
156 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Arabic Text Recognition

Ramzi Haraty and Catherine Ghaddar
 Lebanese American University, Lebanon

Abstract: The issue of handwritten character recognition is still a big challenge to the scientific community. Several
approaches to address this challenge have been attempted in the last years, mostly focusing on the English pre-printed or
handwritten characters space. Thus, the need to attempt a research related to Arabic handwritten text recognition. Algorithms
based on neural networks have proved to give better results than conventional methods when applied to problems where the
decision rules of the classification problem are not clearly defined. Two neural networks were built to classify already
segmented characters of handwritten Arabic text. The two neural networks correctly recognized 73% of the characters.
However, one hurdle was encountered in the above scenario, which can be summarized as follows: there are a lot of
handwritten characters that can be segmented and classified into two or more different classes depending on whether they are
looked at separately, or in a word, or even in a sentence. In other words, character classification, especially handwritten
Arabic characters, depends largely on contextual information, not only on topographic features extracted from these
characters.

Keywords: Arabic text classification, artificial neural networks.

Received May 18, 2003; accepted July 24, 2003

1. Introduction
Artificial Neural Networks or ANNs have been
successfully applied to many areas of pattern
recognition, especially in the field of character
recognition. Some researchers have used conventional
methods for segmentation and recognition, while
others have used ANN-based methods for the character
recognition process [1, 2, 4].

The main challenge with handwritten text
recognition is the presence of lines, non-character
objects, and noise or ‘salt-and-pepper’ in the scanned
image. Characters can also be written in many different
sizes, writing instruments (varying thickness and
stroke quality), and slants (causing character shearing
along the horizontal axis).

There are also several major problems with Arabic
handwritten text processing: Arabic is written cursively
and many external objects are used such as dots,
‘Hamza’, ‘Madda’, and diacritic objects. In addition,
Arabic characters have more than one shape according
to their position in a word. Classifications of Arabic
texts largely depend on context basis since many
characters can be classified into different classes
depending on whether we look at them in a word or in
a sentence. This makes the problem of classification
even more challenging.

This paper describes a method to classify Arabic
handwritten texts. The method comprises three main
components. The first, a heuristic algorithm, which is
responsible for scanning already extracted-segmented
characters to extract features to be used in the second
component. A conventional algorithm was used for the

initial segmentation of the text into connected blocks
of characters [8]. The algorithm then generates pre-
segmentation points for these blocks. A neural network
is subsequently used to verify the accuracy of these
segmentation points [9]. Another conventional
algorithm uses the verified segmentation points and
segments the connected blocks of characters. The
second component is a combination of two ANNs,
which return a set of output classes to be fed into the
third component. The third component is responsible
for specifying the class representing input characters.

The remainder of this paper is as follows. Section 2
presents the difficulties and obstacles found when
processing handwritten text. Section 3 describes our
work. Section 4 presents the experimental results of
this approach. Section 5 discusses related work, and
finally a conclusion is drawn in section 6.

2. Character Classification Obstacles
There are several major problems with Arabic text
recognition. They can be classified into three main
categories: general difficulties, handwritten text
specific difficulties, and Arabic text specific
difficulties.

2.1. General Difficulties

The following difficulties are common among
character recognition methods in general:

• Presence of lines and other non-character objects.
• Presence of noise or salt-and-pepper in the scanned

image.

Arabic Text Recognition 157

• Linguistic problems, i.e., if a dictionary is used as a
spelling checker to improve the accuracy of the
recognition process, then proper names, acronyms,
or other words that are not likely to be in the
lexicon will decrease the recognition accuracy.

2.2. Handwritten Text Specific Difficulties
The following difficulties are specific to handwritten
text segmentation and recognition methods:

• Variety in character size; i.e., characters may be
written in many different sizes without changing
their meaning.

• Variety in writing instrument, i.e., characters may
vary in line thickness, color, and/or stroke quality. A
thick stroke causes the following problems:

1. Touching characters.
2. Holes in letters; e.g., ? or� � letters get filled

 up partially or completely
3. Thin stroke or low contrast may result in broken

 characters.
4. Gaps in the stroke may also cause a lot of

errors.

• Different writers or even the same writer under
different conditions may slant their letters
differently; i.e., their handwriting undergoes a
shear along the horizontal axis.

• Translation problems; i.e., characters are not
always written in the same position relative to the
enclosing borders of the scanned image.

• Presence of similar symbols, like (1) and (?.

2.3. Arabic Text Specific Difficulties

The following difficulties are specific to Arabic text
segmentation and recognition:

• Arabic characters can have more than one shape
according to their position in a word whether at the
beginning, middle, final, or stand alone, as shown in
Figure 1.

• Different writers or even the same writer under
different conditions will write some Arabic
characters in completely different ways, as shown in
Figure 2.

• Other characters have very similar contours and are
difficult to recognize especially when non-character
and external objects are present in the scanned
image. Figure 3 shows a list of such characters.

• Handwritten Arabic characters depend largely on
contextual information. There are a lot of
handwritten characters that can be classified into
two or more different classes depending on whether
you look at them separately, in a word, or even in a
sentence. For example, 5 in Arabic looks exactly
the same as (?) and (zero) in Arabic looks exactly
the same as a dot ‘.’.

Figure 1. The shapes that character ? takes according to its position
in a word

Figure 2. Three characters written in completely different ways.

Figure 3. Characters with similar contours.

3. Neuro-Conventional Classification

Method
There are a number of steps that need to be taken
before a handwritten text can be recognized by a
computer. These include sample data collection,
analysis, scanning, binarization, segmentation, and
classification. The main concern of this work is the
classification part since [8, 9] investigated the
binarization and segmentation issues.

3.1. The Data Set

Data sets of single characters in different shapes as
they appear in a word were collected from students
around the Lebanese American University as shown in
Figure 4. These resulted in a 10027 different character
samples used for training, and a 2132 different
character samples used for testing. After preparing the
scanned files, a manual classification process was
followed to establish the desired output class of each
character.

 middle end beginning stand alone

158 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Figure 4. A sample of handwritten characters.

3.2. Binarization, Skeletonization, and

Character Block Extraction
In [8], the authors describe a hybrid method to segment
Arabic handwritten texts made of two components.
The first is a heuristic algorithm, which is responsible
for scanning a handwritten text, extracting blocks of
connected characters, and then extracting features to be
used in the second component. It is also responsible for
generating pre-segmentation points, which are
validated by the second component, the ANN. The
ANN verifies whether all the segmentation points
found are correct or incorrect.
 Binarization, skelotonization, and character block
extraction were adopted using [8]’s application, which
converted the images into binary representations. A
matrix of ones (1’s) for black pixels and zeros (0’s) for
white pixels, then block character (BC) extraction,
which is the extraction of more than one character
written connected to another, forming a block of
characters, was applied with a 94% accuracy. After
that skeletonization, or thinning an image processing
step that reduces BCs to their skeletons (i.e.,
transforming characters into arc segments one pixel
thick, preserving connected components and the
number of cavities and holes), was applied. The
skeletonization process is required in order to extract
certain features like corner points, end points, and fork
points.

3.3. Feature Extraction
Feature extraction is the process of getting useful
information from binarized files to be used for
classification purposes. We were careful to extract
features which are invariant and which capture the
characteristics of a handwritten text by filtering out all
the attributes that make the same character assume
different appearances. Most, if not all, features used
for the classification process were of the topographic
type (i.e., point and area features). Each feature was
represented by a number of attributes. These attributes
quantify the nature of the feature. For example,

specifying its position or size. An attribute may be
represented as a continuous value, a discrete value, or
a binary value.
 Some systems attempt to learn feature extraction
methods, starting only with a raw image, while others
rely on sophisticated hand-coded feature extraction
methods. Two important examples of learning feature
extraction methods applied to handwritten character
segmentation and recognition are the Karhunen-Loeve
transformation [6], and the topographic feature maps
obtained through weight sharing in the system
described in [5, 8].
 However, for Multi-Level Perceptron (MLP)-based
systems [3], where each layer of the neural network
feeds forward to all subsequent layers, hand-coded
heuristic methods for extracting features such as
endpoints, holes and corner points are a common and
proven choice.
 The main area features extracted were number of
holes, number of corner points, and number of fork
points from a binarized skeletonized image. The
algorithm used for the extraction of these features is an
adaptation of [8]’s work and changed as needed. A hole
is an island of white pixels surrounded by black ones.
An example of a hole is shown in Figure 5.

Figure 5. An example of a hole in a normal image (right) and a
skeletonized image (left).

 A corner point, on the other hand, is a black or
white skeleton point that has at least two connected
branches at right angles to each other, as shown in
Figure 6.

Figure 6. Four examples of corner points.

 A fork point is a black skeleton point that has at
least three connected branches as shown in Figure 7. In
order to classify an image into its corresponding
character, the features listed in Table 1 were extracted
for each image.

Arabic Text Recognition 159

Table 1. Classification features.

Feature Attributes Description
Width Image width
Height Image height
Image size Width * height
Width-height ratio Image width divided by height

Number of black points Number of one’s in image
Number of black points divided by
the height Number of black points divided by the height

Number of black points divided by
the width

Number of black points divided by the width

Black pixel density divided by
(height * width)

Number of black pixels in the image divided by the total pixels in image

Average column density divided
by the height Average column black pixel density divided by the image height

Black pixels

Average row density divided by
the width Average row black pixel density divided by the width

Number of holes Count the number of holes (or islands of white pixels completely
surrounded by black pixels) in image

Holes density Number of black points of all holes divided by (width * height)
Hole densities divided by the
image density

Total number of hole pixels in image divided by the black point density Holes

Position of upper most, right most
hole divided by the height Y-coordinate of upper right most hole divided by divided by the height

End points Number of endpoints in image Number of endpoints in image
Corner points Number of corners in image Number of corner points in image
Fork points Number of fork points in image Number of fork points in image

Index of highest pixel in upper
contour divided by the height Index of highest black pixel in upper contour divided by the height

Index of lowest pixel in lower
contour divided by the height Index of lower pixel in black lower contour divided by the height

Index of highest pixel in upper
contour divided by the image
density

Index of highest black pixel in upper contour divided by black point image
density

Upper and lower contours

Index of lowest pixel in lower
contour divided by the image
density

Index of lowest black pixel in lower contour divided by the black point
image density

Number of disconnected BCs Number of disconnected BC objects in image.
Density of 1st disconnected BC Number of black pixels in the BC divided by width*height.
Density of 2nd disconnected BC Number of black pixels in the BC divided by (width * height)
Number of black pixels in BC1
divided by the image density Number of black pixels in BC1 divided by the black point image density

Disconnected BCs

Number of black pixels in BC2
divided by the image density

Number of black pixels in BC2 divided by the black point image density

Figure 7. Three examples where P1 is a fork point.

3.4. Classification ANNs

The objective of the classification ANNs is to give an
accurate output from the input features. To train the
ANNs with both accurate and erroneous characters, the
output from the binarization, skeletonization, and
manual segmentation was used. It was necessary to
manually specify the desired outputs for each character
and save them to a file together with the extracted set of
features.
 In mathematical terms, the classification ANN is a
set of functions which map inputs xi to outputs yi;
where the outputs specify which of the classes the input
pattern belongs to. There are 52 classes presented in
Table 2.

Table 2. Classes of arabic images.

Classes No. of Elements
Characters 28
Arabic Digits 10
Latin Digits 10
Ligatures (?) 1
Separators (“,”;”.”;”-“) 3
Total 52

3.4.1. ANN Architecture

Two generalized feed forward neural networks were
used to give the desired output for characters. Each
neural network is a generalization of the MLP such that
each layer feeds forward to all subsequent layers. In
theory, a MLP can solve any problem that a generalized
feed forward network can solve. In practice, however,
generalized feed forward networks often solve the
problem more efficiently [5, 6].
 There is no rule of thumb to determine good
network architecture just from the number of inputs
and outputs. It depends critically on the number of
training cases, the amount of noise, and the complexity
of the function or the classification of the network it is
supposed to learn. There are cases with one input and

160 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

one output that require thousands of hidden units, and
cases with a thousand inputs and a thousand outputs
that require only one hidden unit, or none at all. To
solve these issues many different networks with
different number of hidden units were tried at first,
starting with the smallest possible number of physical
elements (PEs). The generalization error for each one
was estimated, and the network with the minimum
estimated generalization error that learned best to
identify correct segmentation points was chosen.
 An important criterion in ANN design is the network
size. The number of PEs in a hidden layer is associated
with the mapping ability of the network. The larger the
number, the more powerful the network. However, if
one continues to increase the network size, there is a
point where the generalization gets worse. This is due
to the fact that we may be over-fitting the training set,
so when the network works with patterns that it has
never seen before the response is unpredictable.
 The best ANNs architecture reached consists of 26
inputs, 52 outputs, and 4 hidden layers. The 26 inputs
were feature attributes of a character and the outputs
were the 52 character classes. The architecture of the
ANNs is summarized in Table 3.

Table 3. Architecture of classification ANNs.

PEs Transfer

Function
Net #1
Input Layer 26 Linear
Layer 1 26 Tanh
Layer 2 31 Tanh
Layer 3 37 Tanh
Layer 4 44 Tanh
Output Layer 52 Tanh
Net #2
Input Layer 26 Linear
Layer 1 26 Tanh
Layer 2 30 Tanh
Layer 3 35 Tanh
Layer 4 41 Tanh
Output Layer 52 Tanh

 The design of the classification ANNs described
was implemented using NeuroSolutions, version 4.022
by NeuroDimensions, Inc. Each of the axons
represents a layer, or vector, of PEs. All axons are
equipped with a summing junction at their input and a
splitting node at their output. This allows axons to
accumulate input from, and provide output to, an
arbitrary number of components. The Tanh axon used
in these layers also applies a bias to each neuron in the
layer. This will squash the range of each neuron in the
layer to between -1 and 1.
 The skeletonized and binarized character images
were used to produce input files for the training, cross-
validation, and testing phases of the ANN. 12159
characters were evaluated manually and divided into
three parts as shown in Table 4.

Table 4. Manually evaluated input sets points.

Input Set Number of
Exemplars

Net #1
Training set 10027
Cross-validation set 5014

Testing set 2132

Net #2
Training set 10027

Cross-validation set 10027
Testing set 2132

 Each character is represented by a row in the input
files. Each row starts with the identifier of the image
and its desired values, then the feature attributes are
listed.

3.4.2 ANN Training and Testing

Training is the process by which the free parameters
of the network, that is the weights, get optimal values.
It is in fact a search in the so-called weight-space,or
performance surface. This is the space spanned by all
weights in the network. The goal of the search is
finding a point in this weight-space which minimizes
a certain error criterion [9].
 The method used to train the classification ANN
is the back-propagation method, a three step
process:

Step 1: The input data is propagated forward through
 the network to compute the system output.

Step 2: The error between the desired and actual
 output is computed.

Step 3: This error is then propagated backward
 through the network, modifying weights on
 each layer until the first layer is reached.

Back-propagation modifies each weight of the network
based on its localized portion of the input signal and its
localized portion of the error. The change has to be
proportional (a scaled version) of the product of these
two quantities. The mathematics may be complicated,
but the idea is very simple. When this algorithm is
used for weight change, the state of the system is
performing gradient descent; moving in the direction
opposite to the largest local slope on the performance
surface. In other words, the weights are being updated
in the downward direction.
 The advantage of using back-propagation is it is
simple and easy to implement. The disadvantages are
just as important: the search for the optimal weight
values can get caught in local minima, i.e. the
algorithm thinks it has arrived at the best possible set
of weights even though there are other solutions that
are better. Back-propagation is also slow to converge.
In making the process simple, the search direction is
noisy and sometimes the weights do not move in the
direction of the minimum. NeuroSolutions solves a lot
of these problems. It implements back-propagation of

Arabic Text Recognition 161

the error in a secondary “plane” that sits on top of the
axons and synapses. This is called the back-
propagation plane.
 Supervised learning requires a metric of how the
network is doing. This metric is determined by
calculating the sensitivity that a cost function has with
respect to the network’s output. This cost function, J,
is normally positive, but should decrease towards zero
as the network approaches the desired response. The
literature has presented several cost functions, but the
quadratic cost function, shown in equation (1), is by far
the most widely applied.

 () () ()()∑ −=
i

2
ii tytdf2

1tJ (1)

The L2Criterion component is a square error
criterion and implements the quadratic cost function.
The error reported is simply the squared Euclidean
distance between the network’s output and the desired
response as shown in equation (2), where d(t) and y(t)
are the desired response and network’s output,
respectively.

 () () ()()tytdte iii −−= (2)

 The L2Criterion passes the computed error to the
back criteria control. This control is designed to stack
on top of the L2Criterion, and communicate the
received error values from the L2Criterion with the
back-propagation components to perform back-
propagation.
 The delta threshold transmitter controls the
communication of the back criteria component based
on the amount of error change between iterations. The
back criteria is allowed to transmit the error value
when the change between successive iterations crosses
a specified threshold, chosen to be 0.0001. This
threshold value can also be specified to change (i.e.,
incremented, decremented, or scaled by a constant)
each time it is crossed.

4. Experimental Results

4.1. Classification Results
The classification process depends for its feature
extraction on the heuristic algorithm implemented by
[7] for extracting BCs, which achieved 94% accuracy.
So, we can say there has been a small percentage of
error that affected the ANN training file, which resulted
from some BCs that had external child objects located
at a far distance from the parent BC in which the
heuristic algorithm assigned them to BCs that they did
not belong to. Moreover, there is the case where
external objects were located at approximately the
same distance to more than one parent BC; thus, they
were duplicated and a copy was assigned to each of

those parent BCs. This resulted in an erroneous manual
classification; that is specifying a different desired
output, and as a result, the ANN classifier resulted in a
different class than the initial one.

Figure 8 shows examples of miss-located points.
These problems generally occur when people quickly
write Arabic words. In the first word, the two points
should be under the fourth BC only. However, the two
points clearly cover the third, fourth and fifth BCs. In
the second word, the point should be under the third
BC, but it clearly appears to be under the fourth.
Similarly, the two points should be located under the
fourth BC, but they appear under the fifth. In the third
word, a similar problem occurs: the point and two
points belong to the first and fifth BCs; however, they
appear under the second and last BCs.

Figure 8. Three words containing miss-located external objects.

 The output range of the ANN was between (–0.9)
and (+0.9). A positive value indicated that the character
may belong to the position class. A heuristic algorithm
took the 52 outputs resulting from the ANNs, and
compared these–thus selecting the highest value and
specifying the position class related to it. There were
some characters that were difficult to differentiate
between their output results since these are of the same
shape, and can not be differentiated except when they
are seen contextually, that is in a word or a sentence.
Table 5 shows these similar characters.

Table 5. Some similar objects.

Some Similar Objects

� & ?

? & ? & 0

? & ?

4.1.1. Experimental Results of the ANN Classifier

Table 6 shows the results of the two classification
ANNs trained on the 10027 training exemplars and
tested on 2132 exemplars. Many experiments were
performed varying settings such as the network type,
the number of hidden layers and the number of
processing elements in each layer. For each
experiment, the number of inputs remained the same:
26 input features for each image.

Miss-located points

162 The International Arab Journal of Information Technology, Vol. 1, No. 2, July 2004

Table 6. Classification ANN results using 10027 training
exemplars, tested on 2132 exemplars.

ANN Architecture

Hidden Layers
Network Type

 No PEs

MSE

Correct Characters

Feedforward MLP 4 26-31-37-44 0.62 791 (37.1%)

Feedforward MLP 4 26-30-35-41 0.65 778 (36.4%)

 The ANNs in table 6 performed best in identifying
correct characters. The minimum MSE achieved was
0.62. These two ANNs were used together–the feature
file was passed to the first and then the second
choosing the highest output value and thus returning
the class corresponding to this index value. The ANNs
were able to identify the accuracy of 1569 characters
out of the 2132 character testing set; thus giving a
recognition rate of over 73 percent. These networks
had five identified characters in common. The first
identified 15 different classes and the second identified
11 different classes–thus both identifying 26 different
classes.

5. Related Work
A number of systems were developed to recognize
Arabic text. One of these is TextPert 3.7 Arabic,
produced by CTA Inc., which runs on the Macintosh
Arabic system. Another is Al-Qari’al-Ali, a version of
the program known as MULTREC, produced by
Alamiah Software Co. Both of these programs were
able to recognize certain computer printed texts of
good quality with a reasonable degree of accuracy
considering the difficulties of Arabic text [10].
 Another system designed by Fehri and Ben Ahmed
used a hybrid of Radial Basis Function Networks and
Hidden Markov Models to recognize a printed Arabic
text after identifying the used font. The results showed
an increase in the recognition rate when the font is
known prior to the segmentation process [11].
 Sakhr developed Sakhr OCR for Arabic character
recognition. The system uses an artificial neural
network with a segmentation accuracy of 98% and a
recognition accuracy of 99.8% for printed text [12].

6. Conclusion and Future Work
In this work, a classification process of handwritten
Arabic text was presented as a division of three
components, a heuristic algorithm to extract image
features, two generalized feedforward networks to find
the best output, and a classifier algorithm to specify the
character corresponding to the index value returned by

the network. They were used to classify difficult
handwritten Arabic text, producing promising results.
The two neural networks correctly recognized 73% of
the characters. More testing and modifications will be
conducted in the future hopefully resulting in the
implementation of this technique to be used as part of a
larger system.
 Classification proved to be successful for some
characters more than others especially those with a
large number of training samples. A major challenge
was encountered which is the similar contours of many
Arabic characters and especially that we could not
differentiate because the classification of an Arabic
text depends largely on context basis; that is many
characters can be classified into different classes
depending on whether we look at them in a word or in
a sentence.
 As for future work, we plan to produce recognition
that is context sensitive and to use a lexicon to improve
proper output and somehow eliminate
misclassification, thus integrating the different parts of
the segmentation and classification into a complete
Arabic handwritten recognition system.

Acknowledgements
We thank the anonymous referees whose comments
helped in improving the presentation of the paper. We
also thank Ms. Nabelah Haraty for her support.

References
[1] Al-Badr A. and Mahmoud A., “Survey and

Bibliography of Arabic Optical Text
Recognition,” Signal Processing, vol. 41, pp. 49-
77, 1995.

[2] Al-Yousefi H. and Upda A., “Recognition of
Arabic Characters,” IEEE Pami, vol. 14, no. 8,
pp. 853-857, 1992.

[3] Almeida L., Multilayer Perceptrons - Handbook
of Neural Computation, IOP Publishing Ltd and
Oxford University Press, vol. 30, 1997.

[4] Bell J. and Zemanec P., “Test of Two Arabic
OCR Programs,” Distributed on Reader 14
January and Itisalat 17 January, 1995.

[5] Burges C., Ben J., Denker J., Lecun Y., and Nohl
C., “Off Line Recognition of Handwritten Postal
Words Using Neural Networks,” International
Journal of Pattern Recognition and Artificial
Intelligence, pp. 689-704, 1993.

[6] Grother P. and Loeve K., “Feature Extraction for
Neural Handwritten Character Recognition,” in
Proceedings of SPIE, pp. 155-166, 1992.

[7] Han K. and Sethi I., “Off-Line Cursive
Handwriting Segmentation,” in Proceedings of
ICDAR’95, Montreal, Canada, pp. 894-897,
1995.

Arabic Text Recognition 163

[8] Haraty R. and Hamid A., “Segmenting
Handwritten Arabic Text,” ACIS International
Journal of Computer and Information Science
(IJCIS), vol. 3, no. 4, December 2002.

[9] Haraty R. and Zabadani H., “ABJAD: An Off-
Line Arabic Handwritten Recognition System,”
in Proceedings of the 2002 International Arab
Conference on Information Technology
(ACIT'2002), Doha, Qatar, December 2002.

[10] Khorsheed M. and Clocksin W., “Structural
Features of Cursive Arabic Script,” (BMVC'99),
pp. 422-431, 1999.

[11] LeCun Y., Boser B., Denke J., and Jackel L.,
“Back-Propagation Applied to Handwritten Zip
Code Recognition,” Neural Computation, pp.
541-551, 1989.

[12] Sakhr Software, www.sakhrsoft.com, 2003.

Ramzi Haraty is an assistant
professor of computer science at the
Lebanese American University in
Beirut, Lebanon. He received his
BSc and MSc degrees in computer
science from Minnesota State
University-Mankato, Minnesota, and

his PhD in computer science from North Dakota State
University-Fargo, North Dakota. His research interests
include database management systems, artificial
intelligence, and multilevel secure systems
engineering. He has well over 50 journal and
conference paper publications. He is a member of
Association of Computing Machinery, Arab Computer
Society and International Society for Computers and
their Applications.

Catherine Ghaddar received her
MSc degree in computer science
from the Lebanese American
University in Beirut, Lebanon. Her
research interests include database
management systems, neural
networks, and software engineering.

