
The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016 987

An Approach for Clustering Class Coupling

Metrics to Mine Object Oriented Software

Components

Anshu Parashar and Jitender Kumar Chhabra

Department of Computer Engineering, National Institute of Technology, India

Abstract: Unsupervised learning methods such as clustering techniques are a natural choice for analyzing software quality by

mining its related metrics. It is well known that clustering plays an important role in data mining tasks like in data analysis

and information retrieval. In this paper, we have proposed an approach to cluster the pool of java classes based on the

proximity between them. To know the proximity, coupling between each pair of classes is calculated in terms of weights using

the weighted coupling measures. We modified document representations scheme as per our requirement to represent collected

class coupling measures before applying k-mean clustering algorithm. In order to, reduce the dependency of k-mean

clustering results efficiency on the choice of initial centroids, neighbor and link based criteria’s for selecting initial k

centroids have been proposed in the context of Object Oriented (OO) design artifacts i.e., classes. We demonstrate our work

in detail and compare results of K-mean algorithm based on random and neighbor and link based initial centroids selection

criteria’s. Further the results of clustering are analyzed through purity and F-measure. It has been observed that definition of

neighbor and link can be interpreted well in terms of the coupling between OO classes and produces best K-mean clustering

results. Our approach of software component clustering may become an integral part of a framework to analyze and predict

software quality attributes.

Keywords: Software engineering, OO software clustering, mining coupling metric.

Received September 18, 2012; accepted March 20, 2014; published online June 11, 2015

1. Introduction

It is well known that clustering plays an important role
in data mining tasks like in data analysis and
information retrieval. Software engineers are
increasingly using data mining algorithms to various
software engineering tasks like defect detection,
testing, debugging, maintenance etc., to improve
software productivity and quality [1, 24, 33]. Coupling
measure between classes reflects valuable quality
information about the design of software and enables
the software designer to plan various important issues
of the software engineering like reusability,
maintainability, change propagation, fault prediction
etc., [5, 7, 8, 14, 20, 32]. Clustering can be used to
identify the clusters of a software system by utilizing
information about the dependencies between the
different parts of the system to easily comprehend the
system [24]. Each cluster constitutes a subsystem
because each cluster is comprised of a small number of
classes that are strongly coupled and have related
functionality and is somehow independent from the
other parts of the system. So, coupling measure
between classes are vital based upon which the
software can be clustered. The primary contributions of
the paper are:

 An approach for clustering the pool of java classes

has been proposed based on the proximity between

them to predict the software components.

 To know the proximity, coupling between each pair

of classes have been calculated in terms of weights

through the weighted coupling measures. We tend to

choose this measure because by this extent of

coupling between classes can be measured.

 Different representations of coupling measures have

been suggested to pre-process the collected coupling

measures to prepare them suitable to apply k-mean

clustering algorithm.

 In order to, reduce the dependency of clustering

results efficiency on the choice of classes as initial

centroids, Neighbor and link based criteria’s for

selected initial k centroids have been proposed in

the context of Object Oriented (OO) design artifacts

i.e., classes.

 We demonstrated our approach, analyzed and

empirically validated the results in details through a

case study.

The paper is organized as follow: Section 1.1 discusses
the modified representations for class coupling data.
Section 1.2 discusses the clustering of class coupling
data. Section 2 describes the related literature. Section
3 describes the proposed approach, extraction of
coupling among the classes, its representation and
clustering of software components. Section 4 discusses
the case study, results and empirical validations, while
section 5 concludes the paper and presents the scope of
future work.

988 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

1.1. Representation of Collected Class Coupling

Data

In our work, we intend some modification in existing
document representations to make them appropriate for
representing collected class coupling measures. For
this purpose, four modified representations are
described in following subsections.

1.1.1. N-Dimensional Binary Weighted Scheme

On the similar lines of document clustering approach,

in case of OO application say A, the class set of A is

represented as ordered set of classes Class_Set(A)={C1,

C2, C3, ..., CN}, where N is total number of classes in

A. Each class Ci to be clustered is represented as a

tuple or vector of N-dimension binary coupling vector

NBC_V(Ci)=[xi1, . .,xiN], i=1, ..., N, where the

dimension N is the same as the number of classes in

the software application. The value of each xij depends

on the coupling between each pair of classes. So,

coupling of a class C is represented as NBC_V(Ci)= [1,

0, 1, 1, 0]. Here, 1 at place j
th
 indicates that Ci class is

coupled with class Cj and 0 at place j
th
 indicates no

coupling of class Ci with class Cj. After having binary

coupling vectors of all N classes, further the coupling

data for the whole application can be viewed as a N*N

matrix of all the class vectors.

1.1.2. 2-Dimensional TF-IDF Weighted Scheme

Another well known and widely acceptable

representation is Vector Space Model (VSM) and TF-

IDF. Both are the basic model for document clustering

[2, 33]. Similarly, for the OO application, for each

class Ci, we here propose to has coupling frequency

vector CF_V(Ci)=[xi1,...... xiN]. The value xi1 (also

called as cf1i) of class Ci represents import coupling

usage frequency of class Ci with class Cj. Another

weighting scheme Inverse Class Frequency ICF(Ci) is

used to weight each class Ci based on Inverse

Document Frequency (IDF). So, we can calculate

ICF(Ci) of each class using Equation 1:

()
()

i
i

n

ICoupF C
ICF C = log

 
 
 

Where n is total number of classes of an application,

ICoupF(Ci) is number of classes using Ci. Then finally

import coupling ICoup(Ci, Cj) of class Ci with Cj is

represented as 2D-point (cfji, ICoupF(Ci)* cfji).

1.1.3. Class Coupling Set Representation

The collected class coupling data for each class can be

represented by class coupling Set CC_Set(Ci). For each

class Ci the class coupling set contains set of classes by

which Ci is coupled. Let an application A having set of

classes Class_Set(A)={C1,C2,C3,…, CN}, here N is total

number of classes in the application A. If class

coupling set for a class C1 is CC_Set(C1)={C2, C3}, it

means class C1 is only coupled with classes C2 and C3.

So, instead of considering coupling weights, we are

just making the class coupling set.

1.1.4. N-Dimensional Weighted Scheme

Each class can be represented as an N-dimensional

weighted vector NWC_V(Ci)=[xi1, xi2, ..., xiN], i=1, ...,

N, here the dimension N is the same as the number of

classes in the software application. Value of an each

weight xij is the actual direct coupling measure

between each pair of classes Ci and Cj instead of

having binary weight. In this way of representation,

coupling between class pairs is calculated based on the

extent of coupling between classes on the scale of 0 to

1. If two classes are highly coupled, then their coupling

is represented by value close to 1. After having

weighted coupling vectors of all N classes, further the

coupling data for the whole application can be viewed

as a N*N matrix of all the class vectors.

As we know, the result of clustering algorithm is

highly dependent upon the proper representation of

collected class coupling data. The binary weighted

scheme only gives whether coupling exists or not, it

does not reflect the extent of coupling between classes.

The binary weights of coupling do not estimate

coupling quantitatively. The TF-IDF weighted scheme

is well proven format for the documents/text [2, 33].

But it is less suited due to the fact there is no sound

justification for the coupling frequency and inverse

coupling frequency. Both are conveying the similar

information one is straight frequency of coupling other

is just its normalized value. There is no suitable value

in OO programming equivalent to TF and IDF. Hence,

the usefulness of second representation is also not

guaranteed. The third representation has some sense

and for each class Ci it provides the set of classes by

which Ci is coupled. But again this representation is

also totally subjective as it does not give any

quantitative measure of coupling. Finally, from these

four forms of representations, we propose to use the N-

dimensional weighted scheme to have an intermediate

form of coupling measure. The idea behind using this

method is we can do clustering based on extent of

coupling between classes. Because without having

quantitative coupling measure one cannot predict how

important the class is for other classes and the impact

of coupling on the quality of the software. In next sub-

section, we describe the clustering of class coupling

data.

1.2. Clustering Class Coupling Data using K-

Mean

The main objective of clustering is to place points into
disjoint groups called clusters. The points in a cluster
are more similar to each other and dissimilar to the
points of other clusters. Clustering algorithms use
some distance measure to compute the distance

(1)

An Approach for Clustering Class Coupling Metrics to Mine Object Oriented Software Components 989

between two points. Among various clustering
techniques available in literature, K-Means [17]
clustering approach is most widely used K-Means is an
unsupervised clustering technique used to classify data
into K clusters. Number of clusters K must be specified
before the start of clustering [27]. The efficiency of
clustering depends upon the effectiveness of the
selection of k classes as initial k centroids. If the initial
choice of centroids is good i.e., close to the optimum,
then the K-mean gives good clustering results. But
there is no guarantee that K-mean algorithm will reach
a global optimum. Since, different sets of initial cluster
centroids can lead to different final clustering results.
There are some ways like random, buckshot,
fractionation and links to select initial centroids for
clustering the text documents [10, 13, 21]. In this
paper, we transform some initial centroid selection
criteria to make it suitable to be used (with our
approach) to cluster collected class coupling measures
for any OO application as discussed below.

1.2.1. Random Selection of Initial K Classes as

Initial Centroids

The K-mean algorithm begins by taking intermediate
form of coupling data as an input and randomly
chooses k classes to represent the centroids of the
initial clusters. The classes are then assigned to the
initial clusters based on the cosine distance between
their coupling vectors and centroids. Once, all classes
have been initially placed in clusters, the mean of
clusters are recomputed to find out new clusters
centroids. This process is repeated until there is no
change in the cluster centroids.

1.2.2. Selection of Initial K Centroids Classes Using

Neighbor and Link

Guha et al. [13, 21] used the concept of neighbor and

link for document clustering. In our context of OO

software, the neighbors of a class Ci is a set of classes

of an application that are coupled to it. As we are

having weighted coupling [14] between each pair of

classes, so for a class Ci all classes whose coupling

with Ci is greater than or equal to the threshold θ are

the neighbors of class Ci. Here, θ is a user-defined

threshold to decide how much coupling is required

between a pair of to consider them neighbors.

Depending on the application, the user can choose an

appropriate value for θ. The link function gives the set

of common neighbor between two classes. The

information about the neighbors of every class in the

data set is then represented as an N*N neighbor Matrix

(M) in which an entry M [i, j] is 1 or 0 depending on

whether classes Ci and Cj are neighbors or not. The next

section describes related works.

2. Related Works

Clustering techniques have been used to solve various

type of problems in different area of science e.g.,

information retrieval, biology, economics, image

processing [1, 20, 21, 23, 28]. Literature shows that

clustering has a good potential to be used as the

additional or as an alternate approach to analyze the

various tasks of software engineering [9, 11, 12, 22,

31]. Clustering techniques are preferably used in

document mining [21, 23, 28]. Luo et al. [21] used the

concept of neighbors and links for clustering the text

documents. They found the selection criteria based on

links worked well for clustering text document using

K-mean.

For OO development paradigm, class coupling is a

type of dependency relationship between classes of the

OO application. Coupling has been used as an

important parameter effecting quality of the software.

Gui et al. [14, 15, 16, 19] proposed coupling measures

at different level of abstraction like class and package

level. Gui and Scott [14] proposed a static measure of

coupling to assess and rank the reusability of java

components. Arisholm [4] have provided a method for

identifying import coupled classes with each class at

design time using UML diagrams. Gupta and Ghhabra

[15] proposed coupling measures at package level.

Some authors also have investigated the use of

coupling measures to support impact analysis in the

OO system, change ripple effect or change proneness

[6]. So, existence of coupling at class level can be

analyzed with the help of the clustering techniques to

measure the software quality. Lot of work has been

done with respect to comprehension, remodularization

or partitioning large software modules [1, 3, 11, 25,

30]. In order to understand classes, Zaidman et al. [34]

proposed static web mining and coupling metrics for

early program comprehension. Fokaefs et al. [11]

apply the agglomerative clustering algorithm to find

clusters of cohesive entities and ranked according to

their impact on the design of the whole system.

Camelia Serban presented an approach to identify

classes with high coupling using fuzzy clustering

analysis [29]. Cui and Chae [9] analyzed the

application of agglomerative hierarchical clustering

algorithms in software reengineering. They found from

their investigation that clustering algorithms have

varied capabilities but it is hard to mention which

clustering algorithm is perfect for component

identification. Antonellis et al. [3] also, investigating

the use of mining to support the evaluation of system

maintainability. They proposed a two-steps clustering

process to facilitates the assessment of a system’s

maintainability. They applied k-Attractor clustering

algorithm on the design metrics related to quality and

maintainability. As clustering [1, 17, 28] basically

places the group of items in a cluster. It is very much

desire to have the item in the same cluster should have

strong relationship. This relationship between items

may be of one of the two kinds “so far or so close”,

depending upon the purpose of clustering. There are

some distance measures available in literature like

990 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

absolute distance, Euclidean distance, cosine

similarity/distance and widely used for document

clustering [18, 26].

3. Proposed Approach

In this paper, we mainly propose to use the concept of

neighbor and link (Guha et al. [13, 21] used this

concept for document clustering) for clustering the

classes of OO application. In order to, have clusters of

interrelated set of classes we required some criteria by

which we can measure the proximity between classes.

We exploit coupling between the classes in order to

measure proximity between classes of OO application

in terms of neighbor and link. Here, we redefine the

concept of neighbor and link in terms of class

coupling. Two classes are said to be neighbors of each

other if they are having coupling up to a specific

extent. Which means that neighborhood of classes is

defined in terms of extent of coupling between them.

In our work, we define a class Ci to be neighbor of

class Cj if and only if the coupling between them is

greater than a specified threshold θ as described by

Equation 2:

 , 1
,

0

(
)

)
(

i j

i j

if coupling C C
Neighborhood C C

otherwise







Using above equation, we represent the neighborhood

information of classes by making a N*N neighbour

matrix M. Here, N is the number of classes in

underlying application. Each M [i, j] is set to 1 or 0

depending upon their neighborhood values. Two

classes Ci and Cj are neighbours if the degree of

coupling between them is more than the coupling

threshold θ. The degree of coupling is given by the

coupling weights [14]. Coupled classes will not be

considered as neighbors, if the coupling between them

is less than the coupling threshold. We also consider

that two classes are close or related if they are having

some common neighbors. The link function measures

this characteristic of the proximity between classes.

For our approach, we define link function as:

Link(Ci,Cj)={ set of common neighbor classes between Ci and

Cj }

|link(Ci,Cj)|=m where m is the number of common neighbor

classes between Ci and Cj

So, the link(Ci, Cj) function gives the set of common

neighbor classes between Ci and Cj and |link(Ci, Cj)|

gives count of common neighbor classes between Ci

and Cj. In our approach, we intend to use the concept

of link and through this suggest two important points.

Firstly, when classes Ci and Cj are having some

common neighbors but not coupled to each other then

also they should be considered to be close enough.

Secondly, as the value of link(Ci, Cj) is large, the

probability of these two classes to be in same cluster

also increases. As it is a prerequisite to collect class

coupling data and to represent it in a suitable format

before applying clustering algorithm. So, firstly

coupling measures are collected as proposed by Gui

and Scott [14]. Secondly, the collected measures are

represented as N-dimensional weighted coupling

vectors described in section 1. Thirdly, for clustering

using K-mean, a set of k classes is chosen as initial

centroids using selection criteria described in section 1.

Finally, K-mean algorithm is applied. Our main focus

in this approach is on neighbor and link based K-mean

clustering method in order to cluster classes of OO

application. The detailed approach with an example is

described in following sub-sections.

3.1. Collection of Weighted Class Coupling

Data and its Representation as N-

Dimensional Weighted Class Coupling

Vector

In our approach a weighted measure of the total direct

coupling between classes proposed by Gui and Scott

[14] has been used. It is static coupling measure that

estimates the proportion of a class say Ci’s

functionality that is obtained from say class Cj and

more suitable to cluster underling coupling metric data

set of a java application. Any Java application can be

regarded as a directed graph in which the vertices

correspond to its classes and the edges correspond to

direct coupling between classes as shown in Figure 1

of an example application A.

Figure 1. Class coupling graph of an example application.

Consider application A comprising a set of N

classes, Class_Set(A)={C1, C2, ..., C6}. The weighted

direct coupling WCD(i, j) [14] between class Ci and Cj

is represented as shown in Equation 3:

| |

()
| | + | |

Xi, j
WCD Ci,Cj =

Xi Mi

Where Mj be the set of members of class Cj and Xi,j be

the set of members of class Cj invoked by class Ci. The

set of all members of other classes invoked by Ci is |Xi|.

It indicates the extent to which class Ci depends upon

other classes for its functionality. An edge exists from

Ci to Cj if and only if Xi, j is not null, Figure 2 shows the

coupling between classes in terms of WCD weights on

their edges.

2

1

2
1

C1

Mc1=2

C3

Mc3=2

C2

Mc2=5

C5

Mc5=1

C4

Mc4=2

C6

Mc6=3

1

(3)

(2)

An Approach for Clustering Class Coupling Metrics to Mine Object Oriented Software Components 991

Figure 2. Directed coupling graph with WCD(i, j) weights of

example application.

3.1.1. N-Dimensional Weighted Class Coupling

Vectors

As it has been discussed in section 1 the collected

coupling measures are represented as N-dimensional

weighted class coupling vectors. Here, each class Ci is

treated as a vector having N attributes in order of class

C1 to CN. Here, N is total number of classes. For every

class Ci the weights have been assigned to each pair of

Ci and C1 to CN as per weighted direct coupling

between them. For a sample application A, vectors of

all classes are shown in Table 1. Each

row i represents

a weighted coupling vector of class Ci.

Table 1. N-dimensional weighted coupling matrix.

Classes C1 C2 C3 C4 C5 C6

C1 1 .40 .20 0 0 0

C2 .14 1 0 0 .14 0

C3 0 0 1 0 0 0

C4 0 0 0 1 0 .29

C5 0 0 0 0 1 0

C6 0 0 0 0 0 1

3.2. Selection of K-Initial Centroids Using

Neighbour and Link and its Application in

K-Mean

A good candidate for initial centroids should be not

only close enough to a certain group of classes but

should also be well separated from other centroids. As

it has been discussed earlier in section 1, our target is

to select initial k clusters through neighbour and link

for further application of K-mean algorithm to form

clusters. This selection procedure comprises three

basic steps as described below.

3.2.1. Creation of the Neighbour Matrix

The neighbours of a class in the class set are those

classes that are directly coupled to it. Classes Ci and Cj

are considered as neighbours if the WCD(Ci, Cj)≥θ,

where threshold θ is the minimum coupling required to

be neighbours. So, N*N neighbour matrix M as shown

in Table 2 has been created from the weighed coupling

matrix by considering θ=0.20 and M [i, j] marked as 1

if class Ci and Cj are neighbors. As coupling threshold

θ increases the number of classes under clustering

reduced. It is required to have low value of θ to have

rich clusters that cover maximum number of classes of

an application.

Table 2. Neighbor matrix.

Classes C1 C2 C3 C4 C5 C6

C1 1 1 1 0 0 0

C2 0 1 0 0 0 0

C3 0 0 1 0 0 0

C4 0 0 0 1 0 1

C5 0 0 0 0 1 0

C6 0 0 0 0 0 1

3.2.2. Ranking of Classes Using Cosine and Link

Functions

The value of the link function [21] link(Ci, Cj) is defined

as the number of common neighbor classes between Ci

and Cj and it can be obtained by multiplying the i
th
 row

of the neighbor matrix M with its j
th column using

Equation 4:

1

() [] []
n

m=

link Ci,Cj = M i, m * M m, j

Thus, if link(Ci, Cj) is large, then it is more probable

that Ci and Cj are close enough to be in the same

cluster. So firstly, by checking the neighbor matrix of

the data set, we list the classes in descending order of

their number of neighbours i.e., C1, C4, C2, C3, C5, C6.

The top m classes are selected from this list. A set of

initial centroid candidates is created as Sm with

m=k+nplus, where k is the desired number of clusters

and nplus is the extra number of candidates selected.

Through nplus, we can have more candidates that can

take part in the selection of initial centroids. When k=3

and nplus=1, Sm has four classes Sm={C1, C4, C2, C3}.

Next, cosine and link values between every pair of

classes in Sm is obtained, and then each class pairs are

ranked in ascending order of their cosine and link

values, respectively. For a pair of Classes Ci and Cj,

let’s define rankcos(Ci, Cj) be its rank based on the

cosine value, Ranklink(Ci , Cj) be its rank based on the

link value and rank(Ci, Cj) be the sum of rankcos(Ci,

Cj) and ranklink(Ci, Cj) [23]. In our case, a smaller

value of rank(Ci, Cj) represents a higher rank, it means

0 corresponds to the highest rank. This rank represents

the dissimilarity of a class from other classes of the

application. It means a low rank value represents that

the class is likely to be at a significant distance from

given set of classes. The calculated ranks of each pair

of Sm classes of an application A is shown in Table 3.

Table 3. Similarity measurement and rank between initial centroid

candidates.

Ci, Cj Cos_sim Rankcos Link Ranklink Rank(Ci, Cj)

C1, C4 0 0 1 1 1

C1, C2 .12 1 2 2 3

C1, C3 0 0 2 2 2

C4, C2 0 0 0 0 0

C4, C3 0 0 0 0 0

C2, C3 0 0 0 0 0

However, when the clusters centroids are not well

separated, partitioning them on the basis of only

pairwise similarity is not good enough because some

classes in different clusters may be similar to each

other [21]. To avoid this problem, the concept of

.29

.14

.40
.14

C1

C3

C2

C5

 C4

C6

.20

(4)

992 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

neighbors and link has been applied for clustering the

classes based on their coupling patterns, introduced

and used in [13] for document clustering. So, similarity

measure for the family of k-means algorithms by

combining the cosine and link functions [21] can be

represented as Equation 5. Where 0≤ α≤ 1 and Lmax is

the largest possible value of link(Ci, Cj) and α is the

coefficient set by the user. When α is set to 0, the

similarity measure becomes the cosine function and it

becomes the link function when α is 1. α in the range

of [0.8, 0.95] produces the best clustering results [21].

To calculate link(Ci,
 k

Cj) for class Ci and the cluster

centroid
k
Cj, k columns have been added to the

neighbor matrix M. The new matrix is an n*(n+k)

matrix Mc, in which an entry M [n+j] is 1 or 0

depending on whether a document Ci and a centroid
k
Cj

are neighbors or not. The value of link(Ci,
 k

Cj) can be

obtained by multiplying the i
th
 row of M’ with its n+j

th

column using this formula as shown in Equation 6

()
() () ()

k
i jk k

i j i j

link ,
f , = α* + 1 - α * cos ,

L

C C
C

m x
C C

a
C

1

() [] []
n

m=

k

i
link , = M i, m * M m, n +jC C

j
 

3.2.3. Finding Best K Initial Centroids

Initial centroids are well separated from each other in
order to represent the whole data set. Thus, the class
pairs with high ranks could be considered as good
initial centroid candidates. For the selection of k initial
centroids out of m candidates, there are k

C2 possible
combinations. Each combination is a k-subset of Sm
and we calculate the rank value of each combination
(comk) using Equation 7:

(,)Rankcomk rank Ci Cj 

That means, the rank value of a combination is the sum
of the rank values of the k

C2 pairs of initial centroid
candidate classes in the combination. In our application
A, there are 4 combinations available and their rank
values are shown in Table 4.

Table 4. Combination of centroid candidates and their rank.

Comk kC2 Pairs of Centroid Candidates Rankcomk

{C1,C2 ,C3} { C1,C2 },{ C1,C3], {C2 ,C3} 5

{C1,C2 ,C4} { C1,C2 },{ C1,C4], {C2 ,C4} 4

{C1,C3 ,C4} { C1,C3 },{ C1,C4}, {C3 ,C4} 3

{C2,C3,C4} { C2,C3 },{ C2,C4}, {C3 ,C4} 0

Then, we choose the combination with the highest
rank (i.e., the smallest rank value) as the set of initial
centroids for the k-means algorithm. As rank of {C2, C3,

C4} is the smallest among all combinations. So, classes
in these combinations are considered as well separated
from each other.

3.2.4. Similarity Measure based on the Cosine and

Link Functions

Cosine and link measures are used for the similarity

between the coupling patterns of two classes. Pair wise

similarity is considered to determine whether a class is

assigned to a cluster or not.

3.3. K-Mean Clustering Using both Initial

Centroids Selection Criteria

3.3.1. Neighbor and Link Selection Criterion

So, as per section 3.2 for an application A, initial

centroids using neighbors and links are k
C1={1 .40 .20

0 0 0},
 k

C2={.14 1 0 0 .14 0},
 k

C3={0 0 0 1 0 .29}.

Then, k-mean has been applied that used the similarity

measure based on cosine and link and finally we have

three clusters k1={C1, C2, C5}, k2={C3}, k3={C4, C6}.

3.3.2. Random Selection Criterion

The K-mean algorithm begins by taking intermediate

form of coupling data as an input and randomly

chooses k classes to represent the centroids of the

initial clusters. The classes are then placed to different

K clusters based the cosine distance between their

coupling vectors and centroids. Once all records have

been initially placed in clusters, the mean of clusters

are recomputed to find out new cluster centroids. This

process is repeated as per the K-mean algorithm. For

application A, suppose classes C1, C3, C5 are randomly

selected as initial centroids kc1={1 .40 .20 0 0 0},

kc2={0 0 1 0 0 0}, kc3={0 0 0 0 1 0}. Then, k-mean has

been applied that used the similarity measure based on

cosine and produced k1={C1, C2, C4, C6}, k2={C3},

k3={C5} three final clusters.

4. A Case Study and Evaluation of its

Results

To evaluate our approach, a case study has been
performed on the classes of different packages of java
(JDK). Aim is to identify the components by clustering
the classes according to their dependency
characteristics based on the assigned coupling weights.
As per our approach (described in section 3), we chose
to represent dependency among classes using coupling
weights in the range of 0 to 1 to show the extent of
coupling instead of having binary weights. The steps
for the case study and evaluation of results are
described in following sub-sections.

4.1. Collection of Data and Computation of

Metrics

For the case study, we have used four java packages
(Applet, IO, Awt, Lang) and from these four packages
27 classes have been selected to find out the coupling
between them through WCD metric proposed by Gui
and Scott [14] Next, to have the extent of coupling
between pair of classes based on Equation 1. The
collected coupling weights between each class Ci with
all n classes are represented by n-dimensional
weighted class coupling representation as described in
section 1.

(5)

(6)

(7)

An Approach for Clustering Class Coupling Metrics to Mine Object Oriented Software Components 993

4.2. Clustering Class Coupling Data

As we want to apply k-mean document clustering

approach on the collected class coupling data, so after

getting the class coupling vectors each class coupling

vector is treated as document vector in VSM. Then, as

per our methodology initial k-clusters have been

chosen through both selection approaches i.e., random

selection and selection using neighbor and link as

described in Table 5. Here, we opted to have four

clusters because our target to cluster coupling data set

of four java packages, so value of k is four. Following

Table 5 shows the selected k (k=4) initial centroids.

Then, finally k-mean clustering has been applied

separately by using both types of initial k centroids

selection criteria’s. Tables 6 and 7 are shows the

formed clusters.

Table 5. Initial Centroids selected through both selection criteria.

Selection Criteria Initial k Centroids Process Adopted for Selection

Random C2, C7, C8, C12
Randomly selected(as described in sections 1

and 3)

Using Neighbor and

Link
C1, C6, C7, C8

Centroids are selected by ranking based on

cosine similarity and link (as described in

section 1 and 3)

Table 6. Clusters formed based on neighbour and link selection of

initial centroids.

Cluster No.
Classes Included in Cluster(Using Neighbour and Link Selection of Initial

Centroids)

1
C3-Awteventmulticaster, C4-cardlayout, C5-checkbox, C6-

ckeckboxmenuitem, C11-container, C18-component

2 C19-menuitem, C20- menucomponent, C25-inputstream

3

C1-Applet, C2- Alphacomposite, C7-Bufferedinputstream , C10-

chararrayreader , C12-objectinputstream, C13-System, C14-string, C17-object

, C21- bufferedoutputstream , C22-filterinputstream, C23-filteroutputstream,

C24- reader ,C26 -package, C27-number

4 C8-bufferreader, C9-Bytearrayinputstream , C15-math , C16-panel

Table 7. Clusters formed based on random selection of initial
centroids.

Cluster

No.

Classes Included in Clusters (Using Random Selection of Initial

Centroids))

1 C8-bufferreader

2

C2-Alphacomposite, C6- ckeckboxmenuitem, C7- Bufferedinputstream, C9-

Bytearrayinputstream , C10-chararrayreader, C19-menuitem,C20-

menucomponent, C21-bufferedoutputstream , C22- filterinputstream, C23-

filteroutputstream, C24-reader, C25-inputstream, C26-package, C27- number

3 C12-objectinputstream

4

C1-Applet, C3-Awteventmulticaster, C4-cardlayout, C5-checkbox, C11-

container C13-System, C14-string, C15-math , C16-panel, C17-object C18-

component

4.3. Evaluation of Clustering Results

F-measure and purity values are used to evaluate the
accuracy of our clustering algorithm for both initial k -
centroids selection criteria. The F-measure is a
harmonic combination of the precision and recall
values used in information retrieval [21]. So, each
cluster obtained can be considered as the result of a
query, whereas each pre-classified component of
classes can be considered as the desired set of classes
for that query. Thus, we can calculate the precision P(i,
j) and recall R(i, j) of each resultant cluster j for each
pre-classified component i using formula described in
[21]. The corresponding F-measure F(i, j), F-measure
of the whole clustering result, purity of a cluster and

purity of the whole clustering result [21] are also,
calculated. In general, the larger the F-measure is the
better the clustering result. The larger the purity value
is, the better the clustering result is. Tables 8 and 9,
show the evaluation of results of k-mean for both types
of initial centroids selection criteria’s.

 Table 8. Precision and recall values for both selection criteria’s.

Selection Criteria for Initial Centroids(k=4)

(i, j)
Random Neighbour and Link

nij PR (i, j) RR (i, j) FR (i ,j) nij PNandL(i, j) RNandL(i, j) FNandL (i, j)

(1, 1) 1 .05 1 .09 0 0 0 0

(1, 2) 0 0 0 0 0 0 0 0

(1, 3) 0 0 0 0 1 .07 1 .13

(1, 4) 0 0 0 0 0 0 0 0

(2, 1) 9 .47 .9 .62 6 1 .6 .75

(2, 2) 1 .2 .1 .13 2 .67 .2 .28

(2, 3) 0 0 0 0 1 .07 .1 .08

(2, 4) 0 0 0 0 1 .25 .1 .14

(3, 1) 5 .26 .5 .34 0 0 0 0

(3, 2) 3 .6 .3 .4 1 .33 .1 .15

(3, 3) 1 .5 .1 .17 7 .5 .7 .58

(3, 4) 1 1 .1 .18 2 .5 .2 .29

(4, 1) 4 .21 .67 .32 0 0 0 0

(4, 2) 0 0 0 0 0 0 0 0

(4, 3) 1 .5 .17 .25 5 .36 .36 .5

(4, 4) 0 0 0 0 1 .25 .25 .2

Table 9. Total purity and F-measure value of clustering.

Selection Criteria for Initial K Centroids(k=4)

Random Using Neighbour and Link

Purity F-measure Purity F-measure

.50 .43 .55 .60

Further, Table 10 summarizes purity comparisons

among all four clusters and pre-classified components

for both types of initial centroids selection criteria’s.

Here, we found that F-measure value for the neighbour

and link (FN and L) goes up to .60 and FR for random

selection goes up to.43. Further, Figures 3, 4 and 5

show the comparisons of precision, recall and F-

measures of both type of selection criteria’s. From

experimental results, it has been found that the F-

measure and purity values of clustering results using

neighbours and link (N and L) selection method are

more near to the actual components. It means that

selection of initial centroids by using neighbors and

link provided better clusters than random selection in

terms of clustering accuracy.

Table 10. Purity of clusters.

Selection Criteria for Initial k Centroids (k=4)

Random Using Neighbour and Link

Purity(1) Purity(2) Purity(3) Purity(4) Purity(1) Purity(2) Purity(3) Purity(4)

.47 .6 .5 1 1 .67 .5 .5

 P
re

ci
si

o
n

 (i, j) Component i and Cluster j

Figure 3. Comparison of precision values for both initial centroids

selections.

994 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

R
ec

al
l

 (i, j) Component i and Cluster j

Figure 4. Comparison of recall values for both initial centroids

selction criteria’s.

F
-M

ea
su

re

 (i, j) Component i and Cluster j

Figure 5. Comparison of F-measure values for both initial centroids

selections.

It is required to mention that some time random

selection may provide good results but its probability is

totally dependent upon the effectiveness of the classes

selected as initial centroids. As far as the neighbor and

link criterion is concerned it surely provides best and

well separated initial centroids. So, from all this, we

can say that the concept of neighbor and link of text

document clustering is well suited for clustering OO

software i.e., to cluster the classes based on their

coupling. The reason behind this is, there is no

criterion behind the random selection. It is just a hit

and trial method. Selection of the initial centroids

classes using predefined criterion i.e., neighbors and

links produced better clusters. The proposed approach

give more precise clusters of classes and software

experts can further utilize these clusters for the analysis

of software quality.

5. Conclusions and Future Work

As strong believers of the important role of clustering
to measure the quality of OO applications, we
recognize mainly there are two ways where clustering
can play its role. First is to measure any particular
software quality attribute, one can use the clustering
approach to cluster the various artifacts produced
during the different phases of the software
development life cycle. Secondly, to have a more
authenticated quality measure and to do the more
rigours analysis of quality, one can perform clustering
on the software metrics data computed for any
particular quality attributes. Presently, our focus is on
second aspect and our target was to explore the usage
of document clustering approach to cluster the classes
of OO application based on their dependency on each
other. Certainly coupling between classes is a
significant property of OO paradigm. Coupling affects
software quality in many ways and hence can be used

as a predictor of software quality attributes such as
reusability changeability, ripple effects of changes and
fault-proneness. In our approach, clustering has been
applied only on the collected static coupling measure,
although coupling can be measured dynamically as
well. But as per our idea, we considered clusters as the
components of the system because more or less each
cluster have those set of classes that are more related to
each other to fulfil the nearly similar type of
responsibility. So for this reason static coupling
measures are more useful because they cover the
complete set of classes of the system. Our approach
mainly has three aspects. Firstly as discussed in
introduction part, there may be different schemes to
represent the coupling measures by using different
ways primarily used in document representation for
clustering. Among those, we chose and found N-
dimensional weighted scheme more suitable.
Secondly, we opt to apply k-mean document clustering
approach to form clusters of classes on the bases of
their relevance to each other measured through their
coupling. It is a fact that the correctness of clusters
formed by k-mean is largely dependent on the proper
selection of initial k classes as initial k centroids. From
results, we found neighbor and link based selection of
initial centroids helps in better clustering results for
documents. Finally, to evaluate our approach, we
compare its results with results of k-mean that used
random selection. As shown in results, the concept of
neighbor and link is found suitable and works well in
our context.

The key findings and usefulness of the clustering

approach are:

 The Neighbor and link measure works well in our

context. The definition of neighbor and link can be

interpreted in terms of the coupling between classes.

 Classes are ranked and then k classes with higher

ranks are selected as initial centroids as these

classes are far apart from each other. So, it gives

better clustering results.

 Some time it is difficult to maintain the large

software systems because of inherent coupling

between their components i.e., classes, so having

clusters of strongly coupled classes, maintainer can

predict error and change propagations easily which

ultimately helps in changing/maintaining the

classes.

 The emphasis of our assumption is that the classes

which are contributing towards the similar

functionality should be kept in same cluster. So, for

legacy systems where design artifacts are not

available, the maintainer can extract the key-

components of the software system by exploring

these clusters.

 Clustering software metrics i.e., coupling reflects

the important aspects of a system concerning its

quality. It can help to verify the design and easily

comprehend the software system.

An Approach for Clustering Class Coupling Metrics to Mine Object Oriented Software Components 995

 Our clustering approach may become an integral
part of a framework to analyze and predict software
quality through mining some facts about quality of
the software from collected software metrics.

Hence, clustering class coupling metrics is helpful to
mine OO software components. In future, we will
explore other suitable document clustering approaches
that can be suitable to cluster the classes based on their
coupling measures. Further, we will develop a frame
for mining different software quality parameters like
reusability changeability, ripple effects of changes and
fault-proneness etc.

References

[1] Abreu F., Pereira G., and Sousa P., “A Coupling-

Guided Cluster Analysis Approach to Reengineer

the Modularity of Object-Oriented Systems,” in

Proceedings of the Conference on Software

Maintenance and Reengineering, pp. 13-22,

2000.

[2] Alzghool M. and Inkpen D., “Clustering the

Topics using TF-IDF for Model Fusion,” in

Proceedings of the 2
nd

 PhD Workshop on

Information and Knowledge Management, pp.

97-100, 2008.

[3] Antonellis P., Antoniou D., Kanellopoulos Y.,

Makris C., Theodoridis E., Tjortjis C., and

Tsirakis N., “Clustering for Monitoring Software

Systems Maintainability Evolution,” Electronic

Notes in Theoretical Computer Science, vol. 233,

pp. 43-57, 2009.

[4] Arisholm E., “Dynamic Coupling Measurement

for Object-Oriented Software,” IEEE

Transactions on Software Engineering, vol. 30,

no. 8, pp. 491-506, 2004.
[5] Basili V., Briand L., and Melo W., “A Validation

of Object-Oriented Design Metrics as Quality
Indicators,” IEEE Transactions on Software
Engineering, vol. 22, no. 10, pp. 751-761, 1996.

[6] Briand L., Daly J., and Wust J., “A Unified

Framework for Coupling Measurement in

Object-Oriented Systems,” IEEE Transactions on

Software Engineering, vol. 25, no. 1, pp. 91-121,

1999.

[7] Briand L., Wust J., and Louinis H., “Using

Coupling Measurement for Impact Analysis in

Object-Oriented Systems,” in Proceedings of

IEEE International Conference on Software

Maintenance, Oxford, pp. 475-482, 1999.

[8] Chidamber S., Darcy D., and Kemerer C.,

“Managerial Use of Metrics for Object-Oriented

Software: An Exploratory Analysis,” IEEE

Transactions on Software Engineering, vol. 24,

no. 8, pp. 629-637, 1998.

[9] Cui J. and Chae H., “Applying Agglomerative

Hierarchical Clustering Algorithms to

Component Identification for Legacy Systems,”

Information and Software Technology, vol. 53,

no. 6, pp. 601-614, 2011.

[10] Cutting D., Karger D., Pedersen J., and Tukey J.,

“A Cluster-Based Approach to Browsing Large

Document Collections,” in Proceedings of the

15
th

Annual International ACM SIGIR

Conference on Research and Development in

Information Retrieval, pp. 318-329, 1992.

[11] Fokaefs M., Tsantalis N., and Chatzigeorgiou A.,

“Decomposing Object-Oriented Class Modules

using an Agglomerative Clustering Technique,”

in Proceedings of IEEE International Conference

on Software Maintenance, Edmonton, pp. 93-

101, 2009.

[12] Glorie M., Zaidman A., Hofland I., and Deursen

A., “Splitting a Large Software Archive for

Easing Future Software Evolution- An Industrial

Experience Report using Formal Concept

Analysis,” in Proceedings of the 12
th
 European

Conference on Software Maintenance and

Reengineering, Athens, pp. 153-162, 2008.

[13] Guha S., Rastogi R., and Shim K., “ROCK: A

Robust Clustering Algorithm for Categorical

Attributes,” Information Systems, vol. 25, no. 5,

pp. 345-366, 2000.

[14] Gui G. and Scott P., “Ranking Reusability of

Software Components using Coupling Metrics,”

Journal of Systems and Software, vol. 80, no. 9,

pp. 1450-1459, 2007.

[15] Gupta V. and Chhabra J., “Measurement of

Dynamic Metrics using Dynamic Analysis of

Programs,” in Proceedings of the WSEAS

International Conference on Applied Computing

Conference, pp. 81-86, 2008.

[16] Henry S. and Lattanzi M., “Measurement of

Software Maintainability and Reusability in the

Object Oriented Paradigm,” Technical Report,

Computer Science, Virginia Polytechnic Institute

and State University. 1994.

[17] Kaufman L. and Rousseeuw P., Finding Groups

in Data: An Introduction to Cluster Analysis,

John Wiley and Sons, 1990.

[18] Korenius T., Laurikkala J., and Juhola M., “On

Principal Component Analysis, Cosine and

Euclidean Measures in Information Retrieval,”

Information Science, vol. 177, no. 22, pp. 4893-

4905, 2007.

[19] Li W. and Henry S., “Object Oriented Metrics

that Predict Maintainability,” Journal of Systems

and Software, vol. 23, no. 2, pp. 111-122, 1993.

[20] Liu B., Hsu W., and Ma Y., “Integrating

Classification and Association Rule Mining,” in

Proceedings of American Association for

Artificial Intelligence International Conference

on Knowledge Discovery and Data Mining, pp.

1-7, 1998.

[21] Luo C., Li Y., and Chung S., “Text Document

Clustering Based on Neighbors,” Data and

http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212

996 The International Arab Journal of Information Technology Vol. 13, No. 6B, 2016

Knowledge Engineering, vol. 68, no. 11, pp.

1271-1288, 2009.

[22] Maqbool O. and Babri H., “Hierarchical

Clustering for Software Architecture Recovery,”

IEEE Transactions on Software Engineering, vol.

33, no. 11, 759-780, 2007.

[23] Meskine F. and Bahloul S., “Privacy Preserving

K-means Clustering: A Survey Research” the

International Arab Journal of Information

Technology, vol. 9, no. 2, pp. 194-200, 2012.

[24] Mishra S., Kushwaha D., and Misra A.,

“Creating Reusable Software Component from

Object-Oriented Legacy System through Reverse

Engineering,” Journal of Object Technology, vol.

8, no. 5, pp. 133-152, 2009.

[25] Praditwong K., Harman M., and Yao X.,

“Software Module Clustering as a Multi-

Objective Search Problem,” IEEE Transactions

on Software Engineering, vol. 37, no. 2, pp. 264-

282, 2011.

[26] Qian G., Sural S., Gu Y., and Pramanik S.,

“Similarity between Euclidean and Cosine Angle

Distance for Nearest Neighbor Queries,” in

Proceedings of the ACM Symposium on Applied

Computing, pp. 1232-1237, 2004.

[27] Rao I., “Data Mining and Clustering

Techniques,” in Proceedings of the DRTC

Workshop on Semantic Web, Bangalore, pp. 1-11,

2003.

[28] Romesburg H., Cluster Analysis for Researchers,

Lulu Press North Carolina, 2004.

[29] Serban C., “High Coupling Detection using

Fuzzy Clustering Analysis,” in Proceedings of

the International Conference on Knowledge

Engineering, Principles and Techniques, pp. 223-

226, 2009.

[30] Simon F., Steinbruckner F., and Lewrentz C.,

“Metrics Based Refactoring,” in Proceedings of

the 5
th
 European Conference on Software

Maintenance and Reengineering, Lisbon, pp. 30-

38, 2011.

[31] Wiggerts A., “Using Clustering Algorithms in

Legacy Systems Remodularization,” in

Proceedings of the 4
th
 Working Conference on

Reverse Engineering, Amsterdam, pp. 33-43,

1997.

[32] Wilkie F. and Kitchenham B., “Coupling

Measures and Change Ripples in C++

Application Software,” Journal of System

Software, vol. 52, no. 2-3, pp.157-164, 2000.

[33] Xia Y., “A Survey of Document Clustering

Techniques and Comparison of LDA and

moVMF,” available at: http://cs229.stanford.edu/

proj2010/Xiao-A%20Survey%20of%20

Document%20Clustering%20Techniques%20&

%20Comparison%20of%20LDA%20and%20mo

VMF.pdf, last visited 2010.

[34] Zaidman A., Bois B., and Demeyer S., “How

Webmining and Coupling Metrics Improve Early

Program Comprehension,” in Proceedings of the

14
th
 IEEE International Conference on Program

Comprehension, Athens, pp. 74-78, 2006.

Anshu Parashar pursuing his PhD

degree from National Institute of

Technology, India. He did BTech

(2002) and MTech (2008) in

Computer Science and Engineering.

He is working as Associate Professor

in Department of Computer Science

and Engineering in HCTM, India. He has published

more than 25 papers in various International, National

Conferences and Journals. He has more than 11 years

of teaching experience. His area of interest includes

software engineering, data mining and object-oriented

systems.

Jitender Chhabra Professor,

Department of Computer

Engineering and HOD, Department

of Computer Applications, National

Institute of Technology. He did both

his BTech and MTech in Computer

Engineering from Regional

Engineering College Kurukshetra (now National

Institute of Technology) as Gold Medalist. He did his

PhD in Software Metrics from Delhi. He has published

more than 90 papers in various International and

National Conferences and Journals including journals

of IEEE, ACM, Springer and Elsevier. He has more

than 20 years of teaching and research experience. He

is author of three books from McGraw Hill including

the one Schaum Series International book titled

“Programming with C”. He is Reviewer of IEEE

Transactions, Elsevier, Springer, Wiley and many

other Journals. He has worked in collaboration with

multinational IT companies HP and TCS in the area of

Software Engineering. His area of interest includes

software engineering, data mining, soft computing and

object-oriented systems.

http://cs229.stanford.edu/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10866

