
748 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

An Efficient Specific Update Search Domain based

Glowworm Swarm Optimization for Test Case

Prioritization

Beena Raman and Sarala Subramani
1
Department of Information Technology, Bharathiar University, India

Abstract: Software testing is an important activity that is carried out during the software development life cycle. Regression

testing means re-executing test cases from existing test suites to assure that the modifications done to the existing software

have no adverse effects. During regression testing, new test cases are not created but previously created test cases are re-

executed. The ideal regression testing is to rerun all the test cases, but due to time and cost constraints only a subset of test

cases are rerun based on regression testing techniques. The various regression testing techniques are test case minimization,

test case selection and test case prioritization. In this paper, an approach to solve test case prioritization based on efficient

swarm intelligence approach called Glowworm Swarm Optimization (GSO) is proposed. This research work focuses on a

conception of definite updating search field at glowworm updating position stage. Based on the Specific Update search

domain based GSO (SU-GSO) approach, an optimal number of test cases to be executed on Software Under Test (SUT) is

obtained. The objectives of this research work are to maximize the path coverage and fault coverage for getting the optimal

prioritized test cases. The resulting solution guarantees an optimal ordering of test cases and the performance of the proposed

SU-GSO is compared with other optimization techniques such as Particle Swarm Optimization (PSO) and artificial Bee

Colony Optimization (BCO).

Keywords: Regression testing, test case prioritization, GSO.

Received May 20, 2013; accepted August 10, 2014; published online August 9, 2015

1. Introduction

Software bugs are almost present in most of the
software modules which are being developed by the
software developers as the complexity of software is
usually intractable and software developers have only
restricted potential to handle complexity. Identifying
the design defects in software is very tough due to
complexity. Since, software is not continuous, testing
boundary values are inadequate method to assure
accuracy. Thus, the entire values are required to be
evaluated and confirmed, but this entire testing is not
feasible [28].

The software maintenance phase requires efficient
regression testing process. It is necessary to retest the
existing test suite whenever any alterations are done to
the software. Software testing is an important part of
the software development process. It is one of the
major and primary techniques for achieving high
quality software. It is the process of evaluating a
system or its components with the intent to find that
whether it satisfies the specified requirements or not.
Regression testing is the phenomenon of re-running the
test cases from the test suite to assure error free
modified software. It guarantees that modifications in
the software have not influenced functional
characteristics of software [1].

But, software developers often have time and
budget limits in running all the test cases within the
particular constraints. Thus, this approach is quite

expensive and time consuming. Therefore, in order to
deal with the problem of time and budget constraint,
test case minimization, selection and prioritization
techniques [30] have been used for regression testing
for effective cost reduction in regression testing.

The proposed research work mainly focuses on the
test case prioritization. In test case prioritization, the
test cases are ordered priority-wise based on the
objectives rate of fault detection and average statement
coverage, such that highest priority test case is to be
executed first and so on. Prioritization can offer earlier
feedback to testers and management and facilitate
software developers to begin debugging much earlier.
It can also raise the probability that if testing ends in
advance, only necessary and worthy test cases have
been rerun [20, 21].

Test case prioritization looks for identifying
potential ordering of test case execution for regression
testing. The efficiency of the test case prioritization
lies in revealing the faults at the earliest [31]. But, the
nature and locality of actual faults are usually not
known in advance and thus, test case prioritization
approach have to largely depend on available
substitutes for prioritization criteria. Structural
coverage, requirement priority and mutation score have
been used in the literature as criteria for performing
prioritization [5, 24]. But, there is no single
prioritization criterion whose results dominate the
others.

An Efficient Specific Update Search Domain based Glowworm Swarm Optimization for Test Case Prioritization 749

Several numbers of test cases will be formed
through exhaustive testing [29]. But, all the test cases
cannot be considered and only a few test cases will be
performing well if implemented in testing the software.
This is the main issue considered in this paper. This
problem necessitates obtaining the result based on the
statement coverage and fault coverage in particular
time.

The test cases are prioritized based on the average
statement coverage and rate of fault detection. The
prioritization will be based on certain test adequacy
criteria or fitness value [9]. Furthermore, through
polynomial bounded computation, most of the complex
multivariable optimization problems [4] cannot be
solved accurately. This formulation induces to develop
a novel approach through search based intelligent
selection and prioritization of test case.

Optimization techniques have been effectively used
in test case generation and prioritization in recent
years. Although, a number of optimization techniques
have been proposed and good results have been
obtained, problems such as complexity in dynamic data
sets and higher time consumption for convergence
always exists in the traditional optimization
techniques. Thus, still there is always a hope for
betterment of the optimization results. This research
work focuses on using the appropriate optimization
technique for the application of test case prioritization
which provides the optimal best results.

Thus, this approach uses swarm intelligence based
technique for test case prioritization. A number of
swarm intelligence approaches have been observed to
produce significant results in terms of its accuracy,
convergence behavior, time taken etc., this research
uses a recent and efficient swarm intelligence approach
called as the Glowworm Swarm Optimization (GSO)
for getting the optimal test case prioritization results
[15, 17]. GSO is used to produce the optimal test case
prioritization which is adequate to cover the statements
and faults in the software. This research work focuses
on the multi objective criteria namely the average
statement coverage and rate of fault detection.

2. Literature Survey

This section presents an overview of the related work
of test case prioritization using some of the search
based approaches and met heuristics. The regression
testing has been solved using optimization approaches
like Genetic Algorithm (GA) [12], Ant Colony
Optimization (ACO) [23], etc.

A cost cognizant test case prioritization approach is
presented by [8] with the application of previous data
and GA. A controlled experiment has been carried out
to evaluate the performance of the approach. But, the
main drawback of this approach is that it does not
consider the test cases similarity. A novel technique
called Edge Partitions Dominator Graph-Genetic
Algorithm (EPDG-GA) which uses the EPDG and GA
for branch coverage testing is proposed by [3].

The main drawback of the GA is its slow

convergence. Moreover, it is more complex since, it
lacks rank based fitness function which reduces
complexity.

ACO is a bio inspired approach based on the real
life behavior of ants. In [26], a technique on
application of ACO algorithm for test case selection
and prioritization is proposed. This work clearly
explains the graphical depiction of food search of the
ants which results in finding different paths and
choosing the optimal path. Results indicate that ACO
results in solutions that are in close proximity with
optimal solutions.

ACO approach performs better than GA as
convergence is guaranteed, but the time period for
convergence is uncertain. Furthermore, in NP-hard
problems, high-quality solutions are needed at a faster
rate, but ACO concentrates only on quality
of solutions.

More recently, Bee Colony Optimization (BCO) has
emerged as a potential technique in the field of swarm
intelligence. BCO has been applied in various
optimization problems like “Travelling Salesman
Problem” [22] which is a NP-Hard combinatorial issue
in which an optimal path is to be found from source to
destination for a travelling salesman.

Kaur and Goyal [11] an approach for the fault
coverage regression test suite prioritization based on
the BCO algorithm is presented. The most difficult
task in regression testing is the size of the regression
test suite and its selection process due to its time and
budget constraints. In BC, Scout bees and forager bee
are accountable for the development and maintenance
of the colony. Based on the nature of these two bees,
BCO algorithm for the fault coverage regression test
suite has been developed. BCO algorithm has been
designed for fault coverage to obtain maximum fault
coverage in minimal execution time of each test case.
But, the main drawbacks of BCO are:

• Slow convergence rate.
• As the random number is stochastic in basic BCO,

certain good solutions are predictable to be skipped.

The application of Hybrid Particle Swarm
Optimization (HPSO) algorithm in regression
technique is proposed by Kaur and Bhatt [10]. The
criterion considered is maximum fault coverage in
minimum execution time. HPSO is an integration of
Particle Swarm Optimization (PSO) technique and GA
to enhance the search space for the solution. GA offers
optimized approach to carry out prioritization in
regression testing and on integrating it with PSO
technique provides fast solution. GA has been used is
Mutation operator which facilitates the search engine
to assess all features of the search space.

A large number of fundamental variations have been
formulated to enhance the speed of convergence and
significance of solution found by PSO. But,
fundamental PSO is more suitable to process static,
simple optimization problem. Furthermore, it is very
difficult to deal with non-metric problem domains in
PSO [7].

750 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

Due to the drawbacks of the above said optimization
algorithms, an efficient optimization algorithm which
provides best convergence rate, less complexity, higher
accuracy is required to solve the test case prioritization
problem.

Thus, in this research work, GSO is used to solve
the test case prioritization problem. GSO is a novel
technique of swarm intelligence based algorithm for
optimizing multiple functions raised by Krishnanad
and Ghose [16]. This algorithm has become one of the
active research areas of swarm intelligence. Because of
its potential influence, it’s been used at noisy text of
sensor and simulating robots [13]. Hence, this research
work uses GSO to attain the optimal results.

Li et al. [18] gives empirical study results of two
met heuristic search techniques and three greedy
search techniques applied to six programs for
regression test case prioritization.

Test case prioritization approach was first proposed
by Wong et al. [27], which is aimed at ranking the test
cases in an optimal ordering. Even if the testing is
terminated at a point, the maximum benefit can be
obtained.

Srivastava [25] Praveen initiated a novel test case
prioritization algorithm that calculates average faults
observed per minute.

A regression testing technique for test case
prioritization based on code coverage criteria is
recommended by Aggarwal et al. [2].

3. Methodology

This research work uses an efficient GSO algorithm for
the formulation of test case prioritization. In this
proposed approach, each test case would denote a glow
source and the aim of the approach would be to
determine best sources i.e., test cases with maximum
statement coverage and maximum fault coverage.

The main aim of the proposed approach is to
determine the optimal number of test cases with higher
statement coverage and fault coverage. In order to,
handle this issue, GSO approach gather the test cases
and then calibrate the local decision range function
which is in-turn used to identify the optimal test cases
with maximum statement coverage and fault coverage.

On choosing the population randomly from a given
issue, local-decision range is assigned based on the
position of the GSO algorithm. This local-decision
range represents to a possible solution of the
optimization problem and the luciferin decay constant
corresponds to the quality (fitness) of the associated
solution [14]. In this process of test case prioritization,
the position of glowworm (luciferin update) is
considered as number of statements and faults covered
by that glowworm. The regression testing mainly
focuses on total statement and fault covered in less
time. The stopping criterion is to be decided, on the
basis of which glowworm optimization algorithm will
end.

This research work proposes that the optimized test
suite produced by the algorithm will comprises of all

possible statements and faults in the program. The
program is given to the test case optimization tool.
GSO is applied to produce an optimal test suite by
generating optimal test data which would have higher
statement and path coverage. The glowworm
distributes in the objective function definite space. In
GSO, brightness is regarded as search agent for the
execution state of the Software Under Test (SUT) and
also initializes the test cases by defining the parameter
with the initial test data with the aid of corresponding
partitioning and boundary value analysis. The search
agent computes the local decision range based on the
brightness of each test node by estimating the
statement and fault coverage. This process is repeated
until an executable state of SUT is determined. The
glowworm optimization can be distributed in the
objective function definite space. Their brightness is
based on the position of objective function value. With
the brighter glow, the better is the position which in
turn results in good target value. The glow looks for
the neighbor group in the local-decision range and a
brighter glow in the set has a higher pull to attract this
glow towards this traverse and the flight direction each
time will change along with the choice of neighbor. In
the mean time, local-decision range size will be based
on the neighbor quantity which means when the
neighbor density is low, glow’s policy-making radius
will expand which in turn looks for more neighbors, on
the other hand, the policy-making radius minimizes if
the neighbor density is high. Ultimately, a number of
glowworm returns collects at the multiple optima of
the given objective function. If the condition is not
met, then the new set of test data is formed from the
abandoned repository and again the same process is
repeated.

Though GSO is much suited for various
applications, yet the search accuracy and post iteration
is not high. This research work uses an idea of definite
updating search field at glowworm updating position
stage for improving the performance of the GSO. The
algorithm for test case optimization using Improved
GSO approach is presented in the next section.

3.1. Specific Update Search Domains of

Glowworm Swarm Optimization

A novel algorithm called Specific Update search

domains of Glowworm Swarm Optimization (SU-

GSO) is used in this research work for test case

prioritization. SU-GSO makes the position update of

glowworm which makes it get to the optimal solution

which in turn increases the accuracy and speeding up

convergence [19]. Each glowworm � encodes the

object function values R1(xi(t)) and R2(xi(t)) at its

current location xi(t) into a luciferin value li and

transmits the data within its neighborhood. The

multiple objective functions considered in this research

work are Statement Coverage (SC) which corresponds

to R1 is given in Equation 1 and Fault Coverage (FC)

which corresponds to R2 is given in Equation 2. It

An Efficient Specific Update Search Domain based Glowworm Swarm Optimization for Test Case Prioritization 751

means that, this work concentrates on maximizing the

statement coverage and fault coverage for a given time.

1
()R SC = Average Statement Coverage

= No. of Statements covered by Total no.of Statement

2
()R FC = Rate of Fault Detection

= No. of Faults covered by Execution Time

1 2
Objective Function R = α * R + β * R

Where α and β are weights, such that α+β =1.

The set of neighbors Vi(t) of glowworm i comprises of

those glowworms that have a fairly better luciferin

value and that are positioned within a dynamic

decision domain, and updating at each iteration. Local-

decision range update is given in Equation 3.

{ }{ }(1) , 0, () (())

i i

d s d t
r t min r max r t n V tβ+ = + −

Where

(1)
i

d
r t + denotes the glowworm i’s local-

decision range at the t+1 iteration, rs denotes the sensor

range, ni represents the neighborhood threshold, the

parameter β affects the rate of change of the

neighborhood range. The number of glow in local-

decision range is given in Equation 4.

{ }() : () () ; () ()

i

i j i d i j
N t R x t x t r l t l t= − < <

Where Xj(t) denotes the glowworm i’s position at the t

iteration, lj(t) represents the glowworm i’s luciferin at

the t iteration and the set of neighbors of glowworm i

comprises of those glowworms that have a relatively

higher luciferin value and that are positioned within a

dynamic decision domain whose range
i

d
r is bounded

above by a circular sensor range (0).
i

s d
r r i< < Each

glowworm i chooses a neighbor j with a probability

pij(t) and moves toward it. These movements that

depend only on local data facilitate the glowworms to

separate into disjoint subgroups and demonstrate a

simultaneous behavior toward and eventually co-locate

at the multiple optima of the given objective function

probability distribution given in Equation 5 is used to

select a neighbor.

() ()
()

() ()()

j i

ij

k ii

l t l t
p t

l t l tk N t

−
=
∑ −∈

Movement update is given in Equation 6:

() ()
(1) ()

() ()

j i

i i

j i

x t x t
x t x t s

x t x t

−
+ = +

−

 
  
 

Luciferin-update is given in Equation 7:

()() 1 (1) (())

i i i
l t l t R x tρ γ= − − +

Where lj(t) depends on luciferin value of glowworm i
at the t iteration, ρ(0, 1) results in the reflection of
the cumulative goodness of the path followed by the
glowworms in their current luciferin values, the

parameter γ only scales the function fitness values,
R1(xi(t)) is the value of test function.

In fundamental GSO algorithm, a conception of
specific update at glowworm position to organize
alteration of the glowworm position. Because of this
approach, after the specific update of the glow position
always in present most superior individual margin to
improves the convergence rate of the algorithm.
Improvement algorithm according to update location is
given in Equation 8.

() () (0.5)

i best
x t x t rand= + −

Where xbest(t) represents the best one at the t iteration,
xi(t) denotes the position after updated of glow that
need to change.

3.2. SU-GSO Algorithm

The proposed algorithm is formulated as follows:

• Step 1: Initialize the test cases by defining the

parameters ρ, γ, β, s, l0, m, n with values 0.4, 0.6,

0.08, 0.03, 5,5 respectively.

• Step 2: For each test cases calculate the luciferin

value and update it according to Equation 7.

• Step 3: Find the set of neighbors of each test case

that have a relatively higher luciferin value

according to Equation 4.

• Step 4: If the test case does not satisfy Equation 4,

then renew its position with Equation 8.

• Step 5: Select the distribution using Equation 5 and

update it with Equation 6.

• Step 6: Enhance the search radius according to

Equation 3.

• Step 7: Check whether the condition is satisfied.

• Step 8: Proceed for the next iteration and wait for

the termination condition.

3.3. SU-GSO Flow Chart

Figure 1 gives the flow chart of the proposed SU-GSO
algorithm’s flow chart.

Figure 1. Proposed SU-GSO algorithm flow chart.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

752 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

4. Experiments and Results

The test case prioritization technique’s basic evaluation
is to have maximum number of faults covered and
statement covered with minimum number of test cases
required. In this approach, the execution time of every
test case is also analyzed. The fault measuring
technique used is fault coverage based testing
technique. In this example, there are test cases forming
Test Suite (TS)={T1, T2, T3, T4, T5, T6, T7, T8} and the faults
covered by those test cases are represented as Faults
Covered (FC)={F1, F2, F3, F4, F5, F6}. Similarly the
statements covered by the test cases are denoted as
Statements Covered (SC)={S1, S2, S3, S4, S5}. Tables 1 and 2
show the Test cases with the faults and statements
covered in particular execution time.

Table 1. Test cases with fault coverage and execution time.

Test Cases/

Faults
F1 F2 F3 F4 F5 F6 No. of Faults Covered Execution Time

T1 x x x 3 10

T2 x x x x 4 8

T3 x x 2 11

T4 x x x 3 15

T5 x x x x 4 11

T6 x x 2 9

T7 x x x x 4 8

T8 x x 2 6

Table 2. Test cases with statement coverage.

Test Case/Faults S1 S2 S3 S4 S5 No. of Statements Covered

T1 x x 2

T2 x x x 3

T3 x x x 3

T4 x x 2

T5 x x x x 4

T6 x 1

T7 x x x 3

T8 x x 2

The performance of the proposed SU-GSO approach is
compared with the other optimization approaches such
as PSO and Artificial Bee Colony (ABC) in terms of
percentage of statement coverage, fault coverage and
both. It is clearly observed from the Figure 2 that the
proposed test case prioritization approach using SU-
GSO provides better statement coverage when
compared with ABC and PSO optimization
approaches.

S
ta

te
m

en
t

C
o
v
er

ag
e

%

 No. of Cycles

Figure 2. No. of cycles vs. statement coverage (%) comparison.

Figure 3 shows the fault coverage comparison in

percentage for the approaches such as PSO, ABC and

SU-GSO. The proposed approach outperforms the

other two approaches in terms of the fault coverage.

F
au

lt
 C

o
v
er

ag
e

%

 No. of Cycles

Figure 3. No. of cycles vs. fault coverage (%) comparison.

It can be observed from the graphical representation

that the test cases are prioritized based on higher

statement coverage and fault coverage are selected as

the optimal test cases.

Figure 4 shows the graphical representation of the

objective function R Vs the number of cycles. The

proposed SU-GSO is observed to produce better results

than the other two optimization algorithms taken for

comparison.
For instance, when the number of cycles is 45, the

coverage obtained by the ABC approach is 70% and
the coverage obtained from PSO approach is 78%,
whereas the proposed SU-GSO approach attains
coverage of about 90%. Thus, the proposed SU-GSO
approach outperforms the other two approaches.

This would result in the prioritization of the test

cases in a suitable and appropriate order which in turn

improves the overall performance of the system.

 C
o
v
er

ag
e

%

 No. of Cycles
Figure 4. No. of cycles vs. coverage (%) (objective function R)

4.1. APFD Metric

This performance of the proposed SU-GSO based test
case prioritization has been represented through APFD
representation. The APFD percentage is calculated by
concerning test suite selected from above program
solution [6].

To quantify the goal of increasing a subset of the
test suite's rate of fault detection, APFD metric
developed by Elbaum et al. [6] is used to measures the
average rate of fault detection per percentage of test
suite execution. The APFD is calculated by taking the
weighted average of the number of faults detected
during the run of the test suite. APFD can be calculated
using a notation:

1 2
1

1
2

m
TF TF TF

APFD
nm n

+ +
= − +

L

 (10)

An Efficient Specific Update Search Domain based Glowworm Swarm Optimization for Test Case Prioritization 753

Where T: The test suite under evaluation, m: The
number of faults contained in the program under test P,
n: The total number of test cases, TFi: The position of
the first test in T that exposes fault i.

So, as the formula for APFD shows that calculating
APFD is only possible when prior knowledge of faults
is available. APFD calculations therefore are used only
for evaluation.

5. Conclusions

Test case prioritization has become an active area of
research in the field of software testing. A number of
research works have been proposed in the literature for
test case prioritization. The main aim for prioritization
of test cases is to minimize the cost and time of
regression testing. This research work focuses on novel
test case prioritization considering multi objective
criteria and an efficient optimization technique. The
objectives considered in this research work are average
statement coverage and rate of fault detection. This
research work succeeds in attaining efficient test case
prioritization results using SU-GSO. The performance
of the approach is compared with other optimization
approaches such as PSO and ABC. It is observed from
the experimental results that the proposed SU-GSO
based test case prioritization based approach provides
better results when compared with PSO and ABC.

References

[1] Agrawal H., Horgan R., Krauser W., and London

S., “Incremental Regression Testing,” in

Proceedings of International Conference

on Software Maintenance, CSM-93, Montreal,

Canada, pp. 348-357, 1993.

[2] Aggrawal K., Singh Y., and Kaur A., “Code

Coverage based Technique for Prioritizing Test

Cases for Regression Testing,” ACM SIGSOFT

Software Engineering Notes, vol. 29, no. 5, pp. 1-

4, 2004.

[3] Chen C., Xu X., Chen Y., Li X., and Guo D., “A

New Method of Test Data Generation for Branch

Coverage in Software Testing based on EPDG

and Genetic Algorithm,” in Proceedings of the

3
rd

 International Conference on Anti-

Counterfeiting, Security, and Identification in

Communication, Hong Kong, pp. 307-310, 2009.

[4] Deb K., “Multi-Objective Optimization using

Evolutionary Algorithms,” John Wiley & Sons,

2001.

[5] Do H. and Rothermel G., “On the Use of

Mutation Faults in Empirical Assessments of

Test Case Prioritization Techniques,” IEEE

Transactions on Software Engineering, vol. 32,

no. 9, pp. 733-752, 2006.

[6] Elbaum S., Malishevsky G., and Rothermel G.,

“Test Case Prioritization: A Family of Empirical

Studies,” IEEE Transactions on Software

Engineering, vol. 28, no. 2, pp. 159-182, 2002.

[7] Farzi S., Shavazi R., Pandari A., and Graduated

A., “Using Quantum-Behaved Particle Swarm

Optimization for Portfolio Selection Problem,”

the International Arab Journal of Information

Technology, vol.10, no. 2, pp. 111-119, 2013.

[8] Huang C., Huang Y., Chang R., and Chen Y.,

“Design and Analysis of Cost-Cognizant Test

Case Prioritization Using Genetic Algorithm with

Test History,” in Proceedings of the 34
th
 Annual

Computer Software and Applications

Conference, Seoul, South Korea, pp. 413-418,

2010.

[9] Karaboga D. and Basturk B., “A Powerful and

Efficient Algorithm for Numerical Function

Optimization: Artificial Bee Colony

Algorithm,” Journal of Global Optimization, vol.

39, no. 3, pp. 459-471, 2007.

[10] Kaur A. and Bhatt D., “Hybrid Particle Swarm

Optimization for Regression Testing,”

International Journal on Computer Science and

Engineering, vol. 3, no. 5, pp.1815-1824, 2011.

[11] Kaur A. and Goyal S., “A Bee Colony

Optimization Algorithm for Code Coverage Test

Suite Prioritization,” International Journal of

Engineering Science and Technology, vol. 3, no.

4, pp. 2786-2795, 2011.

[12] Kaur A. and Goyal S., “A Genetic Algorithm for

Regression Test Case Prioritization using Code

Coverage,” International Journal on Computer

Science and Engineering, vol. 3, no. 5, pp. 1839-

1847, 2011.

[13] Krishnanand N. and Ghose D., “A Glowworm

Swarm Optimization based Multi-Robot System

for Signal Source Localization,” Design and

Control of Intelligent Robotic Systems, vol. 1, no.

1, pp. 49-68, 2009.

[14] Krishnanand N. and Ghose D., “Chasing

Multiple Mobile Signal Sources: A Glowworm

Swarm Optimization Approach,” in Proceedings

of the 3
rd

 Indian International Conference on

Artificial Intelligence, 2007.

[15] Krishnanand N. and Ghose D., “Glowworm

Swarm Optimisation: A New Method for

Optimising Multi-Modal Functions,”

International Journal of Computational

Intelligence Studies, vol. 1, no. 1, pp. 93-119,

2009.

[16] Krishnanand N. and Ghose D., “Theoretical

Foundations for Rendezvous of Glowworm-

Inspired Agent Swarms at Multiple

Locations,” Robotics and Autonomous Systems,

vol. 56, no. 7, pp. 549-569, 2008.

[17] Krishnanand N., “Glowworm Swarm

Optimization: A Multimodal Function

Optimization Paradigm with Applications to

Multiple Signal Source Localization Tasks,”

International Journal of Computational

Intelligence Studies, vol. 1, no. 1, pp .93 2009.

754 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

[18] Li Z., Harman M., and Hierons M., “Search

Algorithms for Regression Test Case

Prioritization,” IEEE Transaction on Software

Engineering, vol. 33, no. 4, pp. 225-237, 2007.

[19] Liu J., Zhou Y., Huang K., Ouyang Z., and Wang

Y., “A Glowworm Swarm Optimization

Algorithm Based on Definite Updating Search

Domains,” Journal of Computational

Information Systems, vol. 7, no. 10, pp. 3698-

3705, 2011.

[20] Rothermel G., Untch H., Chu C., and Harrold J.,

“Prioritizing Test Cases for Regression Testing,”

IEEE Transactions on Software Engineering, vol.

27, no. 10, pp. 929-948, 2001.

[21] Rothermel G., Untch H., Chu C., and Harrold J.,

“Test Case Prioritization: An Empirical Study,”

in Proceedings of International Conference

on Software Maintenance, Oxford, UK, pp. 179-

188, IEEE, 1999.

[22] Saab M., El-Omari T., and Owaied H.,

“Developing Optimization Algorithm using

Artificial Bee Colony System,” Ubiquitous

Computing and Communication Journal, vol. 4,

no. 3, pp. 391-396, 2009.

[23] Singh Y., Kaur A., and Suri B., “Test Case

Prioritization using Ant Colony Optimization,”

ACM SIGSOFT Software Engineering Notes, vol.

35, no. 4, pp.1-7, 2010.

[24] Srikanth H., Williams L., and Osborne J.,

“System Test Case Prioritization of New and

Regression Test Cases,” in Proceedings of

International Symposium on Empirical Software

Engineering, pp. 1-10, 2005.

[25] Srivastava R., “Test Case Prioritization,” Journal

of Theoretical and Applied Information

Technology, vol. 4, no. 3, pp. 178-181, 2008.

[26] Suri B. and Singhal S., “Implementing Ant

Colony Optimization for Test Case Selection and

Prioritization,” International Journal on

Computer Science and Engineering, vol. 3, no. 5,

pp. 1924-1932, 2011.

[27] Wong E., Horgan R., London S., and Mathur P.,

“Effect of Test Set Minimization on Fault

Detection Effectiveness,” Software Practice and

Experience, vol. 28, no. 4, pp. 347-369, 1998.

[28] Yang K. and Chao A., “Reliability-Estimation

and Stopping-Rules for Software Testing, based

on Repeated Appearances of Bugs,” IEEE

Transactions on Reliability, vol. 44, no. 2, pp.

315-321, 1995.

[29] Yoo S. and Harman M., “Pareto Efficient Multi-

Objective Test Case Selection,” in Proceedings

of International Symposium on Software Testing

and Analysis, London, UK, pp.140-150, 2007.

[30] Yoo S. and Harman M., “Regression Testing

Minimization, Selection and Prioritization: A

Survey,” Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67-120, 2012.

[31] Yoo S., Harman M., Tonella P., and Susi A.,

“Clustering Test Cases to Achieve Effective and

Scalable Prioritizations Incorporating Expert

Knowledge,” in Proceedings of the 18
th

International Symposium on Software Testing

and Analysis, Chicago, USA, pp. 201-212, 2009.

Beena Raman is a Doctoral

Research student in the department

of Information Technology,

Bharathiar University, Coimbatore.

She has published many papers in

International Journals and

Conferences. Her areas of interest

include software testing, object oriented programming

and compiler design.

Sarala Subramani received her

PhD degree from Anna University,

Chennai. Currently, she is an

Associate Professor in Department

of Information Technology,

Bharathiar University, Coimbatore.

She has a teaching and research

experience of 10 years. She has published papers in

various International journals and conferences. Her

areas of interest include software testing, software

engineering, object oriented programming concepts,

data structures and compiler design.

