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Abstract: This work is a study of binary data, especially binary images sources of information widely used. 
In general, comparing two binary images that represent the same content is not always easy because an image can undergo 

transformations like: Translation, rotation, affinity, resolution change and scale or change in appearance. 

In this paper, we will try to solve the translation and rotation problems. For translation case, the similarity indices are used 

between the image rows or blocks. In the case of rotation, first  the coordinate’s contours are extracted, then we compute the 

covariance matrix used in the Principal Components Analysis (PCA) and the corresponding eigen values which are invariant 

to this type of movement. We also, compare our approach having complexity O(M+N) to Hausdorff  Distance (HD) that has 

complexity of O(M×N) for an M×N image. In our approach, HD is used only to compare distance between 1D signatures. 
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1. Introduction 

To compare two images, we must first represent these 
images through effective descriptors. These descriptors 
represent general information on color, texture and 
shapes of the extracted image [24]. Their choice 
determines the effectiveness of the method and is a 
delicate step of indexing [23]. The color histogram is 
widely used as an indexing descriptor space [10]. 

Other characterizations of contours are possible 
such as fourier coefficients, eccentricity, euler number 
and moment invariants [11, 12, 27]. But, some 
methods like SIFT and SURF [5, 18] are not suitable 
for binary features. 

On the other hand, characterizations based on the 
autocorrelation function are used for textured images 
[19]. However, textures are useful only for textured 
images which are a special case. 

Discriminating descriptors once extracted are 
arranged to form the signature of the image. Signatures 
are then used to compare images [20]. This comparison 
must prove the degree of similarity between images. 
There are two ways to structure information to form a 
signature: Global signature and local or partial 
signature. The histogram as shown in Figure 2 [4] is an 
example of global signature and techniques used in this 
paper are also global. 

This paper is organized as follows: Section 2 
describes the problem of translation between binary 
images and how we can solve it by calculating a 
similarity measure between rows of the image. Section 
3 presents the rotation problem in a picture and it 
turned out that the covariance matrix of contour 
coordinates is an invariant measure according to 
rotation. In section 4, we compare our proposed 
approach to Hausdorff based approach. 

2. Translation and Similarity Index 

Binary data is one of the most common representations 
of patterns and similarity measures between these 
types of data are essential in many problems such as: 
Clustering, classification, etc., Since, jaccard proposed 
a similarity measure to classify ecological species in 
1901, many similarity measures and distances have 
been proposed in various areas. Implementing 
appropriate measures has for result more accurate data 
analysis. 

For example, Jaccard similarity measure has been 
used for classification of ecological species [14]. 
Binary similarity measures were then applied in 
biology, anthropology, taxonomy, image retrieval, text 
retrieval, geology and chemistry [21, 25]. Recently 
they were actively used to solve identification of 
fingerprints, iris pictures problems and recognition of 
manuscripts characters [7, 8, 9]. Many articles discuss 
their properties and characteristics [13, 15]. 

The Simple Matching Coefficient (SMC) is a simple 
similarity index and the base of the most of other 
indices. 

2.1. Simple Matching Coefficient  

Given two objects A and B, each with n binary 
attributes, the SMC coefficient is a useful measure of 
the overlap that A and B share with their attributes. 
Each attribute of A and B can either be 0 or 1. The total 
number of each combination of attributes for both A 
and B are specified as follow: 

• f11: Represents the total number of attributes where 
A and B both have a value of 1. 

• f01: Represents the total number of attributes where 
the attribute of A is 0 and the attribute of B is 1. 
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• f10: Represents the total number of attributes where 
the attribute of A is 1 and the attribute of B is 0. 

• f00: Represents the total number of attributes where 
A and B both have a value of 0. 

Each attribute must fall into one of these categories, 
meaning that f11+ f01+ f10+ f00= n. 

This index is defined by: 

                         
matching attributes

SMC
attributes

=                         

Where |matching attributes|=f11+f00 represents pixels 
that are matched (values are 0 or 1) and 
|attributes|=f01+f10+f11+f00 represents the number of 
pixels on the two rows or vectors to be matched. 
Thus, we can rewrite the SMC index as follows: 

                        11 00

01 10 11 00

f f
SMC

f f f f

+
=

+ + +
 

2.2. Similarity between Image Rows or 

Columns using Jaccard Index 

Principle used for the Jaccard index is similar to SMC 
except that no account is considered for pixels with 
values equal to 0. 

                 
matching present attributes

Jaccard
attributes values present

=      

Where 11matching present attributes f=   

            01 10 11attributes values present f f f= + +     

In this work we chose to work with Jaccard index as 
shown in Figures 1 and 2 using Equation 4 because 
images backgrounds are black. Technique used is as 
follows:  

• We fix a row on image (row containing the center of 
gravity of the object i.e., white pixels). 

• An index of similarity between each row of image 
and the fixed row is calculated. 

• Signature image is formed by the values of the 
index.  

 

  
a) Translation along the x axis. b) Translation along the y axis. 

Figure 1. Two images that represent the same content with added 
translations.  
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     a) Similarity histogramme for image 
          in Figure 1-a.                    

     b) Similarity histogramme for image 
          in Figure 1-b. 

Figure 2. Histograms of similarity indices. 

Note, for images with white backgrounds, Jaccard 
coefficient must be changed because the black color is 
now the objects within the image, so we have: 

                                               00

01 10 00

f
Jaccard

f f f
=

+ +
 

We can also, work with image columns instead of 
rows. 

2.3. Similarity between Image Blocks                                    

In this section, we propose to compute similarity 
indices between image blocks. Blocks generally 
represent the neighbourhood of a pixel; this 
neighbourhood is a rich source of local information, 
which is not the case for rows that are source of global 
information. 

The steps of proposed technique are as following:  
Cutting the image into blocks, for two successive 
blocks we calculate the similarity index. This work is 
repeated for all blocks of the image in opposite 
direction. Two successive blocks are defined as follow:  

( 1, 1) ( 1, ) ( 1, 1)

( , 1) ( , ) ( , 1)

( 1, 1) ( 1, ) ( 1, 1)

I i j I i j I i j

I i j I i j I i j

I i j I i j I i j

− − − − +

− +

+ − + + +
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 
 
 

 

And 

 
( 1, 2) ( 1, 3) ( 1, 4)

( , 2) ( , 3) ( , 4)

( 1, 2) ( 1, 3) ( 1, 4)

I i j I i j I i j

I i j I i j I i j

I i j I i j I i j

− + − + − +

+ + +

+ + + + + +

 
 
 
 

 

With i=2: M-4 and j=2: M-4. These two blocks are 8×8 
neighbourhoods for pixel (i, j) and pixel (i, j+3). Thus, 
Jaccard index is now defined between two matrices of 
size 3×3. 

In Figure 3, we show 3 images on which we apply 
similarity blocks to extract signatures shown in Figure 
4. The vector of all similarity indices is a signature for 
the image as shown in Figure 4. 

 

   

a) First tested image. b) Second tested image. c) Third tested image. 

Figure 3. The three images used to test similarity between image 
blocks: Images in Figures 3-a and 3-b are close to each other while 
the third one in Figure 3-c is utterly different. 
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    a) Signature for image 
         in Figure 3-a.  

      b) Signature for image  
           in Figure 3-b.                    

    c) Signature for image 
         in Figure 3-c. 

Figure 4. Signatures for images in Figure 3: Both first signatures (a 
and b) are similar while the third one (c) is different. 

In Table 1, a Hausdorff Distance (HD) is computed 
between signatures of the three images. Let J1, J2 and J3 
denote vectors signatures for images in Figures 3-a, b 
and c respectively. Then: 

(3) 

(1) 

(2) 

(4) 
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Table 1. HD between images signatures. 

HD(J1,  J2) HD(J1,  J3) HD(J2,  J3) 

0.00 22.52 23.50 

We use the discrete HD defined by HD (A, B)= 
max(h(A, B), h(B, A)).  

Where ( , )
b Ba A

h A B max m in a b
∈∈

= − .  

We can also use Dynamic Time Warping (DTW) 
[16] or Chamfer Distance [2]. 
 
3. Rotation and PCA   

PCA has its source in an article published in 1901 by 
Karl Pearson [1, 26, 28]. Here, we give a brief 
description of PCA principle (Suppose x1, x2, ..., xM are 
N×1 vectors):  

• Step 1: 
1

1 M

i

i

x x
M =

= ∑  

• Step 2: Subtract the mean: 

i i
x xΦ = −  

• Step 3: Form the matrix:  

1 2[ ]
M

A Φ Φ Φ= L  

    (N×M matrix), then compute: 

1

1 M
T T

n n

n

C AA
M

ΦΦ
=

= =∑  

    (Sample covariance matrix, N×N, characterizes the 
scatter of the data) 

• Step 4: Compute the Eigen values of:  

1 2: NC λ λ λ> > >L  

• Step 5: Compute the Eigen vectors of: 

1 2: , , , NC u u uL  

Since, C is symmetric, u1, u2, ..., uN from a basic, (i.e., 
any vector x or actually ( ),x x−  can be written as a 
linear combination of the Eigen vectors): 

1 1 2 2
1

N

N N i i
i

x x b u b u b u b u
=
∑− = + + + =L  

Thus, the Principal Component Analysis (PCA) uses a 
matrix indicating the degree of similarity between 
variables and then we compute projection matrix for 
variables in the new space. This symmetric matrix, 
which includes the variance of variables on the 
diagonal and elsewhere is called covariance matrix. 
Covariance measures the degree of independence of 
two variables. 

Under the action of rotation contours coordinates of 
the second image are related to coordinates contours of 
the first image by: 

                      
ˆ cos sin xx

ˆ sin cos yy

θ θ

θ θ
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 Denotes contours vectors of second. 

Image
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The analytical writing is given by:  

ˆ cos sini ix x yθ θ= +  

  ˆ sin cosi iy x yθ θ= − +  

Let M denotes: 

i
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M

y
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The covariance matrix for transformed image is:  

ˆˆ ˆ ˆ ˆ ˆ( )
ˆ
it

j j
i

x
V MM x y

y

 
= =  

 
 

For i=1, ..., n and j=1, ..., n so, we have: 

2 2 2

2

( ) ( )

( ) ( )

i j i j i i j j

i i j j

i j i j i j

i j i j i j

i j i j
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sin x cos y sin x cos y

cos x x sin x x cos y y

sin y y cos sin y x cos sin y x

x x y y

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ θ θ θ+
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− + − +

= + + +

−
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Which proves invariance under rotation.  

3.1. Experiments 1 

In the following experiment as shown in Figure 5, we 
apply this technique to eliminate rotation and extract 
two invariant values for each image. Those values are 
the two largest Eigen values of the covariance matrix 
as shown in Table 2. 

  
a) Image with number “1”. b) Edge of image in Figure 5-a. 

  
c) Image with rotated number “1”. d) Edge of image in Figure 5-c. 

Figure 5. Two images used in experiments and their corresponding 
edges. 
 
Table 2. The two largest Eigen values of the covariance matrix for 
contours. 

Two Eigen Values for V Two Eigen Values for Vˆ  

0.0287 0.0390 

3.5376 3.4347 

(6) 

(5) 
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3.2. Experiments 2 

For synthetic contours Figures 6 and 7, we obtain a 
perfect result, the following 2D curve was created 
using the parametric equation:  

            
( ) 2 cos( )

[0, 2 ]1
( ) sin( ) sin(5 )

2

x t t

t
y t t t

π

=

∈
= +





               

  
a) Curve of Equation 7. b) Rotated curve of Equation 7. 

Figure 6. Synthetic contour in Figure 6-a and the same contour in 
Figure 6-b after applying a synthetic rotation.  
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            a) Covariance matrix of contour  
                in Figure 6-a 

b) Covariance matrix of contour 
           in Figure 6-b. 

Figure 7. 2D display of the covariance matrix for contours. 

To test our technique to noise resistance, noise with 
different percentage is added Figure 8 and values in 
Table 4 does not change much compared to one 
illustrated in Table 3. 
 
Table 3. The two largest eigen values of covariance matrices in 
Figures 7-a and 7-b respectively.  

Synthetic Contour Transformed Contour 

6.25 6.25 

20.40 20.40 

 
Table 4. The two largest eigen values of the covariance matrix in 
Figures 8-b and 8-d. 

Noisy Contour  (20% added) Noisy Contour (10% added ) 

6.24 6.28 

20.55 20.50 
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a) Edge with 10% noise added. b) Covariance matrix for edge in Figure 8-a. 
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c) Edge with 20% noise  added d) Covariance matrix for edge in Figure 8-c. 

Figure 8. Noisy edges and 2D display of the covariance matrix. 

4. Comparison 

In the work [3] an approach for binary image 
comparison without feature extraction was presented. 
It uses the windowed HD in a pixel adaptive way. 
They measure HD not between two full images, but 
between subimages extracted by a window. It is 

therefore necessary to define the extent of the HD in a 
window. This amounts to modify the definition of the 
overall measurement by introducing a restriction to 
sets of points at the window. 

Let A and B be two bounded sets: 

   ( , ) max ( , ), ( , )( )w w wHD A B h A B h B A=  

Where w denotes a window and: 

( , )
b Ba A

wh A B max min a b
∈∈

= −  

The size of the w window must be fixed. This can be 
done by the user or automatically and globally or even 
automatically and locally according to the local 
environment. 

This distance is not invariant to rotation and under 
translation Figure 9. We have HDw(A, A+V)=|V|. So, 
they did not take care of the situation where images 
might be rotated. 

For two binary images, assuming that they have the 
same resolution and same orientation of object(s) in the 
images, the map of all local dissimilarity measures i.e., 
CDL Figure 10 made on different places images 
constitute the proposed signature in this work.  

 

  
 

a) Bold line (left). b) Bold line (right). c) Dot line (right). 
 

Figure  9. Image A: A bold line on the left Image B: A bold line to 
the right. Image C: A dots line on the right. 

  
a) CDL between Figures 9-a and c. b) CDL between Figures 9-a  and c. 

 

Figure 10. CDL between the images A and B. There are two 
distance values in the CDL: 0 (blue) and 12 (pink), which is the 
value of the overall HD. CDL between image A and the image C.  
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a) Signature for image 
     in Figure 9-a.                             

b) Signature for image  
     in Figure 9-b.                            

c) Signature for image  
     in Figure 9-c.                           

Figure 11. Jaccard similarity indices between the image rows for 
image A (Figure 9-a), image B (Figure 9-b) and image C (Figure 9-
c). 

Using similarity indices as shown in Figure 11, we 
computed signatures of images in Figure 9. We can see 
that both images a and b have the same signatures 
(zero in this case), while signature for image c has 
three non-nulls (different from zero) values. 

CDL in Figure 10 cannot tell us if images in Figure 
9 are the same or not as it gives 2 lines Figures 10-a 
and b). 

(7) 



236                                                         The International Arab Journal of Information Technology VOL. 13, NO. 2, March 2016                                          

 

 

5. Conclusions  

This work was the opportunity to expose problems 
related to automatic recognition of individual binary 
images. There are two main techniques for extracting a 
signature from binary images: The first one uses a 
similarity index between rows or blocks of the image, 
the second uses covariance matrix to eliminate the 
rotation transformation effect. 

In the paper of Baudrier et. al. [3] we can see that 
the HDw is not invariant according to translation. We 
also, proved in this work that HDw is invariant 
according to rotation using covariance matrix and its 
Eigen values. 

In future work, as each row or column in binary 
image can be considered as 1D vector (so we have N or 
M binary vector), we can reuse algorithm such as 
BRIEF, ORB or BRISK [6, 17, 22] categorized as 
binary valued features and are reserved to binary 
dataset. 
 
References 

[1] Aldrich J., “Karl Pearson’s Biometrika: 1901-
36,” Biometrika, vol. 100, no. 1, pp. 3-15, 2013. 

[2] Barrow H., Tenenbaum J., Bolles R., and Wolf 
H., “Parametric Correspondence and Chamfer 
Matching: Two New Techniques for Image 
Matching,” available at: 
http://ijcai.org/Past%20Proceedings/IJCAI-77-
VOL2/PDF/024.pdf, last visited 1997. 

[3] Baudrier E., Millon G., Nicolier F., and Ruan S., 
“A Fast Binary-Image Comparison Method with 
Local Dissimilarity Quantification,” in 

Proceedings of the 18
th
 Conference on Pattern 

Recognition, Hong Kong, pp. 216-219, 2006. 
[4] Brunelli R. and Mich O., “Histograms Analysis 

for Image Retrieval,” Pattern Recognition, vol. 
34, no. 8, pp.1625-1637, 2001. 

[5] Bay H., Tuytelaars T., and Van L., “SURF: 
Speeded up Robust Features,” in Proceedings of 
the 9

th
 European Conference on Computer 

Vision, Graz, Austria, pp. 404-417, 2006. 
[6] Calonder M., Lepetit V., Strecha C., and Fua P., 

“BRIEF: Binary Robust Independent Elementary 
Features,” in Proceedings of the 11th European 
Conference on Computer Vision, Crete, Greece, 
pp. 778-792, 2010. 

[7] Cha H. and Srihari N., “A Fast Nearest Neighbor 
Search    Algorithm    by    Filtration,”    Pattern 
 Recognition, vol. 35, no. 2, pp. 515-525, 2000. 

[8] Cha S., Tappert C., and Srihari S., “Optimizing 
Binary Feature Vector Similarity Measure using 
Genetic Algorithm,” in Proceedings of the 7th  
International Conference on, Edinburgh, 
Scotland, pp. 662-665 , 2003. 

[9] Cha S., Yoon S., and Tappert C., “Enhancing 
Binary Feature Vector Similarity Measures,” 

available at: http://digitalcommons.pace.edu/cgi/ 
viewcontent.cgi?article=1017&context=csis_tech
_reports, last visited 2006. 

[10] Ciocca G. and Schettini R., “Using a Relevance 
Feedback Mechanism to Improve Content-based 
Image Retrieval,” in Proceedings of the 3rd  
International Conference, VISUAL’99 

Amsterdam, pp. 107-114, 1999. 
[11] Derrode S. and Ghorbel F., “Robust and Efficient 

Fourier-mellin Transform Approximations for 
Invariant Grey-level Image Description and 
Reconstruction,” Computer Vision and Image 
Understanding, vol. 83, no. 1, pp. 57-78, 2001. 

[12] Hu K., “Visual Pattern Recognition by Moment 
Invariants,” IRE Transactions on Information 
Theory, vol. 8, no. 2, pp. 179-187, 1962. 

[13] Hubalek Z., “Coefficients of Association and 
Similarity, based on Binary (Presence-Absence) 
Data: An Evaluation,” Biological Reviews, vol. 
57, no. 4, pp. 669-689, 1982. 

[14] Jaccard P., “Étude Comparative De La  
Distribuition Florale Dans Une Portion Des 
Alpes Et Des Jura,”  Bull Soc Vandoise Sci Nat, 
vol. 37, pp. 547-579, 1901. 

[15] Kuhns L., “The Continuum of Coefficients of 
Association,” in Proceedings of Statistical 

Association Methods for Mechanized 

Documentation, National Bureau of Standards, 
Washington, pp. 33-39, 1965. 

[16] Lemire D., “Faster Retrieval with a Two Pass 
Dynamic Time Warping Lower Bound,” Pattern 
Recognition, vol. 42, no. 9, pp. 2169-2180, 2009. 

[17] Leutenegger S., Chli M., and Siegwart R., 
“BRISK: Binary Robust Invariant Scalable 
Keypoints,” in Proceedings of IEEE 

International on Computer Vision, Barcelona, pp. 
2548-2555, 2011. 

[18] Lowie G., “Distinctive Image Features from 
Scale-Invariant Keypoints,” the International 

Journal of Computer Vision, vol. 60, no. 2, pp. 
91-110, 2004. 

[19] Maddess T., Nagai Y., James C., and Ankiewcz 
A., “Binary and Ternary Textures Containing 
Higher-Order Spatial Correlations,” Vision 

Research, vol. 44, no. 11, pp.1093-1113, 2004. 
[20] Philipp S., Vieira B., and Sanfourche M., “Fuzzy 

Segmentation of Color Images and Indexing of 
Fuzzy Regions,” in proceedings of Conference 
on Colour in Graphics, Imaging, and Vision, 
Poitiers, pp. 507-512, 2002. 

[21] Rehab D. and Rania A., “A Hierarchical K-NN 
Classifier for Textual Data,” the International 
Arab Journal of Information Technology, vol. 8, 
no. 3, pp. 251-259, 2011. 

[22] Rublee E., Rabaud V., Konolige K., and Bradski 
G., “ORB: An Efficient Alternative to SIFT or 
SURF,” in Proceedings of IEEE International 



Binary Data Comparison using Similarity Indices and Principal Components Analysis                                                           237 

 

Conference on Computer Vision, Barcelona, pp. 
2564-2571, 2011. 

[23] Sameer A., Rangachar K., and Ramesh J., “A 
Survey on the Use of Pattern Recognition 
Methods for Abstraction, Indexing and Retrieval 
of Images and Video,” Pattern Recognition, vol. 
35, no. 4, pp. 945-965, 2002. 

[24] Smeulders A., Worring M., Santini S., Gupta A., 
and Jain R., “Content based Image Retrieval at 
the end of the Early Years,” IEEE Transcrition 
on Pattern Analysis and Machine Intelligence, 
vol. 22, no. 12, pp. 1349-1380, 2000. 

[25] Smith R. and Chang F., “Automated Binary 
Texture Feature Sets for Image Retrieval,” in 
Proceedings of IEEE International Conference 

on Acoustics, Speech, and Signal Processing, 
Atlantic, pp. 2239- 2242, 1996. 

[26] Theodore P. and Karl P., The Scientific Life in a 
Statistical Age, Princeton University Press, 2005. 

[27] Veltkamp R. and Hagedoorn M., “State-of-the-art 
in Shape Matching,” Technical Report UU-CS-
1999-27, Utrecht University, the Netherlands, 
1999. 

[28] Walker M., “The Contributions of Karl Pearson,” 
Journal of the American Statistical Association, 
vol. 53, no. 281, pp. 11-22, 1958. 

Nouhoun Kane is a PhD student at 
the Department of Computer 
Science, Faculty of Science 
Semlalia, Cady Ayyad University, 
Morocco. His current research 
interests are signal, text and image 
processing. 

Khalid Aznag Is a PhD student at 
the Department of Computer 
Science, Faculty of Science 
Semlalia, Cady Ayyad University, 
Morocco. His current research 
interests are 2D and 3D images and 
2D curve. 

Ahmed El Oirrak joined Cadi 
Ayyad University, Morocco, in 
1999, first as an assistant professor, 
and received the Doctorate and 
Habilitation in signal processing 
from the Mohammed V University, 
Morocco, in 2001 and University 

Cadi Ayyad, Morocco, in 2010 respectively. He is 
presently a PH professor with the Faculty of Sciences 
of Marrakech Semlalia. His research interests include 
image processing, pattern recognition and their 
applications. He is the author of more than 20 
publications. 

Mohammed Kaddioui is a full 
professor of computer science at the 
Department of Computer Science, 
Faculty of Science Semlalia, Cadi 
Ayyad University, Morocco. His 
major field of study is information 
processing and management and 

computer graphics. 
 

 
 

 

 


