
The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015 701

New Bucket Join Algorithm for Faster Join Query

Results

Hemalatha Gunasekaran
1
 and ThanushkodiKeppana Gowder

2

1
Department Of Information Technology, Ibri College of Applied Sciences, Oman

2
Akshaya College of Engineering, Anna University, India

Abstract: Join is the most expensive and the frequent operation in database. Significant numbers of join queries are executed

in the interactive applications. In interactive applications the first few thousand results need to be produced without any delay.

The current join algorithms are mainly based on hash join or sort merge join which is less suitable for interactive applications

because some pre-work is required by these algorithms before it could produce the join results. The nested loop join technique

produces the results without any delay, but it needs more comparisons to produce the join results as it carries the tuples which

will not yield any join results till the end of the join operation. In this paper we present a new join algorithm called bucket join

which will over comes the limitations of hash based and sort based algorithms. In this new join algorithm the tuples are

divided into buckets without any pre-work. The matched tuples and the tuples which will not produce the join results are

eliminated during each phase thus the no. of comparison required to produce the join results are considerable low when

compared to the other join algorithms. Thus, the bucket join algorithm can replace the other early join algorithms in any

situation where a fast initial response time is required without any penalty in the memory usage and I/O operations.

Keywords: Bucket join, hash join, query results, nested loop join, sort merge join.

Received February 25, 2013; accepted June 9, 2014, published online August 9, 2015

1. Introduction

In relational database management system
information’s are organized in to collections of tables.
In database after normalization, the information’s are
broken down logically into smaller, more manageable
tables. To retrieve a data, two or more tables have to be
joined more frequently. The example of a join query is
show in the Figure 1. Thus, join operation becomes the
most frequent operation in the normalized database.
Additionally, joins are one of the most expensive
operations that a relational database system performs
[1]. Joining two tables will consume a significant
amount of the system’s CPU cycles, disk band-width,
and buffer memory. To improve the performance of
the system an efficient join algorithm is required.

Select O_ID, P_ID, P_NAME, QTY

From Orders Join Inventory

On orders. product =Inventory. Product;

An increasing number of join queries are being
executed by the interactive users and applications. In
all the interactive applications the time to produce the
first few results are very crucial. The join algorithms
developed recently are mainly developed for data
integration applications where the join algorithm
should handle network latency, delays and source
blocking. Many non-blocking join algorithms have
been developed like Ripple Join [4, 7], PMJ [3],
Symmetric Hash Join (SHJ) [10], extended version of
SHJ called XJoin [10], extended version of XJoin
called MJoin [2, 11].

Order O

O_ID P_ID C_ID Qty

100 PM1123 10002 100

101 PM1123 20345 100

102 PM2212 56345 100

Inventor I

P_ID P_Name Stock

PM1123 Card Reader 100

PM1123 Flash Drivers 100

PM2212 HDMI Cable 100

Join O, I (O. Product-ID= I. Product-ID)

O_ID P_ID Product-Name Qty

100 PM1123 Card Reader 100

101 PM1123 Card Reader 3

102 PM2212 HDMI cable 100

Figure 1. Example of the join relational operation.

But these algorithms are not optimized for the more
predictable inputs in centralized database join
processing and consequently, some optimizations to
reduce the total execution time and CPU usage is not
considered. Following are the family of algorithms
which are designed for the predictable inputs in
centralized databases. Nested loop join, in which the
each row of the outer query is compared with each row
of the inner query. Nested loop join is more suitable
for smaller relations. If the cardinality of the relation in
nested loop join is n and m then the complexity of the
algorithm is O(n

2
). Sort merge join out performs the

nested loop join and it performs better if the join
attribute column is already sorted. Both the relation has

702 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

to be scanned only once to produce the join result. The
complexity of the sort merge join includes the sorting
cost of both the relation m and n i.e., O(n log n)+O(m
log m). Hash join is faster than sort merge join, but
puts considerable load on memory for sorting the hash-
table. It offers advantages over the other traditional
join algorithms for unsorted, non-indexed join input.
Grace hash join, hybrid hash join and adaptive hash
join are the modified version of hash join. In this paper
we propose a bucket based join algorithm which will
produce the first row join result without much delay. It
consists of two phases: Matching phase and splitting
phase. During the matching phase the first row of the
outer table is compared with the inner table as a nested
loop join algorithm. During this phase the unmatched
rows between the matched rows are distributed in to
different buckets, this process is called splitting phase.
The matching and splitting phase happens in
overlapped manner. Each bucket is associated with a
header, which indicates the range of tuples available in
the bucket. For the second row of the outer table the
bucket header are compared to find out the bucket
which contains the required tuple. The other buckets
whose range value does not match with the joining
tuple are not considered for the matching phase. The
matched tuples in the inner table are discarded once the
matching is formed. For each row of the outer table the
matching and the splitting phase happens in interleaved
manner. During each phase the number of buckets and
the number of tuples in the buckets varies.

The organization of the rest of this paper is as
follows. Section 2 explains the other join algorithms.
Section 3 explains the block diagram of the proposed
join technique called bucket join. Section 4 explains
the Bucket join algorithm. Section 5 compares the
performance of traditional join algorithms with the
proposed join algorithm.

2. Related Works

In this section, we give a brief overview of the join
algorithms. The first three join algorithm: Nested loop
join, sort merge join and hash join are the traditional
join algorithms and which are followed by the new
optimized join algorithms.

The nested loop join in a nested loop join each row
of the outer table will be compared with every row of
the inner tuple. The comparison in nested loop join is
the cross product of the inner and the outer table.

In sort merge join algorithm, the join attribute
column of the inner and the outer relation are first
sorted. The sorted rows of the outer table are compared
with the every row of the inner table. When there is a
mismatch the outer row is incremented by one, this
process is continued until all the rows of the outer table
is processed.

In hash join algorithm the smaller relation is
selected as the build relation and the other relation is
selected as the probe relation. An in-memory hash
table is constructed for the build relation; a hash
function is selected and applied to the join attribute

value of a tuple. Based on the hash value of the tuple, it
is distributed in to different buckets. The same hash
function is applied to the inner table and the tuples
which map to the same buckets are joined.

Grace hash join [5] it has two pass, the relations are
hashed into separate bucket which resided on disk.
Each bucket is small enough to fit into memory. In
second pass, a bucket from one relation is brought into
main memory and hash table is constructed from it.
Then, for each record in the second relation, its key is
hashed and compared to every key which hashed to
same bucket in the first relation.

Hybrid hash join [8] like other hash-based
algorithm, uses hashing to improve the speed of
matching tuples. That is, hashing is used to partition
the two input relations such that a hash table for each
partition of the smaller input relation can fit in main
memory. Corresponding partitions of the two input
relations are then joined by building an in-memory
hash table for the tuples from smaller input relation,
and then probing the hash table with the tuples from
the corresponding partition of the larger input relation.

The shin’s join algorithm [9] uses divide and
conquer strategy; it repeatedly divides the source and
target relations by a maximum of five functionally
different hash coders and filters out unnecessary tuples
whenever possible. After completing a division
process, the algorithm checks whether or not the
source tuples and the target tuples in a pair of source
and target buckets have an identical join attribute. If
so, the source and target tuples in the pair of the
buckets are then merged in order to produce tuples for
the resulting relation. Otherwise, the address of the
current pair of source and target bucket is saved and
the source and target tuples in the pair of buckets may
be further divided by another functionally different
hash coder. If a bucket is empty and the corresponding
bucket in the pair is not empty, the tuples in the
corresponding bucket are not necessary; thus they are
discarded. The algorithm continues dividing the tuples
in a pair of buckets, merging the tuples, or eliminating
unnecessary tuples until every tuple in the buckets of
created hash tables is either merged or eliminated.

Early, hash join [6] early hash join is based on
symmetric hash join. It uses one hash table for each
input. It consist of two phase reading and flushing.
This algorithm dynamically customizes its
performance to trade-off between early production of
results and minimal total execution time.

G-join [9] g-join replaces the three traditional types
of algorithms with a single one. Like merge join, this
new join algorithm exploits sorted inputs. Like hash
join, it exploits different input size for unsorted inputs.
It matches the performance of the best traditional
algorithm in all situations. If both join inputs are
sorted, the g-join performs as well as merge join. If
only one input is sorted, it performs as well as the
better of merge join and hash join. If both the inputs
are unsorted, it performs as hash join, including hybrid
hash join. If both inputs are very large, it performs as

New Bucket Join Algorithm for Faster Join Query Results 703

well as hash join with recursive partitioning or merge
join and external merge sort with multiple merge level.

3. Proposed Join Algorithm

3.1. Frame Work of the proposed Join

Algorithm

Figure 2 shows the frame work of new bucket join
algorithm. Let RA (Outer relation) and RB(Inner
relation) are the source relations with n and m as the
no. of rows with one-to-many relationship in the join
attribute. For the first row of the outer table RA(1), the
inner table is fully scanned to find the matching tuples.
If the matching tuples are found in the inner table at
the index ki where i can vary from 1, ..., m. The
unmatched rows between the matched indexes are
distributed into different buckets as shown in Figure 3.
Each bucket is associated with header which contains
the range of join attribute available in the bucket. For
the other rows of the outer table RA(i=2, ..., m) the
bucket header is scanned to locate the bucket which
contains the required matching tuple. The bucket
which contains the required tuple is highlighted in the
Figure 3. Once the bucket is found the matching phase
is again repeated and buckets are updated. This process
is continued until there are no more rows in the outer
table.

Figure 2. Frame work of new bucket join algorithm.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Bucket with header

Figure 3. Matching and bucket formation phase.

3.2. Bucket Join Algorithm

In Algorithm 1 for the first row of the outer table the
inner table is fully scanned to find out the matching
rows. As seen in Figure 4 (step1) there are three
matches for the first row of the outer table. The other

unmatched rows between the three matched rows are
distributed into different buckets. As seen in Figure 4
(step1) there are three buckets, each bucket is
associated with a range value (min and max) which
will indicate the range of tuples in each bucket. For the
second row of the outer table there is no need to scan
the inner table fully, instead the three bucket ranges are
compared to locate the bucket which contain the
matching row. Since the second row of the outer
table’s join attribute value falls in the range of all the
three buckets, all the three buckets has to be scanned to
find the matching tuple. In each bucket the unmatched
rows between the matched rows are distributed into
different buckets. As seen in Figure 4 (Step 2) the
number of buckets increases to 4. For the third row of
the outer table all four bucket ranges are scanned to
find the possible bucket which will contain the
matching row. As given in Figure 4 (step 2) bucket 2,
bucket 3 and bucket 4 ranges do not match with the
join attribute value of the outer table. Therefore there is
no need in scanning the bucket 2, bucket 3 and bucket
4. Only bucket1 has to been scanned to find the
matching tuple. The unmatched rows between the two
matched rows in bucket 1 are distributed in to different
buckets. Thus, the number of buckets reduces to 3.
This procedure is iteratively repeated for all the rows
of the outer table. For each step the number of buckets
and the number of tuples in each bucket varies. During
each phase of joining the number of tuples considered
is reducing which will create a considerable reduction
in the join cost.

Algorithm 1: Bucket join algorithm.

Input: RA table with primary key, taken as the outer table. RB table

with foreign key, taken as inner table.

Output: RA ∞ RB result set Join

NA: No. of rows in the outer table

NB: No. of rows in the inner table e_f_t: Entering the loop for the

first time, by default the value is true.

I, j, l, k, Z, i1 are the looping variables.

For each i in NA do // for each row of the outer table

 If (e_f_t == true) then

 for each j in NB do // compare all the rows of the inner

 table

 If RA[i] == RB[j] then

 R++; // number of matches this Determines the

 bucket size

 O[r] = j;

 end if;

 end for

 E_f_t=false

 end If;

 else

 for each i=1 in r do // for the second row of the outer

 table it

 check the range of the bucket, instead of full table scan

 If (RA[i] >= min [i1] && RA[i] <=max[i1])

 for each j in size[i] do

 If (RA[i]==List[i1][j[))

 R++;

 O[r]=j;

 End If;

 End for;

 End If;

704 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

 End for;

Sliding_window (array, matching);

z=0;

r=0;

j=0;

end for;

sliding_window(array,no_of_matches)

// Split the table rows into buckets and sets the range of the bucket

 for k in r do

 y=o[k]

 for l in y do

 List[k][z]==Rb[l]

 z++;

 end for;

 x=y+1;

 min[k]=min(List[k])

 max[k]=max(List[k])

 size[k]=z;

end for;

Assume R and S are the two relations to be joined on

join attribute A with cardinalities NR and NS

respectively such that NR < NS. Attribute A in R is a set

of n values{a1, a2, ..., an}. Attribute A in S is a multi-set

of m elements of the form {a1, a2, ..., an}, each of

which may have {x1, x2, ..., xn} copies, such that {x1+

x2+ ...+ xn=Ns}In other terms, let ak be all tuples which

has join attribute value k such that the frequency

f(ak)=Count(Tuples(ak)). The number of tuples with

join attribute value j in R(S) is denoted by rj(sj). Thus,

1 1| | and| | .
NN

j J
j j

R r S S= =∑ ∑

For the tuple a1 of R a full table scan of S is done.

During the scan based on the position of the matching

tuple a1, table S is partitioned into B buckets and the

header of the buckets are updated. The bucket header

contains two parameter min and max, which indicates

the range of tuples available in each bucket. In this

method, the total number of comparisons is 1 + 2 (n-2)

in worst case and 1+n-2 in best case. In the above

implementation, the worst case occurs when the

elements are sorted in descending order and the best

case occurs when the elements are sorted in ascending

order. Therefore, the number of operations required to

find the matching for row a1 is given by:

 Read(a1)+ Read(a1)+CBucket Formation+CHeader Updation

Where Read(a1): Reading the first tuple a1 of,

Read(a1): Full table scan of table S, CBucket Formation: Cost

to form the buckets, and CHeader Updation: Cost to update

the header.
For all the tuples �� of R for i>2, the bucket headers

are scanned to locate the bucket which has matching

tuples ai. The number of buckets formed for each tuple

ai of relation R depends on the position of ai in S. In

other terms, it depends on the frequency of the tuple ai

in S, which canbe determined using histograms.

Number of buckets NB will be in the range 1≤ NB 1≤

f(ai)+1. Number of tuples in each bucket Br for r≤ NB

depends on the position of attribute ai in relation S. If

i1, i2, ..., im are the positions of matches found for tuple

ai in S then buckets B1, B2, ...,Br will contains (i2- i1),

(i3-i2), ..., (im- im-1) number of tuples respectively. For

all the tuples�� of R for i>2, the bucket headers are

scanned to locate the bucket which has matching tuples

ai. Only the buckets with the min and max values fall

in the range of the join attribute value A of ai is

scanned to produce the resultant tuple. During the

scanning process, the tuples in the buckets are further

split to different buckets and the headers of the buckets

are updated. Therefore, the number of operations

required to find matching for the row ai, for i>2 is

given by the following formula:

 2 1(1) ()
N

bR
i ii i Bucket Formation Header updation

B a coun B C C= =∑ ∑− + + +

Where B(ai-1): No. of buckets after matching of tuple

ai-1, and Count(Bi): Number of tuples in each bucket Bi.

Step 1:

a) Full table scan.

Step 2:

b) Bucket headers are scanned.

Step 3:

c) Only Bucket -1 contains the required tuple.

Step 4:

d) Bucket 1 and Bucket 2 contain the required tuple.

Step 5:

e) Bucket -1 contain the required tuple.

 Figure 4. Steps in new bucket join algorithm.

(2)

(1)

New Bucket Join Algorithm for Faster Join Query Results 705

4. Experimental Validation

We ran the experiments on an Intel® corei5 2.50GHz

processor, with 4GB real memory, running windows7

and Java 1.7.0_09. We have written a PL/SQL

procedure to populate two tables Project (Project No,

Project Name, Location) with 1000 rows and

Employee (Emp No, Project No.) with 1,00,000 rows

respectively. Project No. from Project table is the

primary key and the Project No from the Employee

table is the reference key. Assuming this algorithm

suits best when one-to-many relationship holds

between the relations. The reference key column

values are generated using random generation method.

The tables Project and Employee are joined using the

new join algorithm and during each stage the matched

rows are eliminated or filtered out. This reduces in the

no. of rows considered for each stage to produce the

resultant set.

5. Results

The performance of the bucket join algorithm depends

on the distribution of the values in the join attribute.

The distribution of the data values affects the number

of the buckets and the size of the bucket. This creates

an impact on the number of the comparisons done

during the join operation. Bucket join algorithm

degrades when the join attribute values of the inner

relation are non-uniformly distributed. In this case the

algorithm will run with many buckets which will

increase the number of comparison done. If the join

attribute value is uniformly distributed and if the range

of the tuples in the bucket is also distributed uniformly,

the number of comparison required will be

considerable less and it out performs all other

traditional join algorithms.

This algorithm was executed for different numbers

of tuples in the inner relation (1000, 10000, 100000)

the number of comparison resulted during each

iteration is projected in the Figure 5.

As seen in the graph hash join and sort merge join

are better than the bucket join but they require some

latency time to produce the first matching tuple. Hash

join required to build the hash table for the outer

relation and inner relation before it could produce the

matching tuple. The time or the delay taken by the

hash join to produce the matched tuples is given in

Figure 6.

 Figure 5. One to many join: Number of comparisons.

T
im

e
in
 M

il
i
se
co
n
d
s

 No. Of Rows In The Table

 Figure 6. Time taken to build the hash table.

Similarly the sort merge join has to sort the join

attribute columns of the inner table and the outer table

before it produces the resultant set. The Figure 7 shows

the delay taken by the sort merge join in producing the

resultant set. In the nested loop and sort merge join the

tuples are carried out till the end of the join operation

even though they have no matching tuples. The

number of rows considered during the join process

remains the same in the nested loop join and the sort

merge join. In the case of bucket join during each

iteration the matched rows are removed and not

considered for the next matching rows. The number of

tuples considered during each iteration is given in the

Figure 8. This graph is drawn with a sample size of

2500 rows in the inner table. The graph contains only

the few iterations. As the graph shows the number

tuples compared in each iteration is decreasing when

compared to the first iteration.

T
im

e
in
 M

il
i
se
co
n
d
s

 No. Of Rows In The Table

 Figure 7. Time taken to sort the table.

N
u
m
b
er
 o
f
co
m
p
ar
is
o
n
 x
 1
0
0

 Iterations

 Figure 8. Number of tuples compared in each iteration.

The algorithm is also compared in terms of CPU
usage, I/O reads and writes performed per sec. Figure 9
shows the CPU usage for the different algorithms. New
bucket join save approximately 17% of CPU time
when compared to sort merge join and nested loop join
and 10% when compared to hash join. Hash join and
sort merge join required 10% more I/O reads per sec
than the new bucket join algorithm and the nested loop
join as show in the Figure 10 Similarly the I/O writes

706 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

are more for sort merge join and hash join when
compared to the nested loop join and new bucket join
as show in Figure 11.

 C
P
U
 u
sa
g
e
%

 Bucket join Sort Join Nested Loop Join Hash Join

 Join Algorithm

 Figure 9. One to Many Join with 1, 00,000 tuples in inner table.

 Hash Join
Nested Loop

 Join

Sort Merge

 Join

New Bucket

Jion

Join Algorithm

Figure 10. One to Many Join with 1, 00,000 tuples in inner table.

 Hash Join
 Nested Loop

 Join

 Sort Merge

 Join

 New Bucket

Join

Join Algorithm

Figure 11. One to Many Join with 1, 00,000 tuples in inner table.

6. Conclusions

Bucket join algorithm best suits for interactive

applications with rapid responds time and the minimal

CPU and I/O operations when compared to the other

types of hash join and sort merge join. The no. of

comparison done in the bucket join is slightly more

than the comparison required by the hash join and sort

merge but it produces the initial result faster than the

hash and sort merge join algorithms. Bucket join

algorithm is significantly faster for one-to-many joins.

The performance of the bucket join is affected by the

distribution of the join attribute value. If the join

attribute values are distributed uniformly, the tuples in

the bucket will also be uniformly distributed. The

range of the bucket will not be wide, this will reduce

the no. of comparisons during the matching phase.

Without any pre work and memory over head the

bucket join can be used to produce the join results. For

the future considerations bucket join can be extended

to perform many-to-many join.

References

[1] Aljanaby A., Abuelrub E., and Odeh M., “A

Survey of Distributed Query Optimization,” the

International Arab Journal of Information

Technology, vol. 2, no. 1, pp. 48-57, 2005.

[2] Bornea M. A,vassalos V, Kotidis Y., and

Deligiannakis A., “Adaptive Join Operators for

Result Rate Optimization on Streaming Inputs,”

IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no. 8, pp. 1110-1125, 2010.

[3] Dittrich P., Seegar B., Taylor S., and Wigmaker

P., “Progressive Merge Join: A Generic and Non-

Blocking Sortbased Join Algorithm,” in

Proceedings of the 28
th

International Conference

on Very Large Data Bases, Hong Kong, China,

pp. 299-310, 2002.

[4] Haas J. and Hellerstein M., “Ripple Joins for

Online Aggregation,” in Proceedings of

SIGMOD, New York, USA, pp. 287-298, 1999.

[5] Kitsuregawa M., Nakayama M., and Takagi M..,

“The Effect of Bucket Size Tuning in the

Dynamic Hybrid GRACE Hash Join Method,” in

Proceedings of the 15
th
 International Conference

on Very Large Data, San Francisco, USA, pp.

257- 266, 1989.

[6] Lawerence R., “Early Hash Join: A Configurable

Algorithm for the Efficient and Early Production

of Join Results,” in Proceedings of the 31
st
 VLDB

Conference, Trondheim, Norway, pp. 841-852,

2005.

[7] Luo G., “A Scalable Hash Ripple Join Algorithm,”

in Proceedings of ACM SIGMOD, Wisconsin,

USA, pp. 252-262, 2002.

[8] Mokbel F., Lu M., and Aref G., “Hash-Merge

Join: A Nonblocking Join Algorithm for

Producing Fast and Early Join Results,” in

Proceedings of the 20
th
 International Conference

on Data Engineering ICDE, West Lafayette,

USA, pp. 251-263, 2004.

[9] Shin K. and Meltzer C., “New Join Algorithm,”

in Proceedings of ACM SIGMOD, USA, pp. 13-

20, 1994.

[10] Urhan T. and Franklin M., “XJoin: A Reactively

Scheduled Pipelined Join Operator,” IEEE Data

Engineering Bulletin, vol. 23, no. 2, pp. 7-18,

2000.

[11] Viglas D., Naughton F., and Burger J.,

“Maximizing the Output Rate of Multi-Way Join

Queries over Streaming Information Sources,” in

Proceedings of the 29
th
 International Conference

on Very large data Conference, Berlin, Germany,

pp. 285-296, 2003.

New Bucket Join Algorithm for Faster Join Query Results 707

Hemalatha Gunasekaran received

her BE degree in computer science

and engineering from Bharathiyar

University in 2003 and ME degree

in computer science and engineering

from Karunya University in 2005.

She has completed her PhD in

communication and information technology in 2014

from Anna University, India. Currently, she is working

as lecturer in Ibri College of Applied Sciences, oman.

Her area of research includes: Query Optimization,

Tuning and Big Data.

ThanushkodiKeppana Gowder
received his BE degree in electrical

and electronics engineering from

College of Engineering, Guindy in

1972, and MSc (Engg.) degree from

PSG College of Technology,

Coimbatore in 1974, and PhD

degree in power electronics from Bharathiyar

University in 1991. Presently he is the Director of

Akshaya College of Engineering and Technology,

Coimbatore and he is a former Syndicate Member,

Anna University of Technology, Coimbatore. His

research interests are: Power electronics drives,

electrical machines, power systems, and soft

computing techniques, computer networks, image

processing and virtual instrumentation.

