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Abstract: Discovering repetitive patterns is important in a wide range of research areas, such as bioinformatics and human 

movement analysis. This study puts forward a new methodology to identify, visualise and interpret repetitive motion patterns 

in groups of Moving Point Objects (MPOs). The methodology consists of three steps. First, motion patterns are qualitatively 

described using the Qualitative Trajectory Calculus (QTC). Second, a similarity analysis is conducted to compare motion 

patterns and identify repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a continuous 

triangular model. As an illustration of the usefulness of combining these hitherto separated methods, a specific movement case 

is examined: Samba dance, a rhythmical dance with many repetitive movements. The results show that the presented 

methodology is able to successfully identify, visualize and interpret the contained repetitive motions. 
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1. Introduction 

With recent advances in navigation and tracking 

systems, we are experiencing a dramatic growth in 

moving objects databases. These databases include the 

trajectories of human beings [1, 19, 32], animals [4, 17] 

and vehicles [3, 13]. Discovering relevant information 

from these large and growing data sets is a challenging 

task. In recent years, significant research in a variety of 

disciplines has attempted to derive knowledge from 

motion data (see, among others, [12, 18, 25] for an 

overview). One way of discovering knowledge from 

large spatiotemporal datasets is by means of qualitative 

reasoning. To date, several qualitative spatial and 

temporal calculi have been introduced, e.g., interval 

algebra [2], cardinal direction calculus [9], double-cross 

calculus [10] and region connection calculus [24]. Of 

particular interest to the study of moving objects is the 

Qualitative Trajectory Calculus (QTC) [28]. QTC 

describes the interaction between Moving Point Objects 

(MPOs) in a qualitative way.  

In this study, we use QTC to identify repetitive 

motion patterns in the movement data of MPOs. The 

term ‘repetitive motion patterns’ refers to conceptual 

animations (sequences of QTC relations following the 

constraints imposed by qualitative reasoning) that occur 

more than once during the movement. Herein, 

conceptual animations are defined as movement 

sequences. Similarity analysis is used to calculate the 

degree of similarity between movement sequences. The  

movement sequences with high degrees of similarity 

are repetitive motion patterns. To display the degrees 

of similarity, a visualisation technique, the Continuous 

Triangular Model (CTM) is applied. The methodology 

is illustrated with a real world case study; samba 

dance, in which the infrared observed motions of 

different parts of the bodies of dancers are analysed.  

With the introduction of this methodology, we seek 

to add to the knowledge base on movement pattern 

recognition and mining. The proposed methodology 

will help researchers and practitioners from various 

disciplines in analysing regularities and anomalies in 

moving object databases in their respective fields of 

expertise. 

The remainder of this paper is organised as follows: 

Section 2 introduces the preliminary concepts of QTC 

and CTM. Section 3 describes the methodology used 

to analyse the motion patterns in the context of QTC. 

In addition, the visualisation and interpretation of the 

repetitive motion patterns are presented. Section 4 

gives a brief discussion, summarises the conclusions 

and presents possible future work. 

2. Preliminaries 

In this section, we briefly review some of the 

fundamental concepts related to qualitative trajectory 

calculus, similarity analysis between conceptual 

animations and the continuous triangular model. These 

concepts will be used in the remainder of the paper.  
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2.1. Qualitative Trajectory Calculus 

The basic principle of QTC is that the complex reality 

of moving objects can be simplified by describing the 

interaction between two disjoint point objects. 

Depending on the level of detail and the number of 

spatial dimensions, different types of QTC have been 

developed: QTC-Basic (QTCB) [27, 29], QTC-double 

Cross (QTCC) [31] and QTC-Network (QTCN) [5]. 

QTCB considers only the changing distance between 

two objects, which is independent of the number of 

dimensions in which the movements take place. We 

restrict the calculations in this study to QTCB.  

QTCB defines a binary relation between two MPOs. 

It is assessed using the Euclidean distance in an 

unconstrained n-dimensional space. QTCB relations are 

built from the following distance constraints (a and b) 

[6]: 

Assume: MPOs k, l and time stamp t. 

k|t denotes the position of k at t. 

d(u, v) denotes the Euclidean distance between two 

positions u and v. 

1 2t t≺
 
denotes that t1 is temporally before t2. 

• Movement of k with respect to l at t: 
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3. 0: k is stable with respect to l (all other cases) 

• Movement of l with respect to k at t can be described 

as in a, with k and l interchanged; hence. 

                    − : l is moving towards k               

                    + : l is moving away from k                      

   0: l is stable with respect to k (all other cases) 

A qualitative trajectory pair
1
 is a combination of 

both constraints, a and b. Figure 1 demonstrates 9 (3 by 

3) Jointly Exhaustive and Pair wise Disjoint (JEPD) 

relations in QTCB. “The icons may contain line 

segments with the point object in the middle of it. The 

line segment stands for the possibility to move to both 

sides of the point object. The filled dot represents the 

case when the object can be stationary. An open dot 

means that the object cannot be stationary. The icons 

may also contain crescents with the point object in the 

middle of its straight border. The crescent stands for an 

open polygon. If a crescent is used, then the movement 

starts in the dot and ends somewhere on the curved side 

of the crescent. It is important that the polygons are not 

                                                           
1A trajectory pair implies that two objects are moving with respect 

to each other. 

closed. The straight boundary of a crescent is an 

element of another relation” [28]. 

 

Figure 1. QTCB relation icons [26]. 

QTCB relations are created by a tuple of labels that 

have an identical three valued qualitative domain

{ , 0,  }− + . A ‘0’  corresponds to a landmark value. As 

Galton [11] remarks, this value always dominates both

‘ ’−  and ‘ ’+  values [6]. Therefore: 

• A ‘0’must always last over a closed time interval 

(of which a time instant is a special case). 

• A ‘ ’− /‘ ’+  must always last over an open time 

interval. 

• Only transitions to or from ‘0’  are possible 

(transitions from ‘ ’− /‘ ’+  to ‘ ’+ /‘ ’−  are impossible) 

and transition instants always correspond to a ‘0’

value.  

The resulting relation syntax for the QTCB relation 

is the tuple (AB), as shown in Figure 1. At each time 

stamp, there is a QTCB relation between two MPOs. 

Following the constraints imposed by continuity, a 

sequence of QTCB relations (i.e., a conceptual 

animation) can be generated. For example, Figure 2 

shows the interaction in a 2D space between two 

MPOs that are continuously moving. This interaction 

is represented by a sequence of three QTCB relations 

during a given time interval [t1, t2]. In the beginning of 

the movement, the relation between the MPOs (− −) is 

established during a time interval. The relation (0 0) is 

an instantaneous QTCB relation between the MPOs. 

The remaining relation (+ +) occurs during the last 

part of the movement (for a detailed explanation, see 

[28]).  

 
(− −) → (0 0) → (+ +) 

Figure 2. The conceptual animation of k and l during a time 

interval [t1, t2]. 

The relations between more than two MPOs can be 

presented in terms of a QTCB matrix. Consequently, 

k| t1

k| t2

l | t1

l | t2

(1) 

(2) 

(3) 

(4) 
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for a time interval, a conceptual animation is proposed 

as a sequence of QTCB matrices. For example, consider 

three MPOs, a, b and c, at three consecutive time 

stamps Figure 3. From time stamp t1 to t2, the QTCB 

matrix X is formed by the QTCB relations between all 

pairs of MPOs and from time stamp t2 to t3, the QTCB 

matrix Y is generated Table 1. 

 

Figure 3. Three MPOs, a, b and c during a time interval [t1, t3]. 

Table 1. A conceptual animation of two QTCB matrices. 

X[t1→t2] a b c 

a  (0 0)  (0 +)  

b (0 0)   (0 +)  

c (+ 0) (+ 0)  
 

Y[t2→t3] a b c 

a  (0 +)  (0 0)  

b (+ 0)  (− 0) 

c (0 0)  (0 −)  
 

 

In general, the goal of this approach is to identify, 

visualise and interpret the repetitive motion patterns in 

groups of MPOs by exploring their conceptual 

animations.  

2.2. Similarity Analysis between Conceptual 

Animations 

Similarity analysis is used to express the degree of 

similarity between the conceptual animations. Prior to 

making a comparative analysis of two conceptual 

animations, we must decide how much detail needs to 

be considered in the comparison. For example, consider 

the following two conceptual animations, referring to 

the QTCB relations among the three MPOs (a, b and c) 

during two time intervals in Table 2.  

Table 2. A pair of conceptual animations among three MPOs during 
two time intervals [t1-t3] and [t4-t6]. 

conceptual animation [t1-t3] 

X[t1→t2] a b c 

a  (+ −) (− +)  

b (− +)   (0 +)  

c (+ −)  (+ 0)  
 

 

Y[t2→t3] a b c 

a  (+ 0) (− −) 

b (0 +)   (0 −) 

c (− −) (− 0)  
 

conceptual animation [t4-t6] 

X[t4→t5] a b c 

a  (+−) (−−) 

b (− +)   (0 0)  

c (−−) (0 0)   
 

 

Y[t5→t6] a b c 

a  (+ 0) (− +)  

b (0 +)   (+−) 

c (+−) (− +)   
 

 

For the sake of simplicity, each conceptual 

animation can be abstracted to a combined QTCB 

matrix obtained by concatenating the ij
th
 cells of all 

QTCB matrices in that conceptual animation Table 3. 

Hence, each conceptual animation of any length (any 

time interval) can be represented by a combined QTCB 

matrix. 

Table 3. Combined QTCB matrices during two time intervals. 

conceptual animation [t1-t3] 

t1→t2→t3 a b c 

a  (+ −)(+ 0) (− +)(−−) 

b (− +)(0 +)  (0 +)(0 −) 

c (+ −)(− −)  (+ 0)(− 0)  

conceptual animation [t4-t6] 

t4→t5→t6 a b c 

a  (+ −)(+ 0) (− −)(− +) 

b (− +)(0 +)   (0 0)(+ −) 

c (− −)(+ −) (0 0) (− +)   

 
Additionally, a movement during a time interval is 

divided into subintervals. In this study, to detect 
repetitive movements, we start our comparison from 
the lowest level (level 1, which consists of only one 
QTCB matrix) and extend it to the higher levels. 

For example, Table 3 shows the comparison of two 
sub-intervals of level 2. For the entire movement, all 
combined QTCB matrices of level 2 should be 
compared to measure the degrees of similarity 
between them. This process is repeated for all levels, 
where the last level represents the entire movement.  

The combined QTCB matrices can also be 
compared cell by cell. Two levels of detail are 
possible. In the highest level of detail, the fine 
comparison, the individual symbols of QTCB notation 
in each cell are compared based on the topological 
distance presented by Egenhofer and Al-Taha [8] (for 
additional explanations, see [28]). In the coarse 
comparison, regardless of the details, a complete cell 
of a combined QTCB matrix is compared to the 
corresponding cell in another combined QTCB matrix 
at each level. In this study, we use the coarse 
comparison, which reflects the full equality of 
relations between pairs of MPOs. For this purpose, 
Eqaution1 is used to calculate the degree of similarity 
(expressed as a percentage) between a pair of 
combined QTCB matrices as follows: 

                            
100 * (( )/ )S N L N= −  

Where N is the total number of cells in the combined 

QTCB matrix after eliminating the elements below the 

diagonal of the matrix because they are 

interchangeable with the elements above the diagonal 

of the matrix and L is the number of non-identical 

cells. This expression is the simple matching 

similarity measure for categorical data. The degree of 

similarity for Table 3 is calculated as follows: 

                        100 * (3 2) / 3 33.33%( )S = − =  

As mentioned above, different levels of comparison 

are considered based on the length of the conceptual 

animations. In a subsequent section, the similarities 

between motion patterns are visualised using the CTM 

to interpret the repetitive motion patterns. 

2.3. The Continuous Triangular Model 

CTM is derived from the idea of the Triangular Model 

(TM), which represents time intervals as points in a 

two-dimensional space. This model was developed 

a|t1,2,3 b|t1,2

c|t1

c|t2,3

b|t3

(5) 

(6) 
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from the MR diagram introduced by Kulpa [14, 15, 16]. 

Then, Van [30] applied it to an archaeological use case, 

naming it the TM. More recently, Qiang et al. [22, 23] 

investigated its use in reasoning for imperfect intervals 

and visual analytics. In the traditional linear 

representation, time intervals are usually represented as 

linear segments Figure 4-a As a time interval, I= [I
-
, I

+
] 

is described by a pair of parameters, i.e., the start point, 

I
-  and the end point, I+. It is also possible to map a time 

interval to a point in a 2D space, using these two 

parameters as the coordinates. Given a time interval I

on the time line, two straight lines (L1 and L2) are 

projected from I
- and I

+. The angle between L1 and the 

time line is α1, while the angle between L2 and the time 

line is α2 with α1=-α2 Figure 4-b. The angle α is a 

constant, i.e., it is identical for all intervals. Therefore, 

the intersection point of L1 and L2 is completely 

determined by I- and I+. In other words, the time interval 

I can be represented by this point in 2D space. This 

representation of time intervals is the TM. Because α1=-

α2 it is straightforward to infer that the horizontal 

position of the point indicates the middle point of the 

interval, i.e., mid(I). In the vertical dimension, the height 

(h) of the point is proportional to the length of the linear 

interval (l), i.e.,
 

tan α * l
2

h = .  

 

a) The linear representation of time intervals. 

 

b) The construction of an interval point in the TM. 

 

c) The TM representation of time intervals. 

Figure 4. Representation of time intervals. 

So, the height of an interval point in the TM 

indicates the duration of the interval. Thus, every time 

interval can be represented as a unique point in 2D 

space Figure 4-c and the characteristics of a time 

interval are completely expressed by the position of the 

point. Note that, α can take different values for specific 

purposes. In this study, we set α= 45° to be consistent 

with earlier work. In the TM, attribute data are 

associated with the points of the time intervals. 

Consequently, time series data can be mapped to a 

triangular plane in the 2D space, in which every point 

represents a specific interval of the time series and the 

grey scale at the point indicates a certain aggregation 

(e.g., summation and average) of time series of this 

interval. This representation of time series is the CTM. 

Figure 5 illustrates the two representations of a time 

series. Figure 5-a shows a traditional line diagram of a 

time series. In the triangular plane in Figure 5-b, every 

point corresponds to a time interval, following the 

coordinate space described in Figure 4 and the grey 

level at the point in Figure 5-b indicates the average 

value of the time series within the interval.  

Attribute 

                                                                                                                         Time Axis 
 

a) The traditional line diagram of a time series. 

Duration                                                                                              Attribute 

                                                                                                                         Time Axis
 

b) The same time series represented in CTM. 

Figure 5. The two representations of a time series. 

Using this approach, variations of short intervals 

can be observed in the lower levels of the triangular 

plane and variations of long intervals can be observed 

in the higher levels. The CTM provides a direct 

overview of time series data at all temporal 

granularities. In addition to, time series data, the CTM 

can be applied to other types of sequential data. In the 

following sections, the CTM is used to represent 

sequential data of moving objects. 

3. Motion Pattern Analysis of MPOs 

Comprehensive classification of movement patterns 

has been proposed by Dodge et al. [7]. We focus on 

one of the primitive patterns in that classification: 

Spatio-temporal periodicity (repetitive motion 

patterns). This study constitutes a novel contribution 

to the identification, visualisation and interpretation of 

the repetitive motion patterns between MPOs. The 

workflow diagram presented in Figure 6 illustrates our 

approach. The procedure starts with raw data 

(trajectories of MPOs). Motion patterns of the MPOs 

are obtained from the raw data. Then, similarity 

analysis is used to determine the degrees of similarity 

among the motion patterns. Finally, the degrees of 

similarity are visualised using the CTM to interpret 

them. In the following subsection, as a case study, the 

repetitive motion patterns of three samba dancers are 

analysed. 
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Figure 6. Procedure overview

3.1. Samba Dancers 

In this subsection, the movement of the different parts 

of the bodies of samba dancers is analysed. Relations

between the different parts of the bodies of the 

are described as QTCB relations based on the positional 

information at each time stamp of the movement. The 

positional information consists of locations of the 

MPOs in a three-dimensional space that includes 

head, the root, the right finger (the right hand), 

finger (the left hand), the right toe (the 

the left toe (the left foot) of every dancer’s body, 

captured at every time stamp (temporal granularity of 

0.04 s). For example, Table 4 shows 

QTCB matrices formed based on 

information of all captured MPOs during a given time 

interval. The movement of the body is captured by an 

infrared motion capturing system, which yields the 

position of markers attached to the body.

normalised data set with respect to one reference point 

and the orientation of the dancer’s body (the point is 

defined as the centroid of the body, root) 

mentioned above, similarity analysis is used to 

calculate the degrees of similarity between different 

movement sequences. 

Table 4. The movement sequence of the QTC

given time interval [0-0.24] (LF: Left Finger, RF: 

Left Toe, RT: Right Toe, T: Root, H: Head).  

0.00-0.04 LF RF LT RT R H 

LF (0 0) (+ 0) (+ 0) (+ −) (+ 0) (+ +) 

RF  (0 0) (+ −) (+ −) (0 0) (− 0) 

LT   (0 0) (− 0) (− 0) (− 0) 

RT    (0 0) (− 0) (− 0) 

R     (0 0) (0 0) 

H      (0 0) 
 

0.04-0.08 LF 

LF (0 0) (+

RF  (0 0)

LT  

RT  

R  

H  

08-0.12 LF RF LT RT R H 

LF (0 0) (+ −) (+ 0) (+ −) (+ 0) (0 0) 

RF  (0 0) (0 +) (0 0) (− 0) (− 0) 

LT   (0 0) (0 −) (0 0) (0 0) 

RT    (0 0) (− 0) (0 0) 

R     (0 0) (0 0) 

H      (0 0) 
 

0.12-0.16 LF 

LF (0 0) (+

RF  (0 0)

LT  

RT  

R  

H  

0.16-0.20 LF RF LT RT R H 

LF (0 0) (+−) (+−) (+ 0) (+ 0) (−−) 

RF  (0 0) (−−) (− +) (−0) (− +) 

LT   (0 0) (+ 0) (−0) (−0) 

RT    (0 0) (0 0) (0 0) 

R     (0 0) (0 0) 

H      (0 0) 
 

0.20-0.24 LF 

LF (0 0) (+

RF  (0 0)

LT  

RT  

R  

H  

Based on the basic concept of CTM introduced in 

the previous section, we apply a modified version of 

CTM to map the similarities between different pairs of 

movement sequences into a triangular raster. 

in the raster represents a pair of movement sequences 

of equal length and the grey scale of the cell indicates 

their degree of similarity. 

• Raw Data (Trajectories of MPOs)

• Motion Patterns (QTCB)

• Similarity Analysis between Motion Patterns

• Visualisation and Interpretation 
(Continous  Triangular Model (CTM))
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Procedure overview. 

In this subsection, the movement of the different parts 

amba dancers is analysed. Relations 

of the bodies of the dancers 

relations based on the positional 

information at each time stamp of the movement. The 

positional information consists of locations of the 

dimensional space that includes the 

right hand), the left 

the right foot) and 

left foot) of every dancer’s body, 

(temporal granularity of 

Table 4 shows a sequence of 

rmed based on the positional 

all captured MPOs during a given time 

. The movement of the body is captured by an 

infrared motion capturing system, which yields the 

position of markers attached to the body. We use a 

with respect to one reference point 

and the orientation of the dancer’s body (the point is 

defined as the centroid of the body, root) [20, 21]. As 

mentioned above, similarity analysis is used to 

calculate the degrees of similarity between different 

The movement sequence of the QTCB matrices during a 

, RF: Right Finger, LT: 

RF LT RT R H 

(+ −) (+ −) (+ −) (+ 0) (0 +) 

(0 0) (+ 0) (+ −) (0 0) (− +) 

 (0 0) (− −) (− 0) (− +) 

  (0 0) (− 0) (− +) 

   (0 0) (0 +) 

    (0 0) 
 

RF LT RT R H 

(+ −) (+ 0) (+ 0) (+ 0) (0 −) 

(0 0) (−0) (− +) (− 0) (− 0) 

 (0 0) (+ −) (0 0) (0 −) 

  (0 0) (+ 0) (+ −) 

   (0 0) (0 −) 

    (0 0) 
 

RF LT RT R H 

(+ −) (+ 0) (+ −) (+ 0) (− −) 

(0 0) (− 0) (− 0) (−0) (− +) 

 (0 0) (+ −) (0 0) (0 +) 

  (0 0) (− 0) (− +) 

   (0 0) (0 +) 

    (0 0) 
 

Based on the basic concept of CTM introduced in 

the previous section, we apply a modified version of 

CTM to map the similarities between different pairs of 

movement sequences into a triangular raster. Every cell 

ement sequences 

and the grey scale of the cell indicates 

3.1.1. The Horizontal and Vertical Dimensions

In this study, the horizontal dimension of the r
represents the time line and the vertical dimension 
represents the time distance between two sequences. 
The two sequences of the cell can be identified by 
drawing a 45°-45°-90° isosceles triangle on the 
horizontal axis as shown in Figure 7
located in the cell. The two 45° vertices are located on 
the horizontal axis and identify the starting times of 
the two sequences. For illustration purpose, Figure 7 
shows a highlighted triangle in which the cell at the 
90° vertex represents a pair of movement seque
starting at 1.4 s and 3.2 s. The grey at the 90° vertex 
indicates the similarity between the pair of movement 
sequences. The cell’s position on the vertical axis 
indicates the distance between the starting points of 
the two represented sequences. For 
triangle in Figure 7, the vertical position of the cell is 
45 time stamps (1.80 s; the temporal granularity is 
0.04 s), which is the temporal distance between the 
starting points of the two sequences.

Time Distance                                             Level 3                                                           Similarity 
      (Second)                                                                                                                     

                                                                                                                   

Figure 7. The CTM representation of similarities between 

movement sequences. 

3.1.2. The Level Number 

The level of the CTM indicates the length of the 
movement sequences. For example, a level 1 CTM 
represents the similarities between any two movement 
sequences whose lengths are
temporal granularity is 0.04
represents the similarities between any two movement 
sequences whose lengths are 
in Figure 7, the lengths of the movement sequences 
are 0.12 s (3*0.04s). Therefo
the highlighted triangle represents the similarity 
between the movement sequence during the temporal 
interval [1.4, 1.4+0.12] and the movement sequence 
during the temporal interval

3.1.3. The Grey Scale 

In CTM, the grey scale of a cell indicates the 
similarity between two movement sequences, as 
calculated using Equation 1
and white is 0% similarity. The grey bar on the right 
side of the CTM results displays the similarity scale. 

3.1.4. Comparison of CTMs

The CTM visualises the similarity between the 

movements of the person during two different time 

intervals. As explained above, a cell of level 10 CTM 

Similarity Analysis between Motion Patterns

ve Motion …                                   419                   

The Horizontal and Vertical Dimensions 

In this study, the horizontal dimension of the raster 
and the vertical dimension 

represents the time distance between two sequences. 
The two sequences of the cell can be identified by 

90° isosceles triangle on the 
as shown in Figure 7. The 90° vertex is 

the cell. The two 45° vertices are located on 
the horizontal axis and identify the starting times of 
the two sequences. For illustration purpose, Figure 7 
shows a highlighted triangle in which the cell at the 
90° vertex represents a pair of movement sequences 
starting at 1.4 s and 3.2 s. The grey at the 90° vertex 
indicates the similarity between the pair of movement 

cell’s position on the vertical axis 
indicates the distance between the starting points of 
the two represented sequences. For the highlighted 
triangle in Figure 7, the vertical position of the cell is 
45 time stamps (1.80 s; the temporal granularity is 
0.04 s), which is the temporal distance between the 
starting points of the two sequences. 

Level 3                                                           Similarity  
(Second)                                                                                                                      (Percentage) 

                                                                                                                   Time  (Second)                                                                                                   

representation of similarities between 

 

CTM indicates the length of the 
movement sequences. For example, a level 1 CTM 
represents the similarities between any two movement 

whose lengths are 1*0.04s (because the 
granularity is 0.04s) and a level 4 CTM 

represents the similarities between any two movement 
whose lengths are 0.16 s (4*0.04s). Hence, 

in Figure 7, the lengths of the movement sequences 
s). Therefore, the cell at the top of 

the highlighted triangle represents the similarity 
between the movement sequence during the temporal 

and the movement sequence 
interval [3.2, 3.2+0.12]. 

scale of a cell indicates the 
similarity between two movement sequences, as 

uation 1. Black is 100% similarity 
and white is 0% similarity. The grey bar on the right 
side of the CTM results displays the similarity scale.  

CTMs 

the similarity between the 

movements of the person during two different time 

intervals. As explained above, a cell of level 10 CTM 
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displays the similarity between movements during the 

interval [t1, t1+0.4] and movements of the same person 

during the interval [t2, t2+0.4]. 
From the CTM of one person, temporal patterns of 

movements of the person can be observed. Now, the 
movements of three different Samba dancers (student 1, 
student 2 and their teacher) are analysed. The CTM 
representations show some regular patterns as shown in 
Figures 8, 9 and 10. The first four levels of CTM for 
the three dancers are shown. High similarities (i.e., dark 
cells) are mostly distributed along lines that are parallel 
to the horizontal axis. These dark cells indicate high 
similarities in pairs of intervals with the same temporal 
distance between each other. For example, in Figures 8, 
9, and 10, the lower line of dark cells shows that 
movements in an interval are very similar to 
movements in another interval that is 0.92s away from 
it. That is, the dancers regularly repeat similar 
movements every 0.92s. 
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   (Second)                                                              (Percentage) 

 

Time  (Second) 
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Figure 8. Levels 1 to 4 of the CTM of student 1 with 0.04s time 

granularity. 
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Figure 9. Levels 1 to 4 of the CTM of student 2 with 0.04-s time 

granularity. 
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Figure 10. Levels 1 to 4 of the CTM of the teacher with 0.04-s time 

granularity. 

3.1.5. Interpretation of Motion Patterns 

The results show some differences between the CTM 

of the teacher and the CTMs of the students. In the 

CTM of the teacher as shown in Figure 10, dark 

similarities are strictly distributed along the line at 

0.92 s. This indicates that the movements of the 

teacher are regularly repeated every 0.92s. However, 

in the CTMs of students 1 and 2 Figures 8 and 9, the 

dark lines are not straight, compared with that of the 

teacher. Some parts of the dark line are located above 

or below the 0.92s line. This is because there are some 

lag and lead times in the repetition of the same 

movements. From this observation, we can infer that 

the movements of students 1 and 2 are not as regular 

as the movements of the teacher. We also show some 

of the body configurations of student 1 and the teacher 

every 0.92s in Figures 11 and 12. These visualisations 

are based on the MoCap toolbox [26]. The results 

show that student 1 and the teacher have an almost 

identical body configuration every 0.92s. However, 

there are some time differences between the teacher 

and student 1 when performing the same movements. 

 

 

Figure 11. Some body configurations of student 1 every 0.92 s. 

 

Figure 12. Some body configurations of the teacher every 0.92 s. 

4. Conclusions and Outlook 

This study has proposed a three-tiered methodology to 

identify, visualise and interpret repetitive motion 

patterns in groups of moving point objects. 

Movements of multiple MPOs are described in terms 

of sequences of QTCB matrices, which in turn are used 

to identify the repetitive motion patterns. Next, 

similarity analysis is used to determine the degrees of 

similarity between pairs of movement sequences. 

Finally, CTM is applied to display the degrees of 

similarity between all pairs of movement sequences.  
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The usefulness of the proposed methodology has 

been discussed in a real-world movement case, i.e., 

samba dance. While the current paper provides an 

intuitively appealing approach for studying repetitive 

movements of moving objects, the following aspects 

warrant further exploration in future work: 

• Time granularity plays an important role in revealing 

the details of movement. The trajectories captured 

with the finest time granularity show more details of 

movement. It would be worthwhile to compare the 

results obtained from different time granularities. 

• QTCB relations are built based on changing 

Euclidean distances between two MPOs. In addition, 

directional information can also be considered to 

identify motion patterns using QTC double-cross 

(QTCC). QTCC provides more detail than QTCB, but 

increases the problem complexity. 

• In the calculation of the similarity between QTC 

matrices, cell-by-cell comparison is made with the 

assumption that all cells are treated the same way. 

Some relations between the MPOs might be more 

important than others. These differences can be 

incorporated by assigning specific weights to each of 

those relations. 

• Map algebra (i.e., a set of algebraic operations 

applied on two or more raster layers with the same 

dimensions to produce a new raster layer) might be 

applied to infer additional results by comparing 

CTMs at different levels. 

We hope to report on these and other aspects of 

movement pattern recognition and mining in the near 

future. 
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