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Abstract: Software testing is an important activity that is carried out during the software development life cycle. Regression 

testing means re-executing test cases from existing test suites to assure that the modifications done to the existing software 

have no adverse effects. During regression testing, new test cases are not created but previously created test cases are re-

executed. The ideal regression testing is to rerun all the test cases, but due to time and cost constraints only a subset of test 

cases are rerun based on regression testing techniques. The various regression testing techniques are test case minimization, 

test case selection and test case prioritization. In this paper, an approach to solve test case prioritization based on efficient 

swarm intelligence approach called Glowworm Swarm Optimization (GSO) is proposed. This research work focuses on a 

conception of definite updating search field at glowworm updating position stage. Based on the Specific Update search 

domain based GSO (SU-GSO) approach, an optimal number of test cases to be executed on Software Under Test (SUT) is 

obtained. The objectives of this research work are to maximize the path coverage and fault coverage for getting the optimal 

prioritized test cases. The resulting solution guarantees an optimal ordering of test cases and the performance of the proposed 

SU-GSO is compared with other optimization techniques such as Particle Swarm Optimization (PSO) and artificial Bee 

Colony Optimization (BCO). 
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1. Introduction 

Software bugs are almost present in most of the 
software modules which are being developed by the 
software developers as the complexity of software is 
usually intractable and software developers have only 
restricted potential to handle complexity. Identifying 
the design defects in software is very tough due to 
complexity. Since, software is not continuous, testing 
boundary values are inadequate method to assure 
accuracy. Thus, the entire values are required to be 
evaluated and confirmed, but this entire testing is not 
feasible [28]. 

The software maintenance phase requires efficient 
regression testing process. It is necessary to retest the 
existing test suite whenever any alterations are done to 
the software. Software testing is an important part of 
the software development process. It is one of the 
major and primary techniques for achieving high 
quality software. It is the process of evaluating a 
system or its components with the intent to find that 
whether it satisfies the specified requirements or not. 
Regression testing is the phenomenon of re-running the 
test cases from the test suite to assure error free 
modified software. It guarantees that modifications in 
the software have not influenced functional 
characteristics of software [1].  

But, software developers often have time and 
budget limits in running all the test cases within the 
particular  constraints.  Thus,  this  approach  is  quite 

 
expensive and time consuming. Therefore, in order to 
deal with the problem of time and budget constraint, 
test case minimization, selection and prioritization 
techniques [30] have been used for regression testing 
for effective cost reduction in regression testing.  

The proposed research work mainly focuses on the 
test case prioritization. In test case prioritization, the 
test cases are ordered priority-wise based on the 
objectives rate of fault detection and average statement 
coverage, such that highest priority test case is to be 
executed first and so on.  Prioritization can offer earlier 
feedback to testers and management and facilitate 
software developers to begin debugging much earlier. 
It can also raise the probability that if testing ends in 
advance, only necessary and worthy test cases have 
been rerun [20, 21]. 

Test case prioritization looks for identifying 
potential ordering of test case execution for regression 
testing. The efficiency of the test case prioritization 
lies in revealing the faults at the earliest [31]. But, the 
nature and locality of actual faults are usually not 
known in advance and thus, test case prioritization 
approach have to largely depend on available 
substitutes for prioritization criteria. Structural 
coverage, requirement priority and mutation score have 
been used in the literature as criteria for performing 
prioritization [5, 24]. But, there is no single 
prioritization criterion whose results dominate the 
others. 
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Several numbers of test cases will be formed 
through exhaustive testing [29]. But, all the test cases 
cannot be considered and only a few test cases will be 
performing well if implemented in testing the software. 
This is the main issue considered in this paper. This 
problem necessitates obtaining the result based on the 
statement coverage and fault coverage in particular 
time. 

The test cases are prioritized based on the average 
statement coverage and rate of fault detection. The 
prioritization will be based on certain test adequacy 
criteria or fitness value [9]. Furthermore, through 
polynomial bounded computation, most of the complex 
multivariable optimization problems [4] cannot be 
solved accurately. This formulation induces to develop 
a novel approach through search based intelligent 
selection and prioritization of test case.  

Optimization techniques have been effectively used 
in test case generation and prioritization in recent 
years. Although, a number of optimization techniques 
have been proposed and good results have been 
obtained, problems such as complexity in dynamic data 
sets and higher time consumption for convergence 
always exists in the traditional optimization 
techniques. Thus, still there is always a hope for 
betterment of the optimization results. This research 
work focuses on using the appropriate optimization 
technique for the application of test case prioritization 
which provides the optimal best results.  

Thus, this approach uses swarm intelligence based 
technique for test case prioritization. A number of 
swarm intelligence approaches have been observed to 
produce significant results in terms of its accuracy, 
convergence behavior, time taken etc., this research 
uses a recent and efficient swarm intelligence approach 
called as the Glowworm Swarm Optimization (GSO) 
for getting the optimal test case prioritization results 
[15, 17]. GSO is used to produce the optimal test case 
prioritization which is adequate to cover the statements 
and faults in the software. This research work focuses 
on the multi objective criteria namely the average 
statement coverage and rate of fault detection. 

2. Literature Survey 

This section presents an overview of the related work 
of test case prioritization using some of the search 
based approaches and met heuristics. The regression 
testing has been solved using optimization approaches 
like Genetic Algorithm (GA) [12], Ant Colony 
Optimization (ACO) [23], etc.  

A cost cognizant test case prioritization approach is 
presented by [8] with the application of previous data 
and GA. A controlled experiment has been carried out 
to evaluate the performance of the approach. But, the 
main drawback of this approach is that it does not 
consider the test cases similarity. A novel technique 
called Edge Partitions Dominator Graph-Genetic 
Algorithm (EPDG-GA) which uses the EPDG and GA 
for branch coverage testing is proposed by [3]. 

The   main   drawback   of   the   GA   is   its   slow  

convergence. Moreover, it is more complex since, it 
lacks rank based fitness function which reduces 
complexity. 

ACO is a bio inspired approach based on the real 
life behavior of ants. In [26], a technique on 
application of ACO algorithm for test case selection 
and prioritization is proposed. This work clearly 
explains the graphical depiction of food search of the 
ants which results in finding different paths and 
choosing the optimal path. Results indicate that ACO 
results in solutions that are in close proximity with 
optimal solutions. 

ACO approach performs better than GA as 
convergence is guaranteed, but the time period for 
convergence is uncertain. Furthermore, in NP-hard 
problems, high-quality solutions are needed at a faster 
rate, but ACO concentrates only on quality 
of solutions. 

More recently, Bee Colony Optimization (BCO) has 
emerged as a potential technique in the field of swarm 
intelligence. BCO has been applied in various 
optimization problems like “Travelling Salesman 
Problem” [22] which is a NP-Hard combinatorial issue 
in which an optimal path is to be found from source to 
destination for a travelling salesman.  

Kaur and Goyal [11] an approach for the fault 
coverage regression test suite prioritization based on 
the BCO algorithm is presented. The most difficult 
task in regression testing is the size of the regression 
test suite and its selection process due to its time and 
budget constraints. In BC, Scout bees and forager bee 
are accountable for the development and maintenance 
of the colony. Based on the nature of these two bees, 
BCO algorithm for the fault coverage regression test 
suite has been developed. BCO algorithm has been 
designed for fault coverage to obtain maximum fault 
coverage in minimal execution time of each test case. 
But, the main drawbacks of BCO are: 

• Slow convergence rate. 
• As the random number is stochastic in basic BCO, 

certain good solutions are predictable to be skipped. 

The application of Hybrid Particle Swarm 
Optimization (HPSO) algorithm in regression 
technique is proposed by Kaur and Bhatt [10]. The 
criterion considered is maximum fault coverage in 
minimum execution time. HPSO is an integration of 
Particle Swarm Optimization (PSO) technique and GA 
to enhance the search space for the solution. GA offers 
optimized approach to carry out prioritization in 
regression testing and on integrating it with PSO 
technique provides fast solution. GA has been used is 
Mutation operator which facilitates the search engine 
to assess all features of the search space.  

A large number of fundamental variations have been 
formulated to enhance the speed of convergence and 
significance of solution found by PSO. But, 
fundamental PSO is more suitable to process static, 
simple optimization problem. Furthermore, it is very 
difficult to deal with non-metric problem domains in 
PSO [7]. 
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Due to the drawbacks of the above said optimization 
algorithms, an efficient optimization algorithm which 
provides best convergence rate, less complexity, higher 
accuracy is required to solve the test case prioritization 
problem.  

Thus, in this research work, GSO is used to solve 
the test case prioritization problem. GSO is a novel 
technique of swarm intelligence based algorithm for 
optimizing multiple functions raised by Krishnanad 
and Ghose [16]. This algorithm has become one of the 
active research areas of swarm intelligence. Because of 
its potential influence, it’s been used at noisy text of 
sensor and simulating robots [13]. Hence, this research 
work uses GSO to attain the optimal results.  

Li et al. [18] gives empirical study results of two 
met heuristic search techniques and three greedy 
search techniques applied to six programs for 
regression test case prioritization.  

Test case prioritization approach was first proposed 
by Wong et al. [27], which is aimed at ranking the test 
cases in an optimal ordering. Even if the testing is 
terminated at a point, the maximum benefit can be 
obtained. 

Srivastava [25] Praveen initiated a novel test case 
prioritization algorithm that calculates average faults 
observed per minute. 

A regression testing technique for test case 
prioritization based on code coverage criteria is 
recommended by Aggarwal et al. [2]. 

3. Methodology 

This research work uses an efficient GSO algorithm for 
the formulation of test case prioritization. In this 
proposed approach, each test case would denote a glow 
source and the aim of the approach would be to 
determine best sources i.e., test cases with maximum 
statement coverage and maximum fault coverage. 

The main aim of the proposed approach is to 
determine the optimal number of test cases with higher 
statement coverage and fault coverage. In order to, 
handle this issue, GSO approach gather the test cases 
and then calibrate the local decision range function 
which is in-turn used to identify the optimal test cases 
with maximum statement coverage and fault coverage.  

On choosing the population randomly from a given 
issue, local-decision range is assigned based on the 
position of the GSO algorithm. This local-decision 
range represents to a possible solution of the 
optimization problem and the luciferin decay constant 
corresponds to the quality (fitness) of the associated 
solution [14]. In this process of test case prioritization, 
the position of glowworm (luciferin update) is 
considered as number of statements and faults covered 
by that glowworm. The regression testing mainly 
focuses on total statement and fault covered in less 
time. The stopping criterion is to be decided, on the 
basis of which glowworm optimization algorithm will 
end.  

This research work proposes that the optimized test 
suite produced by the algorithm will comprises of all 

possible statements and faults in the program. The 
program is given to the test case optimization tool. 
GSO is applied to produce an optimal test suite by 
generating optimal test data which would have higher 
statement and path coverage. The glowworm 
distributes in the objective function definite space. In 
GSO, brightness is regarded as search agent for the 
execution state of the Software Under Test (SUT) and 
also initializes the test cases by defining the parameter 
with the initial test data with the aid of corresponding 
partitioning and boundary value analysis. The search 
agent computes the local decision range based on the 
brightness of each test node by estimating the 
statement and fault coverage. This process is repeated 
until an executable state of SUT is determined. The 
glowworm optimization can be distributed in the 
objective function definite space. Their brightness is 
based on the position of objective function value. With 
the brighter glow, the better is the position which in 
turn results in good target value. The glow looks for 
the neighbor group in the local-decision range and a 
brighter glow in the set has a higher pull to attract this 
glow towards this traverse and the flight direction each 
time will change along with the choice of neighbor. In 
the mean time, local-decision range size will be based 
on the neighbor quantity which means when the 
neighbor density is low, glow’s policy-making radius 
will expand which in turn looks for more neighbors, on 
the other hand, the policy-making radius minimizes if 
the neighbor density is high. Ultimately, a number of 
glowworm returns collects at the multiple optima of 
the given objective function. If the condition is not 
met, then the new set of test data is formed from the 
abandoned repository and again the same process is 
repeated.  

Though GSO is much suited for various 
applications, yet the search accuracy and post iteration 
is not high. This research work uses an idea of definite 
updating search field at glowworm updating position 
stage for improving the performance of the GSO. The 
algorithm for test case optimization using Improved 
GSO approach is presented in the next section. 

3.1. Specific Update Search Domains of 

Glowworm Swarm Optimization  

A novel algorithm called Specific Update search 

domains of Glowworm Swarm Optimization (SU-

GSO) is used in this research work for test case 

prioritization. SU-GSO makes the position update of 

glowworm which makes it get to the optimal solution 

which in turn increases the accuracy and speeding up 

convergence [19]. Each glowworm �  encodes the 

object function values R1(xi(t)) and R2(xi(t)) at its 

current location xi(t) into a luciferin value li and 

transmits the data within its neighborhood. The 

multiple objective functions considered in this research 

work are Statement Coverage (SC) which corresponds 

to R1 is given in Equation 1 and Fault Coverage (FC) 

which corresponds to R2 is given in Equation 2. It 
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means that, this work concentrates on maximizing the 

statement coverage and fault coverage for a given time. 
 

      

1
( )R SC = Average Statement Coverage

= No. of Statements covered by Total no.of Statement

 

              

2
( )R FC = Rate of Fault Detection

= No. of Faults covered by Execution Time

 

1 2
Objective Function R = α * R + β * R  

Where α and β are weights, such that α+β =1. 

The set of neighbors Vi(t) of glowworm i comprises of 

those glowworms that have a fairly better luciferin 

value and that are positioned within a dynamic 

decision domain, and updating at each iteration. Local-

decision range update is given in Equation 3. 

        
{ }{ }( 1) , 0, ( ) ( ( ) )

i i

d s d t
r t min r max r t n V tβ+ = + −

 

Where
 

( 1)
i

d
r t +  denotes the glowworm i’s local-

decision range at the t+1 iteration, rs denotes the sensor 

range, ni represents the neighborhood threshold, the 

parameter β affects the rate of change of the 

neighborhood range. The number of glow in local-

decision range is given in Equation 4. 

         
{ }( ) : ( ) ( ) ; ( ) ( )

i

i j i d i j
N t R x t x t r l t l t= − < <  

Where Xj(t) denotes the glowworm i’s position at the t 

iteration, lj(t) represents the glowworm i’s luciferin at 

the t iteration and the set of neighbors of glowworm i 

comprises of those glowworms that have a relatively 

higher luciferin value and that are positioned within a 

dynamic decision domain whose range
i

d
r is bounded 

above by a circular sensor range (0 ).
i

s d
r r i< < Each 

glowworm i chooses a neighbor j with a probability 

pij(t) and moves toward it. These movements that 

depend only on local data facilitate the glowworms to 

separate into disjoint subgroups and demonstrate a 

simultaneous behavior toward and eventually co-locate 

at the multiple optima of the given objective function 

probability distribution given in Equation 5 is used to 

select a neighbor. 
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( )
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Movement update is given in Equation 6: 
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Luciferin-update is given in Equation 7: 

                    
( )( ) 1 ( 1) ( ( ))

i i i
l t l t R x tρ γ= − − +  

Where lj(t) depends on luciferin value of glowworm i 
at the t iteration, ρ(0, 1) results in the reflection of 
the cumulative goodness of the path followed by the 
glowworms in their current luciferin values, the 

parameter γ only scales the function fitness values, 
R1(xi(t)) is the value of test function. 

In fundamental GSO algorithm, a conception of 
specific update at glowworm position to organize 
alteration of the glowworm position. Because of this 
approach, after the specific update of the glow position 
always in present most superior individual margin to 
improves the convergence rate of the algorithm. 
Improvement algorithm according to update location is 
given in Equation 8. 

                         
( ) ( ) ( 0.5)

i best
x t x t rand= + −  

Where xbest(t) represents  the best one at the t iteration, 
xi(t) denotes the position after updated of glow that 
need to change.  

3.2. SU-GSO Algorithm 

The proposed algorithm is formulated as follows: 

• Step 1: Initialize the test cases by defining the 

parameters ρ, γ, β, s, l0, m, n with values 0.4, 0.6, 

0.08, 0.03, 5,5 respectively. 

• Step 2: For each test cases calculate the luciferin 

value and update it according to Equation 7. 

• Step 3: Find the set of neighbors of each test case 

that have a relatively higher luciferin value 

according to Equation 4. 

• Step 4: If the test case does not satisfy Equation 4, 

then renew its position with Equation 8. 

• Step 5: Select the distribution using Equation 5 and 

update it with Equation 6. 

• Step 6: Enhance the search radius according to 

Equation 3. 

• Step 7: Check whether the condition is satisfied. 

• Step 8: Proceed for the next iteration and wait for 

the termination condition. 

3.3. SU-GSO Flow Chart 

Figure 1 gives the flow chart of the proposed SU-GSO 
algorithm’s flow chart. 

 

Figure 1. Proposed SU-GSO algorithm flow chart. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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4. Experiments and Results 

The test case prioritization technique’s basic evaluation 
is to have maximum number of faults covered and 
statement covered with minimum number of test cases 
required. In this approach, the execution time of every 
test case is also analyzed. The fault measuring 
technique used is fault coverage based testing 
technique. In this example, there are test cases forming 
Test Suite (TS)={T1, T2, T3, T4, T5, T6, T7, T8} and the faults 
covered by those test cases are represented as Faults 
Covered (FC)={F1, F2, F3, F4, F5, F6}. Similarly the 
statements covered by the test cases are denoted as 
Statements Covered (SC)={S1, S2, S3, S4, S5}. Tables 1 and 2 
show the Test cases with the faults and statements 
covered in particular execution time. 

Table 1. Test cases with fault coverage and execution time.  

Test Cases/ 

Faults 
F1 F2 F3 F4 F5 F6 No. of Faults Covered Execution Time 

T1 x  x x   3 10 

T2  x x  x x 4 8 

T3 x   x   2 11 

T4   x  x x 3 15 

T5 x x  x x  4 11 

T6 x     x 2 9 

T7  x x x x  4 8 

T8 x     x 2 6 

 

Table 2. Test cases with statement coverage. 

Test Case/Faults S1 S2 S3 S4 S5 No. of Statements Covered 

T1  x  x  2 

T2 x  x  x 3 

T3 x x  x  3 

T4  x x   2 

T5  x x x x 4 

T6 x     1 

T7 x x   x 3 

T8 x   x  2 

 
The performance of the proposed SU-GSO approach is 
compared with the other optimization approaches such 
as PSO and Artificial Bee Colony (ABC) in terms of 
percentage of statement coverage, fault coverage and 
both. It is clearly observed from the Figure 2 that the 
proposed test case prioritization approach using SU-
GSO provides better statement coverage when 
compared with ABC and PSO optimization 
approaches.  
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Figure 2. No. of cycles vs. statement coverage (%) comparison. 

Figure 3 shows the fault coverage comparison in 

percentage for the approaches such as PSO, ABC and 

SU-GSO. The proposed approach outperforms the 

other two approaches in terms of the fault coverage. 
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Figure 3. No. of cycles vs. fault coverage (%) comparison. 

 

It can be observed from the graphical representation 

that the test cases are prioritized based on higher 

statement coverage and fault coverage are selected as 

the optimal test cases.  

Figure 4 shows the graphical representation of the 

objective function R Vs the number of cycles. The 

proposed SU-GSO is observed to produce better results 

than the other two optimization algorithms taken for 

comparison.  
For instance, when the number of cycles is 45, the 

coverage obtained by the ABC approach is 70% and 
the coverage obtained from PSO approach is 78%, 
whereas the proposed SU-GSO approach attains 
coverage of about 90%. Thus, the proposed SU-GSO 
approach outperforms the other two approaches. 

This would result in the prioritization of the test 

cases in a suitable and appropriate order which in turn 

improves the overall performance of the system.  
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Figure 4. No. of cycles vs. coverage (%) (objective function R)  

4.1. APFD Metric 

This performance of the proposed SU-GSO based test 
case prioritization has been represented through APFD 
representation. The APFD percentage is calculated by 
concerning test suite selected from above program 
solution [6].  

To quantify the goal of increasing a subset of the 
test suite's rate of fault detection, APFD metric 
developed by Elbaum et al. [6] is used to measures the 
average rate of fault detection per percentage of test 
suite execution. The APFD is calculated by taking the 
weighted average of the number of faults detected 
during the run of the test suite. APFD can be calculated 
using a notation:  

                  

1 2
1

1
2

m
TF TF TF

APFD
nm n

+ +
= − +

L

 (10) 
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Where T: The test suite under evaluation, m: The 
number of faults contained in the program under test P, 
n: The total number of test cases, TFi: The position of 
the first test in T that exposes fault i. 

So, as the formula for APFD shows that calculating 
APFD is only possible when prior knowledge of faults 
is available. APFD calculations therefore are used only 
for evaluation. 

5. Conclusions 

Test case prioritization has become an active area of 
research in the field of software testing. A number of 
research works have been proposed in the literature for 
test case prioritization. The main aim for prioritization 
of test cases is to minimize the cost and time of 
regression testing. This research work focuses on novel 
test case prioritization considering multi objective 
criteria and an efficient optimization technique. The 
objectives considered in this research work are average 
statement coverage and rate of fault detection. This 
research work succeeds in attaining efficient test case 
prioritization results using SU-GSO. The performance 
of the approach is compared with other optimization 
approaches such as PSO and ABC. It is observed from 
the experimental results that the proposed SU-GSO 
based test case prioritization based approach provides 
better results when compared with PSO and ABC.  
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