
HEARTLESS was developed in ANSI C++. The 
whole design or parts (macros) can be selected for 
fault simulation based on fault list generation. Fault-
lits are collapsed according to special rules derived 
from logic level structure and signal traces. 
HEARTLESS can be enhanced by propagation over 
macros described in a C-function. 

• GSTF: A VHDL-based fault injection tool 
developed by Fault Tolerance Systems Group at the 
Polytechnic University of Valencia, Spain [4]. This 
tool is presented as an automatic and model-
independent fault injection tool to use on an IBM-
PC or compatible system to inject faults into VHDL 
models (at gate, register and chip level). The tool 
has been build around a commercial VHDL 
simulator (V-System by Model Technology) and 
can implement the main injection techniques: 
Simulator commands, saboteurs and mutants. Both 
transient and permanent faults, of a wide range of 
types, can be injected into medium-complexity 
models. The tool can inject a wide range of fault 
models, surpassing the classical models of stuck-at 
and bit-flip and it is able to analyze the results 
obtained from the injection campaigns, in order to 
study the error syndrome of the system model 
and/or validate its fault-tolerance mechanisms. 

• FTI (Fault Tolerance Injection): Developed at 
universidad Carlos III de Madrid in Spain, for fault-
tolerant digital integrated circuits in the RT 

abstraction level [11]. The main objective of FTI is 
to generate a fault tolerant VHDL design 
description. Designer will provide an original 
VHDL design description and some guidelines 
about the type of fault-tolerant techniques to be used 
and their location in the design. FTI tool will 
process original VHDL descriptions by automatic 
insertion of hardware and information redundancy. 
Therefore, a unified format to deal with descriptions 
is needed. There are several intermediate formats 
that represent, by means of a database, the VHDL 
description in a formal way that could be accessed 
and processed with some procedural interface. 
Fault-tolerant components to be included into 
VHDL original descriptions will be already 
described and stored in a special library called FT 
library. These components come from previous 
researches about FT and designer just use them. FTI 
use an intermediate format for VHDL descriptions 
(FTL/TAURI) and it will work only with 
synthesizable descriptions IEEE 1076. 

• [24, 28] Present a new techniques and a platform, 
developed at Politecnico di Torino – Italy, for 
accelerating and speeding-up simulation-based fault 
injection in VHDL descriptions and show how 
simulation time can be significantly shortened. The 
techniques developed analyze the faults to be 
injected in order to identify the final fault effects as 
early as possible and exploit the features provided 
by modern commercial VHDL simulators to speed-
up injection operations. The ideas proposed in [23] 
was extended by making them more general and 
applying them dynamically during fault inject 
campaigns. The purpose of this approach is to 
minimize the time required for performing Fault 
Injection campaigns. This problem is addressed by 
performing fault analysis (before and during the 
Fault Injection campaign) and resorting to simulator 
commands that can be used to minimize the 
simulation time required to drive the system to the 
injection time. A prototypical version of the fault-
injection platform has been devised in ANSI C, and 
consists of about 3,000 lines. Circuit analysis 
exploits FTL systems Tauri (a new version of the 
fault injector will be closely fastened to Auriga), 
fault-list generation takes advantage of Synopsis 
VHDL simulator, while the fault injector is 
currently based on Modelsim software. 

• [10] Presents a fault injection technique, developed 
at Virginia University, USA, that allows faults to be 
injected at the ISA (Instruction Set Architecture) 
level where actual machine code is executed on a 
behavioral model of a processor written in VHDL. 
The idea of this technique is based on the use of a 
Bus Resolution Function (BRF) and the ability to 
communicate to the BRF when a fault is to be 
injected. This allow the BRF to corrupt the new 
value being assigned to a signal. A BRF is a 
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function associated with a signal type that will 
resolve the value of a signal declared to be of said 
signal type when the signal is being updated by two 
different sources at the same real time. This 
technique can be used with existing models with 
minimal changes to the existing code and it uses 
standard VHDL types to perform the fault injection 
(it is simulator-independent method). The 
simulation time is reduced because the level of 
modeled detail is reduced. However, this method is 
limited to processor fault-injection modeled in the 
ISA level. 

 
6. Emulation-Based Fault Injection 

To cope with the time limitations imposed by 
simulation and take into account the effects due to the 
circuit environment in the application, in system 
emulation using hardware prototyping on FPGA-based 
logic emulation systems has been proposed [9, 20]. 
The circuit to analyze is implemented onto the FPGA 
using a classical synthesis, placement and routing 
design flow starting from the high-level circuit 
description. The development board is connected to a 
host computer, used to define the fault injection 
campaign, control the injection experiments and 
display the results. 

In some limited cases, the approaches developed for 
fault grading using emulators (for example [7]) may be 
used to inject faults. However, such approaches are 
classically limited to stuck-at fault injection. In most 
cases, modifications must therefore be introduced in 
the circuit description taking into account that the 
description must remain synthesizable and satisfying a 
set of constraints related to the emulator hardware. The 
modifications are therefore not easy and furthermore it 
is often necessary to generate several modified 
descriptions, each of them allowing the injection of a 
given subset of faults. In such a case, the hardware 
emulator has in general to be completely reconfigured 
several times, that is quite time-consuming and reduces 
the gain in execution time compared with simulation. It 
also implies additional synthesis, place and route 
phases since the whole design flow has to be executed 
for each modified description. 

FPGAs have already been used to accelerate fault-
injection in a number of cases. In general, these 
approaches aim at using the high running speed of a 
hardware prototype to reduce the fault injection 
experiment time with respect to simulations. New 
methodologies were also introduced combining 
hardware-based and software-based techniques in 
order to exploit the speed of hardware-based 
techniques and at the same time take profit of the 
flexibility of software-based techniques. In general, 
additional control inputs and specific elements are 
introduced by modifying either the initial high-level 
circuit description or the gate-level description so that 

the targeted faults can be injected into the prototype. 
This is sometimes called “instrumenting” the circuit 
description. As previously mentioned, the emulator 
characteristics can preclude generating a single 
instrumented description allowing injecting all the 
targeted faults. This may be due to the limited number 
of available I/Os, or to the amount of hardware 
overhead induced by the logic elements added in the 
circuit for fault injection. In that case, each version of 
the instrumented description targets a given subset of 
faults and has to be separately synthesized, placed, 
routed and downloaded onto the emulator at different 
phases of the injection campaign. 

To avoid any instrumentation of the circuit 
description, another approach, called run-time 
reconfiguration emulation-based fault injection has 
proposed in [21]. Instead of injecting the faults by 
means of specific external signals controlling 
additional logic, these approaches rely on built-in 
reconfiguration capabilities of the FPGA devices. This 
means that some run-time reconfiguration has to be 
done for each fault to inject; however, this avoids the 
extra time spent in preparing the instrumented 
versions. The bit stream modification necessary to 
perform the reconfigurations is a very quick process 
compared for example with synthesis. Also, the 
reconfiguration time globally spent when running a 
fault injection campaign on the hardware emulator 
(FPGA) can be reduced by means of a partial 
reconfiguration of the emulator when such capabilities 
are available. 

The initial VHDL description is therefore 
synthesized, placed & routed and a bit file is generated, 
corresponding to the targeted circuit without any 
additional elements. The generated file is downloaded 
onto the FPGA and the injection campaign begins by 
an execution of the studied workload (or test bench) on 
the implemented prototype. The result of this execution 
is later used as reference for analyzing the effects of 
faults. Then, the same workload is run again as many 
times as there are faults (or fault configurations) to 
inject. Run-Time Reconfiguration (RTR) had been 
proposed as a technique to inject the faults. This 
methodology propose to inject the faults at “low-
level”, directly in the reconfigurable hardware, by 
modification of the design previously implemented in 
the FPGA. So any fault injection can be realized 
without changing the initial description and without 
additional hardware. The first advantage is to avoid 
any hardware overhead for fault injection, that may 
allow the designer to perform the emulation on a 
smaller FPGA. Also, carrying out the modifications 
directly in the reconfigurable device can only take a 
fraction of a second if partial reconfiguration can be 
achieved. So noticeable time gains can be expected 
with respect to “classical” fault injection techniques, 
although a reconfiguration is required for each fault 
configuration to inject. Then an extra time is needed in 
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each fault injection experiment, as a partial read back 
and a partial reconfiguration is needed to inject a fault. 
This extra time could be however relatively low 
compared with a classical simulation cycle time. 

Noticeable gains could be expected compared with 
simulation-based injection experiments, provided that 
the configuration of the FPGA is quick enough. This 
implies to optimize several implementation 
characteristics: 

• Intrinsic reconfiguration time of the reconfigurable 
device (related to its architecture and to the place 
and route algorithms used); a good solution would 
be to use a device not only with partial 
reconfigurability but also with some kind of random 
access to the configuration data 

•  High configuration bandwidth on the development 
board (high frequency configuration clock and/or 
configuration data sent in parallel mode onto the 
FPGA) 

•  High bandwidth interface between the development 
board and the host computer. 

In conclusion, let us summarize the advantages and 
disadvantages of this technique. 
 
Benefits: 

• Injection time is more quickly compared with 
simulation-based techniques possibility of in-system 
emulation, allowing the designer to evaluate much 
more precisely the behavior which can be expected 
in the final circuit environment. 

• Would especially be interesting in the context of a 
system-on-chip development since it may lead to 
efficient but low cost dependability analysis of re-
usable components (most often called IP blocks), 
before they are used in a given circuit. 

• The experimentation time can be reduced by 
implementing partially or totally the input pattern 
generation in the FPGA. These patterns are already 
known when the circuit to analyze is synthesized. 

 
Drawbacks: 

• The initial VHDL description must be synthesizable 
and optimized to avoid requiring a too large and 
costly emulator and to reduce the total running time 
during the injection campaign. 

• The cost of a general hardware emulation system 
and/or the implementation complexity of a 
dedicated FPGA based emulation board. A low cost 
can be reached but at the expense of a reduced 
speed of the injection fault campaign. 

• The emulation is only used to analyze the functional 
consequences of a fault, the temporal impacts of the 
faults are not considered. They are looking only at 
steady states of the signals at some particular 
moments (in general just before the rising and/or 
falling edge of the clock). 

• Since the algorithmic description are not yet widely 
accepted by synthesis tools in classical industrial 
design flows, the approach using the emulation can 
often only be applied starting from RT-level 
descriptions. 

• I/Os problems: When using a FPGA-based 
development board, the main limitation becomes the 
number of I/Os of the programmable hardware, 
which can be connected between the FPGA and the 
host computer, that can restricts the number of fault 
injection signals and the number of monitored 
signals. 

• Necessity of high speed communication link 
between the host computer and the emulation board: 
This is the actual critical part of the emulation set-
up. 

 
7. Hybrid Fault Injection 
A hybrid approach combines two or more of the other 
fault injection techniques to more fully exercise the 
system under analysis. For instance, performing 
hardware-based or software-based fault injection 
experiments can provide significant benefit in terms of 
time to perform the fault injection experiments, can 
reduce the initial amount of setup time before 
beginning the experiments, and so forth. The hybrid 
approach combines the versatility of software fault 
injection and the accuracy of hardware monitoring. 
The hybrid approach is well suited for measuring 
extremely short latencies. However, given the 
significant gain in controllability and observability 
with a simulation-based approach, it might be useful to 
combine a simulation-based approach with one of the 
others in order to more fully exercise the system under 
analysis. For instance, most researchers and 
practitioners might choose to model a portion of the 
system under analysis, such as the Arithmetic and 
Logic Unit (ALU) within the microprocessor, at a very 
detailed level, and perform simulation-based fault 
injection experiments due to the fact that the internal 
nodes of an ALU are not accessible using a hardware-
based or software-based approach. 
 
Tools: 

• LIVE: Experimental evaluation of computer-based 
railway control systems, developed at Ansaldo-Cris, 
Italy integrates fault injection and software testing 
techniques to achieve an accurate and non-intrusive 
analysis of a system prototype [2]. It uses pin-level 
forcing or generates interrupts to activate software 
fault injection procedures. A method combining 
software-based and simulation-based fault injection 
developed at Chalmers University of Technology, 
Sweden [15]. This hybrid fault injection technique, 
also known as mixed-mode fault injection, allows 
the advantages of both SWIFI (Software 
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Implemented Fault Injection tool) and simulation 
based fault injection to be utilized, i.e. the actual 
target system may be executed at full speed except 
during the injection of a fault when a simulator 
providing detailed access to the target system is 
used instead. The technique is combined with 
operational-profile-based fault injection which only 
injects faults in those parts (e.g. registers) which 
contain live data, i.e. which will not be overwritten. 

 
8. Conclusions 
The last years marked growing demand for new 
techniques to be applied in the design of fault tolerant 
electronic systems, and for new tools for supporting 
the designers of these systems. The increased interest 
for the domain of fault tolerant electronic systems 
design stems primarily from the extension in their use 
to many new areas. At the same time, the cost and 
time-to-market minimization constraints obviously 
affect the design of fault tolerant systems, and new 
techniques and new tools are continuously needed to 
face these constraints.  

 Fault injection is an important technique for the 
evaluation of design metrics such as reliability, safety 
and fault coverage. Fault injection involves inserting 
faults into a system and monitoring the system to 
determine its behavior in response to the fault.  
 In this paper we have described several techniques 
that have been made to develop techniques for 
injecting fault into a system prototype or model. These 
techniques fall into five categories: Hardware-based 
fault injection, software-based fault injection, 
simulation-based fault injection, emulation-based fault 
injection and hybrid fault injection. In table 1, we 
summarize the main advantages and disadvantages of 
these techniques. 

Most recent research in this area is converging 
towards hybrid fault injection combining the benefits 
of both hardware and software fault injection 
techniques, while avoiding most of their disadvantages. 
This is becoming feasible due to the latest 
advancements in the FPGA technology. Modern FGPA 
devices can be fruitfully exploited to emulate systems 
composed of hundreds of thousands of gates at a 
reasonable cost.  

 
Techniques Advantages Disadvantages 

Hardware-
Based 

 

• Can access locations that is hard to be accessed by other   
means.  

• High time-resolution for hardware triggering and 
monitoring.  

• Well suited for the low-level fault models.  
• Not intrusive. 
• Experiments are fast. 
• No model development or validation required.  
• Able to model permanent faults at the pin level. 

• Can introduce high risk of damage for the injected system. 
• High level of device integration, multiple-chip hybrid circuit, and   

dense packaging technologies limit accessibility to injection. 
• Low portability and observability. 
• Limited set of injection points and limited set of injectable faults.  
• Requires special-purpose hardware in order to perform the fault  

injection experiments.  

Software-
Based 

• Can be targeted to applications and operating systems.  
• Experiments can be run in near real-time. 
• Does not require any special-purpose hardware; low   

complexity, low development and low implementation   
cost. 

• No model development or validation required.  
• Can be expanded for new classes of faults.  
 

• Limited set of injection instants. 
• It cannot inject faults into locations that are inaccessible to software. 
• Does require a modification of the source code to support the fault    

injection. 
• Limited observability and controllability. 
• Very difficult to model permanent faults.  

Simulation-
Based 

• Can support all system abstraction levels.  
• Not intrusive. 
• Full control of both fault models and injection 

mechanisms.  
• Low cost computer automation; does not require any  

special-purpose hardware. 
• Maximum amount of observability and controllability.  
• Allows performing reliability assessment at different  

stages in the design process.  
• Able to model both transient and permanent faults.  
 

• Large development efforts. 
• Time consuming (experiment length). 
• Model is not readily available. 
• Accuracy of the results depends on the goodness of the model used. 
• No real time faults injection possible in a prototype. 
• Model may not include any of the design faults that may be present     

in the real hardware. 

Emulation-
Based 

• Injection time is more quickly compared with simulation-
based techniques.  

• The experimentation time can be reduced by  
implementing partially or totally the input pattern   
generation in the FPGA. These patterns are already   
known when the circuit to analyze is synthesized.  

 

• The initial VHDL description must  be synthesizable and optimized       
to avoid requiring a too large and costly emulator and to reduce the       
total running time during the injection campaign. 

• The cost of a general hardware emulation system and/or the   
implementation complexity of a dedicated FPGA based emulation   
board. 

• The emulation is only used to analyze the functional consequences    
of a fault. 

• When using a FPGA-based development board, the main limitation    
becomes the number of I/Os of the programmable hardware. 

Necessity of high speed communication link between the host computer 
and the emulation board.  

 

Table 1. Summary of main advantages and disadvantages of fault injection techniques. 
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