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Abstract: The issue of handwritten character recognition is still a big challenge to the scientific community. Several 
approaches to address this challenge have been attempted in the last years, mostly focusing on the English pre-printed or 
handwritten characters space. Thus, the need to attempt a research related to Arabic handwritten text recognition. Algorithms 
based on neural networks have proved to give better results than conventional methods when applied to problems where the 
decision rules of the classification problem are not clearly defined. Two neural networks were built to classify already 
segmented characters of handwritten Arabic text. The two neural networks correctly recognized 73% of the characters. 
However, one hurdle was encountered in the above scenario, which can be summarized as follows: there are a lot of 
handwritten characters that can be segmented and classified into two or more different classes depending on whether they are 
looked at separately, or in a word, or even in a sentence. In other words, character classification, especially handwritten 
Arabic characters, depends largely on contextual information, not only on topographic features extracted from these 
characters. 
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1. Introduction 
Artificial Neural Networks or ANNs have been 
successfully applied to many areas of pattern 
recognition, especially in the field of character 
recognition. Some researchers have used conventional 
methods for segmentation and recognition, while 
others have used ANN-based methods for the character 
recognition process [1, 2, 4]. 

The main challenge with handwritten text 
recognition is the presence of lines, non-character 
objects, and noise or ‘salt-and-pepper’ in the scanned 
image. Characters can also be written in many different 
sizes, writing instruments (varying thickness and 
stroke quality), and slants (causing character shearing 
along the horizontal axis). 

There are also several major problems with Arabic 
handwritten text processing: Arabic is written cursively 
and many external objects are used such as dots, 
‘Hamza’, ‘Madda’, and diacritic objects.  In addition, 
Arabic characters have more than one shape according 
to their position in a word. Classifications of Arabic 
texts largely depend on context basis since many 
characters can be classified into different classes 
depending on whether we look at them in a word or in 
a sentence. This makes the problem of classification 
even more challenging. 

This paper describes a method to classify Arabic 
handwritten texts. The method comprises three main 
components. The first, a heuristic algorithm, which is 
responsible for scanning already extracted-segmented 
characters to extract features to be used in the second 
component. A conventional algorithm was used for the 

initial segmentation of the text into connected blocks 
of characters [8]. The algorithm then generates pre-
segmentation points for these blocks. A neural network 
is subsequently used to verify the accuracy of these 
segmentation points [9]. Another conventional 
algorithm uses the verified segmentation points and 
segments the connected blocks of characters. The 
second component is a combination of two ANNs, 
which return a set of output classes to be fed into the 
third component. The third component is responsible 
for specifying the class representing input characters. 

The remainder of this paper is as follows. Section 2 
presents the difficulties and obstacles found when 
processing handwritten text. Section 3 describes our 
work. Section 4 presents the experimental results of 
this approach. Section 5 discusses related work, and 
finally a conclusion is drawn in section 6. 

 
2. Character Classification Obstacles 
There are several major problems with Arabic text 
recognition. They can be classified into three main 
categories: general difficulties, handwritten text 
specific difficulties, and Arabic text specific 
difficulties. 
 
2.1. General Difficulties 

The following difficulties are common among 
character recognition methods in general: 

• Presence of lines and other non-character objects. 
• Presence of noise or salt-and-pepper in the scanned 

image. 
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• Linguistic problems, i.e., if a dictionary is used as a 
spelling checker to improve the accuracy of the 
recognition process, then proper names, acronyms, 
or other words that are not likely to be in the 
lexicon will decrease the recognition accuracy. 

 
2.2. Handwritten Text Specific Difficulties 
The following difficulties are specific to handwritten 
text segmentation and recognition methods: 

• Variety in character size; i.e., characters may be 
written in many different sizes without changing 
their meaning. 

• Variety in writing instrument, i.e., characters may 
vary in line thickness, color, and/or stroke quality. A 
thick stroke causes the following problems: 

1. Touching characters. 
2. Holes in letters; e.g., ?  or� �  letters get filled  

     up partially or completely  
3. Thin stroke or low contrast may result in broken  

     characters. 
4. Gaps in the stroke may also cause a lot of   

errors. 

• Different writers or even the same writer under 
different conditions may slant their letters 
differently; i.e., their handwriting undergoes a 
shear along the horizontal axis. 

• Translation problems; i.e., characters are not 
always written in the same position relative to the 
enclosing borders of the scanned image. 

• Presence of similar symbols, like (1) and (?. 
 
2.3. Arabic Text Specific Difficulties 

The following difficulties are specific to Arabic text 
segmentation and recognition: 

• Arabic characters can have more than one shape 
according to their position in a word whether at the 
beginning, middle, final, or stand alone, as shown in 
Figure 1. 

• Different writers or even the same writer under 
different conditions will write some Arabic 
characters in completely different ways, as shown in 
Figure 2.   

• Other characters have very similar contours and are 
difficult to recognize especially when non-character 
and external objects are present in the scanned 
image. Figure 3 shows a list of such characters. 

• Handwritten Arabic characters depend largely on 
contextual information. There are a lot of 
handwritten characters that can be classified into 
two or more different classes depending on whether 
you look at them separately, in a word, or even in a 
sentence. For example, 5 in Arabic looks exactly 
the same as (?) and (zero) in Arabic looks exactly 
the same as a dot ‘.’. 

 
Figure 1. The shapes that character ?  takes according to its position 
in a word  
 

 
Figure 2. Three characters written in completely different ways. 

 

 
Figure 3. Characters with similar contours. 

 
3. Neuro-Conventional Classification 

Method 
There are a number of steps that need to be taken 
before a handwritten text can be recognized by a 
computer. These include sample data collection, 
analysis, scanning, binarization, segmentation, and 
classification. The main concern of this work is the 
classification part since [8, 9] investigated the 
binarization and segmentation issues. 
 
3.1. The Data Set 

Data sets of single characters in different shapes as 
they appear in a word were collected from students 
around the Lebanese American University as shown in 
Figure 4. These resulted in a 10027 different character 
samples used for training, and a 2132 different 
character samples used for testing. After preparing the 
scanned files, a manual classification process was 
followed to establish the desired output class of each 
character.  

    middle        end          beginning        stand alone 
 



158                                                         The International Arab Journal of Information Technology,   Vol. 1,   No. 2,   July 2004                                    

 
Figure 4. A sample of handwritten characters. 

 
3.2. Binarization, Skeletonization, and 

Character Block Extraction 
In [8], the authors describe a hybrid method to segment 
Arabic handwritten texts made of two components. 
The first is a heuristic algorithm, which is responsible 
for scanning a handwritten text, extracting blocks of 
connected characters, and then extracting features to be 
used in the second component. It is also responsible for 
generating pre-segmentation points, which are 
validated by the second component, the ANN. The 
ANN verifies whether all the segmentation points 
found are correct or incorrect.      
 Binarization, skelotonization, and character block 
extraction were adopted using [8]’s application, which 
converted the images into binary representations. A 
matrix of ones (1’s) for black pixels and zeros (0’s) for 
white pixels, then block character (BC) extraction, 
which is the extraction of more than one character 
written connected to another, forming a block of 
characters, was applied with a 94% accuracy. After 
that skeletonization, or thinning an image processing 
step that reduces BCs to their skeletons (i.e., 
transforming characters into arc segments one pixel 
thick, preserving connected components and the 
number of cavities and holes), was applied. The 
skeletonization process is required in order to extract 
certain features like corner points, end points, and fork 
points.   
 
3.3. Feature Extraction 
Feature extraction is the process of getting useful 
information from binarized files to be used for 
classification purposes. We were careful to extract 
features which are invariant and which capture the 
characteristics of a handwritten text by filtering out all 
the attributes that make the same character assume 
different appearances. Most, if not all, features used 
for the classification process were of the topographic 
type (i.e., point and area features). Each feature was 
represented by a number of attributes. These attributes 
quantify the nature of the feature. For example, 

specifying its position or size. An attribute may be 
represented as a continuous value, a discrete value, or 
a binary value. 
 Some systems attempt to learn feature extraction 
methods, starting only with a raw image, while others 
rely on sophisticated hand-coded feature extraction 
methods.  Two important examples of learning feature 
extraction methods applied to handwritten character 
segmentation and recognition are the Karhunen-Loeve 
transformation [6], and the topographic feature maps 
obtained through weight sharing in the system 
described in [5, 8]. 
 However, for Multi-Level Perceptron (MLP)-based 
systems [3], where each layer of the neural network 
feeds forward to all subsequent layers, hand-coded 
heuristic methods for extracting features such as 
endpoints, holes and corner points are a common and 
proven choice. 
  The main area features extracted were number of 
holes, number of corner points, and number of fork 
points from a binarized skeletonized image. The 
algorithm used for the extraction of these features is an 
adaptation of [8]’s work and changed as needed. A hole 
is an island of white pixels surrounded by black ones. 
An example of a hole is shown in Figure 5. 
 

 
 

Figure 5.  An example of a hole in a normal image (right) and a 
skeletonized image (left). 
 
 A corner point, on the other hand, is a black or 
white skeleton point that has at least two connected 
branches at right angles to each other, as shown in 
Figure 6. 
 

 
 

Figure 6.  Four examples of corner points. 
 
 A fork point is a black skeleton point that has at 
least three connected branches as shown in Figure 7. In 
order to classify an image into its corresponding 
character, the features listed in Table 1 were extracted 
for each image. 
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Table 1. Classification features. 

Feature  Attributes Description 
Width  Image width 
Height  Image height 
Image size  Width * height 
Width-height ratio   Image width divided by height 

Number of black points Number of one’s in image 
Number of black points divided by 
the height  Number of black points divided by the height 

Number of black points divided by 
the width 

Number of black points divided by the width 

Black pixel density divided by  
(height * width) 

Number of black pixels in the image divided by the total pixels in image 

Average column density divided 
by the height Average column black pixel density divided by the image height 

Black pixels 

Average row density divided by 
the width Average row black pixel density divided by the width 

Number of holes Count the number of holes (or islands of white pixels completely 
surrounded by black pixels) in image 

Holes density Number of black points of all holes divided by (width * height) 
Hole densities divided by the 
image density 

Total number of hole pixels in image divided by the black point density Holes 

Position of upper most, right most 
hole divided by the height Y-coordinate of upper right most hole divided by divided by the height 

End points Number of endpoints in image Number of endpoints in image 
Corner points Number of corners in image Number of corner points in image 
Fork points Number of fork points in image Number of fork points in image 

Index of highest pixel in upper 
contour divided by the height Index of highest black pixel in upper contour divided by the height 

Index of lowest pixel in  lower 
contour divided by the height Index of lower pixel in black lower contour divided by the height 

Index of highest pixel in upper 
contour divided by the image 
density 

Index of highest black pixel in upper contour divided by black point image 
density 

Upper and lower contours 

Index of lowest pixel in  lower 
contour divided by the image 
density 

Index of lowest black pixel in lower contour divided by the black point 
image density 

Number of disconnected BCs Number of disconnected BC objects in image. 
Density of 1st disconnected BC Number of black pixels in the BC divided by width*height. 
Density of 2nd disconnected BC Number of black pixels in the BC divided by (width * height) 
Number of black pixels in BC1 
divided by the image density Number of black pixels in BC1 divided by the black point image density 

Disconnected BCs  

Number of black pixels in BC2 
divided by the image density 

Number of black pixels in BC2 divided by the black point image density 

 
Figure 7. Three examples where P1 is a fork point. 

 
3.4. Classification ANNs  

The objective of the classification ANNs is to give an 
accurate output from the input features. To train the 
ANNs with both accurate and erroneous characters, the 
output from the binarization, skeletonization, and 
manual segmentation was used. It was necessary to 
manually specify the desired outputs for each character 
and save them to a file together with the extracted set of 
features. 
 In mathematical terms, the classification ANN is a 
set of functions which map inputs xi to outputs yi; 
where the outputs specify which of the classes the input 
pattern belongs to. There are 52 classes presented in 
Table 2. 

Table 2. Classes of arabic images. 

Classes No. of Elements 
Characters 28 
Arabic Digits 10 
Latin Digits 10 
Ligatures (?) 1 
Separators (“,”;”.”;”-“) 3 
Total 52 

3.4.1. ANN Architecture  

Two generalized feed forward neural networks were 
used to give the desired output for characters. Each 
neural network is a generalization of the MLP such that 
each layer feeds forward to all subsequent layers. In 
theory, a MLP can solve any problem that a generalized 
feed forward network can solve. In practice, however, 
generalized feed forward networks often solve the 
problem more efficiently [5, 6]. 
 There is no rule of thumb to determine good 
network architecture just from the number of inputs 
and outputs. It depends critically on the number of 
training cases, the amount of noise, and the complexity 
of the function or the classification of the network it is 
supposed to learn. There are cases with one input and 
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one output that require thousands of hidden units, and 
cases with a thousand inputs and a thousand outputs 
that require only one hidden unit, or none at all. To 
solve these issues many different networks with 
different number of hidden units were tried at first, 
starting with the smallest possible number of physical 
elements (PEs). The generalization error for each one 
was estimated, and the network with the minimum 
estimated generalization error that learned best to 
identify correct segmentation points was chosen. 
 An important criterion in ANN design is the network 
size. The number of PEs in a hidden layer is associated 
with the mapping ability of the network. The larger the 
number, the more powerful the network. However, if 
one continues to increase the network size, there is a 
point where the generalization gets worse. This is due 
to the fact that we may be over-fitting the training set, 
so when the network works with patterns that it has 
never seen before the response is unpredictable.  
    The best ANNs architecture reached consists of 26 
inputs, 52 outputs, and 4 hidden layers. The 26 inputs 
were feature attributes of a character and the outputs 
were the 52 character classes. The architecture of the 
ANNs is summarized in Table 3. 
 

Table 3. Architecture of classification ANNs. 
 

 
PEs Transfer 

Function 
Net #1   
Input Layer 26 Linear 
Layer 1 26 Tanh 
Layer 2 31 Tanh 
Layer 3 37 Tanh 
Layer 4 44 Tanh 
Output Layer 52 Tanh 
Net #2   
Input Layer 26 Linear 
Layer 1 26 Tanh 
Layer 2 30 Tanh 
Layer 3 35 Tanh 
Layer 4 41 Tanh 
Output Layer 52 Tanh 

 
 The design of the classification ANNs described 
was implemented using NeuroSolutions, version 4.022 
by NeuroDimensions, Inc. Each of the axons 
represents a layer, or vector, of PEs. All axons are 
equipped with a summing junction at their input and a 
splitting node at their output. This allows axons to 
accumulate input from, and provide output to, an 
arbitrary number of components. The Tanh axon used 
in these layers also applies a bias to each neuron in the 
layer. This will squash the range of each neuron in the 
layer to between -1 and 1.   
 The skeletonized and binarized character images 
were used to produce input files for the training, cross-
validation, and testing phases of the ANN. 12159 
characters were evaluated manually and divided into 
three parts as shown in Table 4. 

 

 

Table 4.  Manually evaluated input sets points. 

Input Set Number of 
Exemplars  

Net #1  
Training set  10027 
Cross-validation set  5014 

Testing set  2132 

Net #2  
Training set  10027 

Cross-validation set  10027 
Testing set  2132 

 
 Each character is represented by a row in the input 
files. Each row starts with the identifier of the image 
and its desired values, then the feature attributes are 
listed.   
 
3.4.2 ANN Training and Testing 

Training is the process by which the free parameters 
of the network, that is the weights, get optimal values. 
It is in fact a search in the so-called weight-space,or 
performance surface. This is the space spanned by all 
weights in the network. The goal of the search is 
finding a point in this weight-space which minimizes 
a certain error criterion [9].   
 The method used to train the classification ANN 
is the back-propagation method, a three step 
process: 

Step 1: The input data is propagated forward through       
    the network to compute the system output.  

Step 2: The error between the desired and actual  
        output is computed. 

Step 3: This error is then propagated backward    
        through the network, modifying weights on    
        each layer until the first layer is reached. 

Back-propagation modifies each weight of the network 
based on its localized portion of the input signal and its 
localized portion of the error. The change has to be 
proportional (a scaled version) of the product of these 
two quantities. The mathematics may be complicated, 
but the idea is very simple. When this algorithm is 
used for weight change, the state of the system is 
performing gradient descent; moving in the direction 
opposite to the largest local slope on the performance 
surface. In other words, the weights are being updated 
in the downward direction. 
 The advantage of using back-propagation is it is 
simple and easy to implement. The disadvantages are 
just as important: the search for the optimal weight 
values can get caught in local minima, i.e. the 
algorithm thinks it has arrived at the best possible set 
of weights even though there are other solutions that 
are better. Back-propagation is also slow to converge. 
In making the process simple, the search direction is 
noisy and sometimes the weights do not move in the 
direction of the minimum. NeuroSolutions solves a lot 
of these problems.  It implements back-propagation of 
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the error in a secondary “plane” that sits on top of the 
axons and synapses. This is called the back-
propagation plane. 
 Supervised learning requires a metric of how the 
network is doing. This metric is determined by 
calculating the sensitivity that a cost function has with 
respect to the network’s output.  This cost function, J, 
is normally positive, but should decrease towards zero 
as the network approaches the desired response. The 
literature has presented several cost functions, but the 
quadratic cost function, shown in equation (1), is by far 
the most widely applied.   
 

                ( ) ( ) ( )( )∑ −=
i

2
ii tytdf2

1tJ                 (1) 

 

The L2Criterion component is a square error 
criterion and implements the quadratic cost function. 
The error reported is simply the squared Euclidean 
distance between the network’s output and the desired 
response as shown in equation (2), where d(t) and y(t) 
are the desired response and network’s output, 
respectively. 

 

                       ( ) ( ) ( )( )tytdte iii −−=                        (2) 
 
 The L2Criterion passes the computed error to the 
back criteria  control. This control is designed to stack 
on top of the L2Criterion, and communicate the 
received error values from the L2Criterion with the 
back-propagation components to perform back-
propagation. 
 The delta threshold transmitter controls the 
communication of the back criteria component based 
on the amount of error change between iterations. The 
back criteria is allowed to transmit the error value 
when the change between successive iterations crosses 
a specified threshold, chosen to be 0.0001. This 
threshold value can also be specified to change (i.e., 
incremented, decremented, or scaled by a constant) 
each time it is crossed.  
  
4. Experimental Results 
 
4.1. Classification Results 
The classification process depends for its feature 
extraction on the heuristic algorithm implemented by 
[7] for extracting BCs, which achieved 94% accuracy. 
So, we can say there has been a small percentage of 
error that affected the ANN training file, which resulted 
from some BCs that had external child objects located 
at a far distance from the parent BC in which the 
heuristic algorithm assigned them to BCs that they did 
not belong to. Moreover, there is the case where 
external objects were located at approximately the 
same distance to more than one parent BC; thus, they 
were duplicated and a copy was assigned to each of 

those parent BCs. This resulted in an erroneous manual 
classification; that is specifying a different desired 
output, and as a result, the ANN classifier resulted in a 
different class than the initial one.  

Figure 8 shows examples of miss-located points. 
These problems generally occur when people quickly 
write Arabic words. In the first word, the two points 
should be under the fourth BC only. However, the two 
points clearly cover the third, fourth and fifth BCs. In 
the second word, the point should be under the third 
BC, but it clearly appears to be under the fourth. 
Similarly, the two points should be located under the 
fourth BC, but they appear under the fifth. In the third 
word, a similar problem occurs: the point and two 
points belong to the first and fifth BCs; however, they 
appear under the second and last BCs. 

 

 
 

Figure 8.  Three words containing miss-located external objects. 
 
 The output range of the ANN was between (–0.9) 
and (+0.9). A positive value indicated that the character 
may belong to the position class. A heuristic algorithm 
took the 52 outputs resulting from the ANNs, and 
compared these–thus selecting the highest value and 
specifying the position class related to it. There were 
some characters that were difficult to differentiate 
between their output results since these are of the same 
shape, and can not be differentiated except when they 
are seen contextually, that is in a word or a sentence. 
Table 5 shows these similar characters. 
 

Table 5.  Some similar objects. 

Some Similar Objects 

�  & ? 

?  & ? & 0 

?  & ?  
 

4.1.1. Experimental Results of the ANN Classifier 

Table 6 shows the results of the two classification 
ANNs trained on the 10027 training exemplars and 
tested on 2132 exemplars. Many experiments were 
performed varying settings such as the network type, 
the number of hidden layers and the number of 
processing elements in each layer. For each 
experiment, the number of inputs remained the same: 
26 input features for each image. 
 

Miss-located points 
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Table 6. Classification ANN results using 10027 training 
exemplars, tested on 2132 exemplars. 

ANN Architecture  

Hidden Layers  
Network Type 

   No PEs  

MSE 

 

Correct Characters  

 

Feedforward MLP     4   26-31-37-44 0.62 791 (37.1%) 

Feedforward MLP     4   26-30-35-41 0.65 778 (36.4%) 

 
 The ANNs in table 6 performed best in identifying 
correct characters. The minimum MSE achieved was 
0.62. These two ANNs were used together–the feature 
file was passed to the first and then the second 
choosing the highest output value and thus returning 
the class corresponding to this index value. The ANNs 
were able to identify the accuracy of 1569 characters 
out of the 2132 character testing set; thus giving a 
recognition rate of over 73 percent. These networks 
had five identified characters in common. The first 
identified 15 different classes and the second identified 
11 different classes–thus both identifying 26 different 
classes. 
 
5. Related Work 
A number of systems were developed to recognize 
Arabic text. One of these is TextPert 3.7 Arabic, 
produced by CTA Inc., which runs on the Macintosh 
Arabic system.  Another is Al-Qari’al-Ali, a version of 
the program known as MULTREC, produced by 
Alamiah Software Co. Both of these programs were 
able to recognize certain computer printed texts of 
good quality with a reasonable degree of accuracy 
considering the difficulties of Arabic text [10].   
 Another system designed by Fehri and Ben Ahmed 
used a hybrid of Radial Basis Function Networks and 
Hidden Markov Models to recognize a printed Arabic 
text after identifying the used font.  The results showed 
an increase in the recognition rate when the font is 
known prior to the segmentation process [11]. 
 Sakhr developed Sakhr OCR for Arabic character 
recognition. The system uses an artificial neural 
network with a segmentation accuracy of 98% and a 
recognition accuracy of 99.8% for printed text [12]. 
 
6. Conclusion and Future Work 
In this work, a classification process of handwritten 
Arabic text was presented as a division of three 
components, a heuristic algorithm to extract image 
features, two generalized feedforward networks to find 
the best output, and a classifier algorithm to specify the 
character corresponding to the index value returned by 

the network. They were used to classify difficult 
handwritten Arabic text, producing promising results. 
The two neural networks correctly recognized 73% of 
the characters. More testing and modifications will be 
conducted in the future hopefully resulting in the 
implementation of this technique to be used as part of a 
larger system.  
 Classification proved to be successful for some 
characters more than others especially those with a 
large number of training samples. A major challenge 
was encountered which is the similar contours of many 
Arabic characters and especially that we could not 
differentiate because the classification of an Arabic 
text depends largely on context basis; that is many 
characters can be classified into different classes 
depending on whether we look at them in a word or in 
a sentence. 
 As for future work, we plan to produce recognition 
that is context sensitive and to use a lexicon to improve 
proper output and somehow eliminate 
misclassification, thus integrating the different parts of 
the segmentation and classification into a complete 
Arabic handwritten recognition system.  
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