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Abstract: Unsupervised learning methods such as clustering techniques are a natural choice for analyzing software quality by 

mining its related metrics. It is well known that clustering plays an important role in data mining tasks like in data analysis 

and information retrieval. In this paper, we have proposed an approach to cluster the pool of java classes based on the 

proximity between them. To know the proximity, coupling between each pair of classes is calculated in terms of weights using 

the weighted coupling measures. We modified document representations scheme as per our requirement to represent collected 

class coupling measures before applying k-mean clustering algorithm. In order to, reduce the dependency of k-mean 

clustering results efficiency on the choice of initial centroids, neighbor and link based criteria’s for selecting initial k 

centroids have been proposed in the context of Object Oriented (OO) design artifacts i.e., classes. We demonstrate our work 

in detail and compare results of K-mean algorithm based on random and neighbor and link based initial centroids selection 

criteria’s. Further the results of clustering are analyzed through purity and F-measure. It has been observed that definition of 

neighbor and link can be interpreted well in terms of the coupling between OO classes and produces best K-mean clustering 

results. Our approach of software component clustering may become an integral part of a framework to analyze and predict 

software quality attributes. 
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1. Introduction 

It is well known that clustering plays an important role 
in data mining tasks like in data analysis and 
information retrieval. Software engineers are 
increasingly using data mining algorithms to various 
software engineering tasks like defect detection, 
testing, debugging, maintenance etc., to improve 
software productivity and quality [1, 24, 33]. Coupling 
measure between classes reflects valuable quality 
information about the design of software and enables 
the software designer to plan various important issues 
of the software engineering like reusability, 
maintainability, change propagation, fault prediction 
etc., [5, 7, 8, 14, 20, 32]. Clustering can be used to 
identify the clusters of a software system by utilizing 
information about the dependencies between the 
different parts of the system to easily comprehend the 
system [24]. Each cluster constitutes a subsystem 
because each cluster is comprised of a small number of 
classes that are strongly coupled and have related 
functionality and is somehow independent from the 
other parts of the system. So, coupling measure 
between classes are vital based upon which the 
software can be clustered. The primary contributions of 
the paper are: 

 An approach for clustering the pool of java classes 

has been proposed based on the proximity between 

them to predict the software components.  

 

 To know the proximity, coupling between each pair 

of classes have been calculated in terms of weights 

through the weighted coupling measures. We tend to 

choose this measure because by this extent of 

coupling between classes can be measured.  

 Different representations of coupling measures have 

been suggested to pre-process the collected coupling 

measures to prepare them suitable to apply k-mean 

clustering algorithm.  

 In order to, reduce the dependency of clustering 

results efficiency on the choice of classes as initial 

centroids, Neighbor and link based criteria’s for 

selected initial k centroids have been proposed in 

the context of Object Oriented (OO) design artifacts 

i.e., classes.  

 We demonstrated our approach, analyzed and 

empirically validated the results in details through a 

case study. 

The paper is organized as follow: Section 1.1 discusses 
the modified representations for class coupling data. 
Section 1.2 discusses the clustering of class coupling 
data. Section 2 describes the related literature. Section 
3 describes the proposed approach, extraction of 
coupling among the classes, its representation and 
clustering of software components. Section 4 discusses 
the case study, results and empirical validations, while 
section 5 concludes the paper and presents the scope of 
future work. 
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1.1. Representation of Collected Class Coupling 

Data 

In our work, we intend some modification in existing 
document representations to make them appropriate for 
representing collected class coupling measures. For 
this purpose, four modified representations are 
described in following subsections. 

1.1.1. N-Dimensional Binary Weighted Scheme  

On the similar lines of document clustering approach, 

in case of OO application say A, the class set of A is 

represented as ordered set of classes Class_Set(A)={C1, 

C2, C3, ..., CN}, where N is total number of classes in 

A. Each class Ci to be clustered is represented as a 

tuple or vector of N-dimension binary coupling vector 

NBC_V(Ci)=[xi1, . .,xiN], i=1, ..., N, where the 

dimension N is the same as the number of classes in 

the software application. The value of each xij depends 

on the coupling between each pair of classes. So, 

coupling of a class C is represented as NBC_V(Ci)= [1, 

0, 1, 1, 0]. Here, 1 at place j
th
 indicates that Ci class is 

coupled with class Cj and 0 at place j
th
 indicates no 

coupling of class Ci with class Cj. After having binary 

coupling vectors of all N classes, further the coupling 

data for the whole application can be viewed as a N*N 

matrix of all the class vectors.  

1.1.2. 2-Dimensional TF-IDF Weighted Scheme 

Another well known and widely acceptable 

representation is Vector Space Model (VSM) and TF-

IDF. Both are the basic model for document clustering 

[2, 33]. Similarly, for the OO application, for each 

class Ci, we here propose to has coupling frequency 

vector CF_V(Ci)=[xi1,...... xiN]. The value xi1 (also 

called as cf1i) of class Ci represents import coupling 

usage frequency of class Ci with class Cj. Another 

weighting scheme Inverse Class Frequency ICF(Ci) is 

used to weight each class Ci based on Inverse 

Document Frequency (IDF). So, we can calculate 

ICF(Ci) of each class using Equation 1:  

( )
( )
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ICF C = log

 
 
 

                          

Where n is total number of classes of an application, 

ICoupF(Ci)  is number of classes using Ci. Then finally 

import coupling ICoup(Ci, Cj) of class Ci with Cj is 

represented as 2D-point (cfji, ICoupF(Ci)* cfji ). 

1.1.3. Class Coupling Set Representation 

The collected class coupling data for each class can be 

represented by class coupling Set CC_Set(Ci). For each 

class Ci the class coupling set contains set of classes by 

which Ci is coupled. Let an application A having set of 

classes Class_Set(A)={C1,C2,C3,…, CN}, here N is total 

number of classes in the application A. If class 

coupling set for a class C1 is CC_Set(C1)={C2, C3}, it 

means class C1 is only coupled with classes C2 and C3. 

So, instead of considering coupling weights, we are 

just making the class coupling set. 

1.1.4. N-Dimensional Weighted Scheme  

Each class can be represented as an N-dimensional 

weighted vector NWC_V(Ci)=[xi1, xi2, ..., xiN], i=1, ..., 

N, here the dimension N is the same as the number of 

classes in the software application. Value of an each 

weight xij is the actual direct coupling measure 

between each pair of classes Ci and Cj instead of 

having binary weight. In this way of representation, 

coupling between class pairs is calculated based on the 

extent of coupling between classes on the scale of 0 to 

1. If two classes are highly coupled, then their coupling 

is represented by value close to 1. After having 

weighted coupling vectors of all N classes, further the 

coupling data for the whole application can be viewed 

as a N*N matrix of all the class vectors. 

As we know, the result of clustering algorithm is 

highly dependent upon the proper representation of 

collected class coupling data. The binary weighted 

scheme only gives whether coupling exists or not, it 

does not reflect the extent of coupling between classes. 

The binary weights of coupling do not estimate 

coupling quantitatively. The TF-IDF weighted scheme 

is well proven format for the documents/text [2, 33]. 

But it is less suited due to the fact there is no sound 

justification for the coupling frequency and inverse 

coupling frequency. Both are conveying the similar 

information one is straight frequency of coupling other 

is just its normalized value. There is no suitable value 

in OO programming equivalent to TF and IDF. Hence, 

the usefulness of second representation is also not 

guaranteed. The third representation has some sense 

and for each class Ci it provides the set of classes by 

which Ci is coupled. But again this representation is 

also totally subjective as it does not give any 

quantitative measure of coupling. Finally, from these 

four forms of representations, we propose to use the N-

dimensional weighted scheme to have an intermediate 

form of coupling measure. The idea behind using this 

method is we can do clustering based on extent of 

coupling between classes. Because without having 

quantitative coupling measure one cannot predict how 

important the class is for other classes and the impact 

of coupling on the quality of the software. In next sub-

section, we describe the clustering of class coupling 

data.  

1.2. Clustering Class Coupling Data using K-

Mean 

The main objective of clustering is to place points into 
disjoint groups called clusters. The points in a cluster 
are more similar to each other and dissimilar to the 
points of other clusters. Clustering algorithms use 
some distance measure to compute the distance 

(1) 
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between two points. Among various clustering 
techniques available in literature, K-Means [17] 
clustering approach is most widely used K-Means is an 
unsupervised clustering technique used to classify data 
into K clusters. Number of clusters K must be specified 
before the start of clustering [27]. The efficiency of 
clustering depends upon the effectiveness of the 
selection of k classes as initial k centroids. If the initial 
choice of centroids is good i.e., close to the optimum, 
then the K-mean gives good clustering results. But 
there is no guarantee that K-mean algorithm will reach 
a global optimum. Since, different sets of initial cluster 
centroids can lead to different final clustering results. 
There are some ways like random, buckshot, 
fractionation and links to select initial centroids for 
clustering the text documents [10, 13, 21]. In this 
paper, we transform some initial centroid selection 
criteria to make it suitable to be used (with our 
approach) to cluster collected class coupling measures 
for any OO application as discussed below.  

1.2.1. Random Selection of Initial K Classes as 

Initial Centroids 
 

The K-mean algorithm begins by taking intermediate 
form of coupling data as an input and randomly 
chooses k classes to represent the centroids of the 
initial clusters. The classes are then assigned to the 
initial clusters based on the cosine distance between 
their coupling vectors and centroids. Once, all classes 
have been initially placed in clusters, the mean of 
clusters are recomputed to find out new clusters 
centroids. This process is repeated until there is no 
change in the cluster centroids. 

 

1.2.2. Selection of Initial K Centroids Classes Using 

Neighbor and Link 
 

Guha et al. [13, 21] used the concept of neighbor and 

link for document clustering. In our context of OO 

software, the neighbors of a class Ci is a set of classes 

of an application that are coupled to it. As we are 

having weighted coupling [14] between each pair of 

classes, so for a class Ci all classes whose coupling 

with Ci is greater than or equal to the threshold θ are 

the neighbors of class Ci. Here, θ is a user-defined 

threshold to decide how much coupling is required 

between a pair of to consider them neighbors. 

Depending on the application, the user can choose an 

appropriate value for θ. The link function gives the set 

of common neighbor between two classes. The 

information about the neighbors of every class in the 

data set is then represented as an N*N neighbor Matrix 

(M) in which an entry M [i, j] is 1 or 0 depending on 

whether classes Ci and Cj are neighbors or not. The next 

section describes related works. 

2. Related Works 

Clustering techniques have been used to solve various 

type of problems in different area of science e.g., 

information retrieval, biology, economics, image 

processing [1, 20, 21, 23, 28]. Literature shows that 

clustering has a good potential to be used as the 

additional or as an alternate approach to analyze the 

various tasks of software engineering [9, 11, 12, 22, 

31]. Clustering techniques are preferably used in 

document mining [21, 23, 28]. Luo et al. [21] used the 

concept of neighbors and links for clustering the text 

documents. They found the selection criteria based on 

links worked well for clustering text document using 

K-mean. 

For OO development paradigm, class coupling is a 

type of dependency relationship between classes of the 

OO application. Coupling has been used as an 

important parameter effecting quality of the software. 

Gui et al. [14, 15, 16, 19] proposed coupling measures 

at different level of abstraction like class and package 

level. Gui and Scott [14] proposed a static measure of 

coupling to assess and rank the reusability of java 

components. Arisholm [4] have provided a method for 

identifying import coupled classes with each class at 

design time using UML diagrams. Gupta and Ghhabra 

[15] proposed coupling measures at package level. 

Some authors also have investigated the use of 

coupling measures to support impact analysis in the 

OO system, change ripple effect or change proneness 

[6]. So, existence of coupling at class level can be 

analyzed with the help of the clustering techniques to 

measure the software quality. Lot of work has been 

done with respect to comprehension, remodularization 

or partitioning large software modules [1, 3, 11, 25, 

30]. In order to understand classes, Zaidman et al. [34] 

proposed static web mining and coupling metrics for 

early program comprehension. Fokaefs et al. [11] 

apply the agglomerative clustering algorithm to find 

clusters of cohesive entities and ranked according to 

their impact on the design of the whole system. 

Camelia Serban presented an approach to identify 

classes with high coupling using fuzzy clustering 

analysis [29]. Cui and Chae [9] analyzed the 

application of agglomerative hierarchical clustering 

algorithms in software reengineering. They found from 

their investigation that clustering algorithms have 

varied capabilities but it is hard to mention which 

clustering algorithm is perfect for component 

identification. Antonellis et al. [3] also, investigating 

the use of mining to support the evaluation of system 

maintainability. They proposed a two-steps clustering 

process to facilitates the assessment of a system’s 

maintainability. They applied k-Attractor clustering 

algorithm on the design metrics related to quality and 

maintainability. As clustering [1, 17, 28] basically 

places the group of items in a cluster. It is very much 

desire to have the item in the same cluster should have 

strong relationship. This relationship between items 

may be of one of the two kinds “so far or so close”, 

depending upon the purpose of clustering. There are 

some distance measures available in literature like 
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absolute distance, Euclidean distance, cosine 

similarity/distance and widely used for document 

clustering [18, 26].  

3. Proposed Approach 

In this paper, we mainly propose to use the concept of 

neighbor and link (Guha et al. [13, 21] used this 

concept for document clustering) for clustering the 

classes of OO application. In order to, have clusters of 

interrelated set of classes we required some criteria by 

which we can measure the proximity between classes. 

We exploit coupling between the classes in order to 

measure proximity between classes of OO application 

in terms of neighbor and link. Here, we redefine the 

concept of neighbor and link in terms of class 

coupling. Two classes are said to be neighbors of each 

other if they are having coupling up to a specific 

extent. Which means that neighborhood of classes is 

defined in terms of extent of coupling between them.  

In our work, we define a class Ci to be neighbor of 

class Cj if and only if the coupling between them is 

greater than a specified threshold θ as described by 

Equation 2: 

      ,   1
,         

0

(   
)

)  
(

i j

i j

if coupling C C
Neighborhood C C

otherwise







 

Using above equation, we represent the neighborhood 

information of classes by making a N*N neighbour 

matrix M. Here, N is the number of classes in 

underlying application. Each M [i, j] is set to 1 or 0 

depending upon their neighborhood values. Two 

classes Ci and Cj are neighbours if the degree of 

coupling between them is more than the coupling 

threshold θ. The degree of coupling is given by the 

coupling weights [14]. Coupled classes will not be 

considered as neighbors, if the coupling between them 

is less than the coupling threshold. We also consider 

that two classes are close or related if they are having 

some common neighbors. The link function measures 

this characteristic of the proximity between classes. 

For our approach, we define link function as: 

Link(Ci,Cj)={ set of common neighbor classes between Ci and 

Cj } 

|link(Ci,Cj)|=m where m is the number of common neighbor 

classes between Ci and Cj 

So, the link(Ci, Cj) function gives the set of common 

neighbor classes between Ci and Cj and |link(Ci, Cj)| 

gives count of  common neighbor classes between Ci 

and Cj. In our approach, we intend to use the concept 

of link and through this suggest two important points. 

Firstly, when classes Ci and Cj are having some 

common neighbors but not coupled to each other then 

also they should be considered to be close enough. 

Secondly, as the value of link(Ci, Cj) is large, the 

probability of these two classes to be in same cluster 

also increases. As it is a prerequisite to collect class 

coupling data and to represent it in a suitable format 

before applying clustering algorithm. So, firstly 

coupling measures are collected as proposed by Gui 

and Scott [14]. Secondly, the collected measures are 

represented as N-dimensional weighted coupling 

vectors described in section 1. Thirdly, for clustering 

using K-mean, a set of k classes is chosen as initial 

centroids using selection criteria described in section 1. 

Finally, K-mean algorithm is applied. Our main focus 

in this approach is on neighbor and link based K-mean 

clustering method in order to cluster classes of OO 

application. The detailed approach with an example is 

described in following sub-sections. 

3.1. Collection of Weighted Class Coupling 

Data and its Representation as N-

Dimensional Weighted Class Coupling 

Vector 

In our approach a weighted measure of the total direct 

coupling between classes proposed by Gui and Scott 

[14] has been used. It is static coupling measure that 

estimates the proportion of a class say Ci’s 

functionality that is obtained from say class Cj and 

more suitable to cluster underling coupling metric data 

set of a java application. Any Java application can be 

regarded as a directed graph in which the vertices 

correspond to its classes and the edges correspond to 

direct coupling between classes as shown in Figure 1 

of an example application A. 

                       
Figure 1. Class coupling graph of an example application. 

Consider application A comprising a set of N 

classes, Class_Set(A)={C1, C2, ..., C6}. The weighted 

direct coupling WCD(i, j) [14] between class Ci and Cj 

is represented as shown in Equation 3: 

                      
| |

( )
| | + | |

Xi, j
WCD Ci,Cj =

Xi Mi
 

Where Mj be the set of members of class Cj and Xi,j be 

the set of members of class Cj invoked by class Ci. The 

set of all members of other classes invoked by Ci is |Xi|. 

It indicates the extent to which class Ci depends upon 

other classes for its functionality. An edge exists from 

Ci to Cj if and only if Xi, j is not null, Figure 2 shows the 

coupling between classes in terms of WCD weights on 

their edges. 
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Figure 2. Directed coupling graph with WCD(i, j) weights of 

example application. 

3.1.1. N-Dimensional Weighted Class Coupling 

Vectors 

As it has been discussed in section 1 the collected 

coupling measures are represented as N-dimensional 

weighted class coupling vectors. Here, each class Ci is 

treated as a vector having N attributes in order of class 

C1 to CN. Here, N is total number of classes. For every 

class Ci the weights have been assigned to each pair of 

Ci and C1 to CN as per weighted direct coupling 

between them. For a sample application A, vectors of 

all classes are shown in Table 1. Each 
  
row i represents 

a weighted coupling vector of class Ci. 

Table 1. N-dimensional weighted coupling matrix. 

Classes C1 C2 C3 C4 C5 C6 

C1 1 .40 .20 0 0 0 

C2 .14 1 0 0 .14 0 

C3 0 0 1 0 0 0 

C4 0 0 0 1 0 .29 

C5 0 0 0 0 1 0 

C6 0 0 0 0 0 1 

3.2. Selection of K-Initial Centroids Using 

Neighbour and Link and its Application in 

K-Mean 

A good candidate for initial centroids should be not 

only close enough to a certain group of classes but 

should also be well separated from other centroids. As 

it has been discussed earlier in section 1, our target is 

to select initial k clusters through neighbour and link 

for further application of K-mean algorithm to form 

clusters. This selection procedure comprises three 

basic steps as described below. 

3.2.1. Creation of the Neighbour Matrix 

The neighbours of a class in the class set are those 

classes that are directly coupled to it. Classes Ci and Cj 

are considered as neighbours if the WCD(Ci, Cj)≥θ, 

where threshold θ is the minimum coupling required to 

be neighbours. So, N*N neighbour matrix M as shown 

in Table 2 has been created from the weighed coupling 

matrix by considering θ=0.20 and M [i, j] marked as 1 

if class Ci and Cj are neighbors. As coupling threshold 

θ increases the number of classes under clustering 

reduced. It is required to have low value of θ to have 

rich clusters that cover maximum number of classes of 

an application.  

Table 2. Neighbor matrix. 

Classes C1 C2 C3 C4 C5 C6 

C1 1 1 1 0 0 0 

C2 0 1 0 0 0 0 

C3 0 0 1 0 0 0 

C4 0 0 0 1 0 1 

C5 0 0 0 0 1 0 

C6 0 0 0 0 0 1 

3.2.2. Ranking of Classes Using Cosine and Link 

Functions 

The value of the link function [21] link(Ci, Cj) is defined 

as the number of common neighbor classes between Ci 

and Cj and it can be obtained by multiplying the i
th
 row 

of the neighbor matrix M with its j
th column using 

Equation 4: 

            
1

( ) [ ] [ ]
n

m=

link Ci,Cj = M i, m * M m, j  

Thus, if link(Ci, Cj) is large, then it is more probable 

that Ci and Cj are close enough to be in the same 

cluster. So firstly, by checking the neighbor matrix of 

the data set, we list the classes in descending order of 

their number of neighbours i.e., C1, C4, C2, C3, C5, C6. 

The top m classes are selected from this list. A set of 

initial centroid candidates is created as Sm with 

m=k+nplus, where k is the desired number of clusters 

and nplus is the extra number of candidates selected. 

Through nplus, we can have more candidates that can 

take part in the selection of initial centroids. When k=3 

and nplus=1, Sm has four classes Sm={C1, C4, C2, C3}. 

Next, cosine and link values between every pair of 

classes in Sm is obtained, and then each class pairs are 

ranked in ascending order of their cosine and link 

values, respectively. For a pair of Classes Ci and Cj, 

let’s define rankcos(Ci, Cj) be its rank based on the 

cosine value, Ranklink(Ci , Cj) be its rank based on the 

link value and rank(Ci, Cj) be the sum of rankcos(Ci, 

Cj) and ranklink(Ci, Cj) [23]. In our case, a smaller 

value of rank(Ci, Cj) represents a higher rank, it means 

0 corresponds to the highest rank. This rank represents 

the dissimilarity of a class from other classes of the 

application. It means a low rank value represents that 

the class is likely to be at a significant distance from 

given set of classes. The calculated ranks of each pair 

of Sm classes of an application A is shown in Table 3. 

Table 3. Similarity measurement and rank between initial centroid 

candidates. 

Ci, Cj Cos_sim Rankcos Link Ranklink Rank(Ci, Cj ) 

C1, C4 0 0 1 1 1 

C1, C2 .12 1 2 2 3 

C1, C3 0 0 2 2 2 

C4, C2 0 0 0 0 0 

C4, C3 0 0 0 0 0 

C2, C3 0 0 0 0 0 

 

However, when the clusters centroids are not well 

separated, partitioning them on the basis of only 

pairwise similarity is not good enough because some 

classes in different clusters may be similar to each 

other [21]. To avoid this problem, the concept of 
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neighbors and link has been applied for clustering the 

classes based on their coupling patterns, introduced 

and used in [13] for document clustering. So, similarity 

measure for the family of k-means algorithms by 

combining the cosine and link functions [21] can be 

represented as Equation 5. Where 0≤ α≤ 1 and Lmax is 

the largest possible value of link(Ci, Cj) and α is the 

coefficient set by the user. When α is set to 0, the 

similarity measure becomes the cosine function and it 

becomes the link function when α is 1. α in the range 

of [0.8, 0.95] produces the best clustering results [21]. 

To calculate link(Ci,
 k

Cj) for class Ci and the cluster 

centroid 
k
Cj,  k columns have been added to the 

neighbor matrix M. The new matrix is an n*(n+k) 

matrix Mc, in which an entry M [n+j] is 1 or 0 

depending on whether a document Ci and a centroid 
k
Cj 

are neighbors or not. The value of link(Ci,
 k

Cj ) can be 

obtained by multiplying the i
th
 row of M’ with its n+j

th
 

column using this formula as shown in Equation 6 

( )
( ) ( ) ( )

k
i jk k

i j i j

link ,
f , = α* + 1 - α * cos ,

L

C C
C

m x
C C

a
C  

1

( ) [ ] [ ]
n

m=

k

i
link , = M i, m * M m, n +jC C

j
   

3.2.3. Finding Best K Initial Centroids 

Initial centroids are well separated from each other in 
order to represent the whole data set. Thus, the class 
pairs with high ranks could be considered as good 
initial centroid candidates. For the selection of k initial 
centroids out of m candidates, there are k

C2 possible 
combinations. Each combination is a k-subset of Sm 
and we calculate the rank value of each combination 
(comk) using Equation 7:  

( , )Rankcomk rank Ci Cj   

That means, the rank value of a combination is the sum 
of the rank values of the k

C2 pairs of initial centroid 
candidate classes in the combination. In our application 
A, there are 4 combinations available and their rank 
values are shown in Table 4.  

Table 4. Combination of centroid candidates and their rank. 

Comk kC2 Pairs of Centroid Candidates Rankcomk 

{C1,C2 ,C3} { C1,C2 },{ C1,C3], {C2 ,C3} 5 

{C1,C2 ,C4} { C1,C2 },{ C1,C4], {C2 ,C4} 4 

{C1,C3 ,C4} { C1,C3 },{ C1,C4}, {C3 ,C4} 3 

{C2,C3,C4} { C2,C3 },{ C2,C4}, {C3 ,C4} 0 

Then, we choose the combination with the highest 
rank (i.e., the smallest rank value) as the set of initial 
centroids for the k-means algorithm. As rank of {C2, C3, 

C4} is the smallest among all combinations. So, classes 
in these combinations are considered as well separated 
from each other. 

3.2.4. Similarity Measure based on the Cosine and 

Link Functions 

Cosine and link measures are used for the similarity 

between the coupling patterns of two classes. Pair wise 

similarity is considered to determine whether a class is 

assigned to a cluster or not. 

3.3. K-Mean Clustering Using both Initial 

Centroids Selection Criteria  

3.3.1. Neighbor and Link Selection Criterion 

So, as per section 3.2 for an application A, initial 

centroids using neighbors and links are k
C1={1 .40 .20 

0 0 0},
 k

C2={.14 1 0 0 .14 0},
 k

C3={0 0 0 1 0 .29}. 

Then, k-mean has been applied that used the similarity 

measure based on cosine and link and finally we have 

three clusters k1={C1, C2, C5}, k2={C3}, k3={C4, C6}. 

3.3.2. Random Selection Criterion 

The K-mean algorithm begins by taking intermediate 

form of coupling data as an input and randomly 

chooses k classes to represent the centroids of the 

initial clusters. The classes are then placed to different 

K clusters based the cosine distance between their 

coupling vectors and centroids. Once all records have 

been initially placed in clusters, the mean of clusters 

are recomputed to find out new cluster centroids.  This 

process is repeated as per the K-mean algorithm. For 

application A, suppose classes C1, C3, C5 are randomly 

selected as initial centroids kc1={1 .40 .20 0 0 0}, 

kc2={0 0 1 0 0 0}, kc3={0 0 0 0 1 0}. Then, k-mean has 

been applied that used the similarity measure based on 

cosine and produced k1={C1, C2, C4, C6}, k2={C3}, 

k3={C5} three final clusters. 

4. A Case Study and Evaluation of its 

Results 

To evaluate our approach, a case study has been 
performed on the classes of different packages of java 
(JDK). Aim is to identify the components by clustering 
the classes according to their dependency 
characteristics based on the assigned coupling weights. 
As per our approach (described in section 3), we chose 
to represent dependency among classes using coupling 
weights in the range of 0 to 1 to show the extent of 
coupling instead of having binary weights. The steps 
for the case study and evaluation of results are 
described in following sub-sections. 

4.1. Collection of Data and Computation of 

Metrics 

For the case study, we have used four java packages 
(Applet, IO, Awt, Lang) and from these four packages 
27 classes have been selected to find out the coupling 
between them through WCD metric proposed by Gui 
and Scott [14] Next, to have the extent of coupling 
between pair of classes based on Equation 1. The 
collected coupling weights between each class Ci with 
all n classes are represented by n-dimensional 
weighted class coupling representation as described in 
section 1. 

(5) 

(6) 

(7) 
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4.2. Clustering Class Coupling Data 

As we want to apply k-mean document clustering 

approach on the collected class coupling data, so after 

getting the class coupling vectors each class coupling 

vector is treated as document vector in VSM. Then, as 

per our methodology initial k-clusters have been 

chosen through both selection approaches i.e., random 

selection and selection using neighbor and link as 

described in Table 5. Here, we opted to have four 

clusters because our target to cluster coupling data set 

of four java packages, so value of k is four. Following 

Table 5 shows the selected k (k=4) initial centroids. 

Then, finally k-mean clustering has been applied 

separately by using both types of initial k centroids 

selection criteria’s. Tables 6 and 7 are shows the 

formed clusters. 

Table 5. Initial Centroids selected through both selection criteria. 

Selection Criteria Initial k Centroids Process Adopted for Selection 

Random C2, C7, C8, C12 
Randomly selected(as described in sections 1 

and 3) 

Using  Neighbor and 

Link 
C1, C6, C7, C8 

Centroids are selected by ranking based on 

cosine similarity and link (as described in 

section 1 and 3) 

Table 6. Clusters formed based on neighbour and link selection of 

initial centroids. 

Cluster No. 
Classes Included in Cluster(Using Neighbour and Link Selection of Initial 

Centroids) 

1 
C3-Awteventmulticaster, C4-cardlayout, C5-checkbox, C6- 

ckeckboxmenuitem, C11-container,  C18-component 

2 C19-menuitem, C20- menucomponent,  C25-inputstream 

3 

C1-Applet, C2- Alphacomposite, C7-Bufferedinputstream ,  C10- 

chararrayreader , C12-objectinputstream, C13-System, C14-string, C17-object 

, C21- bufferedoutputstream , C22-filterinputstream, C23-filteroutputstream, 

C24- reader  ,C26 -package,  C27-number 

4 C8-bufferreader, C9-Bytearrayinputstream , C15-math , C16-panel 

Table 7. Clusters formed based on random selection of initial 
centroids. 

Cluster 

No. 

Classes Included in Clusters (Using Random Selection of Initial 

Centroids)) 

1 C8-bufferreader 

2 

C2-Alphacomposite, C6- ckeckboxmenuitem, C7- Bufferedinputstream, C9- 

Bytearrayinputstream , C10-chararrayreader, C19-menuitem,C20- 

menucomponent,  C21-bufferedoutputstream , C22- filterinputstream, C23-

filteroutputstream, C24-reader, C25-inputstream,  C26-package,  C27- number 

3 C12-objectinputstream 

4 

C1-Applet,  C3-Awteventmulticaster, C4-cardlayout, C5-checkbox, C11-

container C13-System, C14-string, C15-math , C16-panel, C17-object C18-

component 

4.3. Evaluation of Clustering Results 

F-measure and purity values are used to evaluate the 
accuracy of our clustering algorithm for both initial k -
centroids selection criteria. The F-measure is a 
harmonic combination of the precision and recall 
values used in information retrieval [21]. So, each 
cluster obtained can be considered as the result of a 
query, whereas each pre-classified component of 
classes can be considered as the desired set of classes 
for that query. Thus, we can calculate the precision P(i, 
j) and recall R(i, j) of each resultant cluster j for each 
pre-classified component i using formula described in 
[21]. The corresponding F-measure F(i, j), F-measure 
of the whole clustering result, purity of a cluster and 

purity of the whole clustering result [21] are also, 
calculated. In general, the larger the F-measure is the 
better the clustering result. The larger the purity value 
is, the better the clustering result is. Tables 8 and 9, 
show the evaluation of results of k-mean for both types 
of initial centroids selection criteria’s. 

  Table 8. Precision and recall values for both selection criteria’s. 

Selection Criteria for Initial Centroids(k=4) 

(i, j ) 
Random Neighbour and Link 

nij PR (i, j) RR (i, j) FR (i ,j) nij PNandL(i, j) RNandL(i, j) FNandL (i, j) 

(1, 1) 1 .05 1 .09 0 0 0 0 

(1, 2) 0 0 0 0 0 0 0 0 

(1, 3) 0 0 0 0 1 .07 1 .13 

(1, 4) 0 0 0 0 0 0 0 0 

(2, 1) 9 .47 .9 .62 6 1 .6 .75 

(2, 2) 1 .2 .1 .13 2 .67 .2 .28 

(2, 3) 0 0 0 0 1 .07 .1 .08 

(2, 4) 0 0 0 0 1 .25 .1 .14 

(3, 1) 5 .26 .5 .34 0 0 0 0 

(3, 2) 3 .6 .3 .4 1 .33 .1 .15 

(3, 3) 1 .5 .1 .17 7 .5 .7 .58 

(3, 4) 1 1 .1 .18 2 .5 .2 .29 

(4, 1) 4 .21 .67 .32 0 0 0 0 

(4, 2) 0 0 0 0 0 0 0 0 

(4, 3) 1 .5 .17 .25 5 .36 .36 .5 

(4, 4) 0 0 0 0 1 .25 .25 .2 

Table 9. Total purity and F-measure value of clustering. 

Selection Criteria for Initial K Centroids(k=4) 

Random Using Neighbour and Link 

Purity F-measure Purity F-measure 

.50 .43 .55 .60 

 

Further, Table 10 summarizes purity comparisons 

among all four clusters and pre-classified components 

for both types of initial centroids selection criteria’s. 

Here, we found that F-measure value for the neighbour 

and link (FN and L) goes up to .60 and FR for random 

selection goes up to.43. Further, Figures 3, 4 and 5 

show the comparisons of precision, recall and F-

measures of both type of selection criteria’s. From 

experimental results, it has been found that the F-

measure and purity values of clustering results using 

neighbours and link (N and L) selection method are 

more near to the actual components. It means that 

selection of initial centroids by using neighbors and 

link provided better clusters than random selection in 

terms of clustering accuracy.  

Table 10. Purity of clusters. 

Selection Criteria for Initial k Centroids (k=4) 

Random Using Neighbour and Link 

Purity(1) Purity(2) Purity(3) Purity(4) Purity(1) Purity(2) Purity(3) Purity(4) 

.47 .6 .5 1 1 .67 .5 .5 
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 (i, j) Component i and Cluster j 

Figure 3. Comparison of precision values for both initial centroids 

selections. 
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Figure 4. Comparison of recall values for both initial centroids 

selction criteria’s. 
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Figure 5. Comparison of F-measure values for both initial centroids 

selections. 

It is required to mention that some time random 

selection may provide good results but its probability is 

totally dependent upon the effectiveness of the classes 

selected as initial centroids. As far as the neighbor and 

link criterion is concerned it surely provides best and 

well separated initial centroids. So, from all this, we 

can say that the concept of neighbor and link of text 

document clustering is well suited for clustering OO 

software i.e., to cluster the classes based on their 

coupling. The reason behind this is, there is no 

criterion behind the random selection. It is just a hit 

and trial method. Selection of the initial centroids 

classes using predefined criterion i.e., neighbors and 

links produced better clusters. The proposed approach 

give more precise clusters of classes and software 

experts can further utilize these clusters for the analysis 

of software quality. 

5. Conclusions and Future Work 

As strong believers of the important role of clustering 
to measure the quality of OO applications, we 
recognize mainly there are two ways where clustering 
can play its role. First is to measure any particular 
software quality attribute, one can use the clustering 
approach to cluster the various artifacts produced 
during the different phases of the software 
development life cycle. Secondly, to have a more 
authenticated quality measure and to do the more 
rigours analysis of quality, one can perform clustering 
on the software metrics data computed for any 
particular quality attributes. Presently, our focus is on 
second aspect and our target was to explore the usage 
of document clustering approach to cluster the classes 
of OO application based on their dependency on each 
other. Certainly coupling between classes is a 
significant property of OO paradigm. Coupling affects 
software quality in many ways and hence can be used 

as a predictor of software quality attributes such as 
reusability changeability, ripple effects of changes and 
fault-proneness. In our approach, clustering has been 
applied only on the collected static coupling measure, 
although coupling can be measured dynamically as 
well. But as per our idea, we considered clusters as the 
components of the system because more or less each 
cluster have those set of classes that are more related to 
each other to fulfil the nearly similar type of 
responsibility. So for this reason static coupling 
measures are more useful because they cover the 
complete set of classes of the system. Our approach 
mainly has three aspects. Firstly as discussed in 
introduction part, there may be different schemes to 
represent the coupling measures by using different 
ways primarily used in document representation for 
clustering. Among those, we chose and found N- 
dimensional weighted scheme more suitable.  
Secondly, we opt to apply k-mean document clustering 
approach to form clusters of classes on the bases of 
their relevance to each other measured through their 
coupling. It is a fact that the correctness of clusters 
formed by k-mean is largely dependent on the proper 
selection of initial k classes as initial k centroids. From 
results, we found neighbor and link based selection of 
initial centroids helps in better clustering results for 
documents. Finally, to evaluate our approach, we 
compare its results with results of k-mean that used 
random selection. As shown in results, the concept of 
neighbor and link is found suitable and works well in 
our context.  

The key findings and usefulness of the clustering 

approach are: 

 The Neighbor and link measure works well in our 

context. The definition of neighbor and link can be 

interpreted in terms of the coupling between classes. 

 Classes are ranked and then k classes with higher 

ranks are selected as initial centroids as these 

classes are far apart from each other. So, it gives 

better clustering results. 

 Some time it is difficult to maintain the large 

software systems because of inherent coupling 

between their components i.e., classes, so having 

clusters of strongly coupled classes, maintainer can 

predict error and change propagations easily which 

ultimately helps in changing/maintaining the 

classes. 

 The emphasis of our assumption is that the classes 

which are contributing towards the similar 

functionality should be kept in same cluster. So, for 

legacy systems where design artifacts are not 

available, the maintainer can extract the key-

components of the software system by exploring 

these clusters. 

 Clustering software metrics i.e., coupling reflects 

the important aspects of a system concerning its 

quality. It can help to verify the design and easily 

comprehend the software system. 
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 Our clustering approach may become an integral 
part of a framework to analyze and predict software 
quality through mining some facts about quality of 
the software from collected software metrics. 

Hence, clustering class coupling metrics is helpful to 
mine OO software components. In future, we will 
explore other suitable document clustering approaches 
that can be suitable to cluster the classes based on their 
coupling measures. Further, we will develop a frame 
for mining different software quality parameters like 
reusability changeability, ripple effects of changes and 
fault-proneness etc.  
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