
The International Arab Journal of Information Technology, Vol. 16, No. 3A, Special Issue 2019 493

Vehicle Condition, Driver Behavior Analysis and Data

Logging Through CAN Sniffing

Adnan Shaout, Dhanush Mysuru, and Karthik Raghupathy

The Electrical and Computer Engineering Department, the University of Michigan, USA

Abstract: modern vehicles nowadays have many Electronic Control Units (ECU) and sensors. Information (data) within an

automobile is transferred via the Control Area Network (CAN) of a vehicle. This data may not be important to the driver, but if

the CAN messages are analyzed, then driver behavior and vehicle conditions can be determined. This data can determine

ahead of time any possible future failure and the driver can be alerted about it. This paper presents standalone real time

embedded system that could analyze the CAN data were valuable lives may be saved in real time. The proposed hardware

system acquires CAN data from a vehicle (CAN sniffing). The data is then processed and an appropriate message is then

displayed for the driver. The proposed system also stores the CAN messages on to an industrial grade SD card (CAN logging)

for future analysis. The proposed system can also perform driver behavior and driving terrain analysis.

Keywords: vehicle condition analysis, CAN sniffing, CAN logging, CANoe 9.0, driver behavior.

Received September 9, 2018; accepted January 22, 2019

1. Introduction

Control Area Network (CAN) [4] is used to exchange

data between different Electronic Control Units (ECU)

in a vehicle. It was introduced by Robert Bosch in the

year 1983.

There are several Electronic Control Units (ECU’s)

in a vehicle, namely engine control unit, electric power

steering unit, power train control module and brake

control module. These ECU’s are connected to the

CAN bus. CAN bus basically has two lines, CAN High

(CANH) and CAN Low (CANL).CAN bus can provide

data speeds up to 1Mbps. CANH and CANL are

terminated by a 120 ohm resistor to avoid signal

reflection. The basic construction of the CAN bus is

shown in Figure 1.

Figure 1. Simple CAN network.

The ECUs communicates by sending packets of data

called CAN messages. These CAN messages have

specific structure. The first part of the CAN message

has the message address which corresponds to the ID

of the sender which sends out the message. The

receiver looks for message with this specific ID on the

CAN bus and picks only the right messages ignoring

other messages with different ID coming out of

different ECUs. The second part of the message

contains the length of the CAN message. This could be

either 8 or 22 bytes long which indicates the actual

data length. The next field is the actual data. A CAN

message also has other data such as Cyclic

Redundancy Check (CRC), acknowledgement and

several other bits which are not used in our system.

Figure 2 shows a typical CAN message.

Figure 2. Typical CAN message.

CANoe [8] is a software tool used for development,

testing, simulating and analyzing of the ECU networks.

It was developed by Vector Informatik GmbH. CANoe

supports CAN, LIN, flexRay and other vehicle bus

architectures. Vector 1610 hardware provides bus

interface to CANoe software. Vector 1610 is an

interface tool for fast access of CAN data and has two

transceivers.

ArduinoUNO is a general purpose prototyping

board that houses an ATMega328p microcontroller

which is a 28 pin IC with 14 Digital I/O pins and 6

Analog pins. CAN shield is an addition hardware that

mounts on the Arduino board which provides CAN

interface capabilities to the Arduino. The CAN shield

has an MPC2515 CAN controller. Teensy 3.6 is also a

prototyping board which has an ARM Cortex-M4

processor that is ARM’s high performance embedded

processor [7, 9]. Teensy by itself has an on board SD

card slot, which is the main reason of choosing Teensy

over Arduino in the receiver part of the proposed

system.

494 The International Arab Journal of Information Technology, Vol. 16, No. 3A, Special Issue 2019

The paper is organized as follows: section 2

presents literature survey, where a comparison of the

existing state of art with the proposed system

implementation; Section 3 presents the system

description and setup, where a discussion of the

hardware and software setup of the proposed design;

Section 4 presents the implementation and results; and

section 5 presents testing and conclusion, where the

tests performed on the system will be presented.

2. Literature Review

Several attempts were done in the past to acquire CAN

data from a vehicle using different techniques.

Johanson and Karlsson [3] discussed how data was

sniffed by a wireless Diagnostic Read-Out (DRO)

which used two main components: VIDA and

dynamically linked library. A trigger button which was

connected to a mobile unit present in a car was used to

initiate the wireless DRO manually. An internet

connection is established when the button is pushed via

a General Packet Radio Services (GPRS) modem.

A Transmission Control Protocol (TCP) connection

is set-up to a dispatcher and a public IP address is

generated that is reachable from all the mobile units in

a vehicle to run on a server. In the proposed system in

this paper, the system would be directly tapping into

the CAN bus of the vehicle to access to the CAN

messages. A similar CAN simulation model proposed

by Zhou et al. [10] was adopted in this paper. Zhou et

al. [10] focused on simulating a CAN bus using the

CANoe by taking the network topology, hierarchy and

the baud rate into consideration.

Vehicle data can be logged using data-loggers like

GL1000/2000/3000/4000 and CAN-log 3/4 and can be

captured live using an On-Board Diagnostics (OBD)

connectors when the vehicle is in motion. Using such

data loggers can be expensive. Shah et al., [6] have

proposed inserting the SD card directly into the ECU

of the vehicle. In our proposed design we have inserted

the SD card in the Teensy (CPU2) to store the

incoming CAN data.

There are lots of security issues with the CAN bus

[1, 2]. The data can be easily hacked using an OBD II

tool. A Cyber-physical system can give access to the

CAN bus network [1]. There have been lots of attempts

to secure the CAN data in automobiles. In [5], authors

have proposed a Cyber-Security mechanism by

designing an architecture which helps in using the bus

as low as possible. This mechanism keeps the bus

utilization as low as possible and can achieve high

security levels.

3. System Description and Setup

The basic system setup is as shown in Figure 3. It

consists of CANoe and the vector 1610 for the CAN

bus simulation. The CAN high and the CAN low from

vector 1610 are connected to the CAN high and CAN

low of the CAN shield, respectively.

Figure 3. The proposed system architecture.

The CAN shield is connected to the Arduino UNO

using SPI connection. Arduino is our first CPU

(CPU1). There is a dedicated display interfaced with

the Arduino for displaying alerts to the driver. Further,

the Arduino is connected to the Teensy 3.6 using

UART connections. Teensy is our second CPU

(CPU2). Teensy has an onboard micro SD card slot.

A memory card is inserted into this slot in which the

CAN data is stored. The actual system set up is shown

in Figure 4.

Figure 4. The actual proposed system prototype.

4. Implementation and Results

4.1. Can Simulation

Instead of sniffing the data from an actual vehicle, the

CAN bus will be simulated using CANoe and vector

1610. In CANoe a database file provided by MOTEC

USA was loaded which has the description of each

message. These messages can be viewed and edited

using theCANdb++ editor. Figure 5 shows the message

structure used where the message ID and the

parameters associated with it are shown. For example,

by reading the message with the ID 0X640 the

following parameters associated with it would be read:

Engine speed, Inlet manifold pressure, Inlet manifold

temperature and throttle position.

Vehicle Condition, Driver Behavior Analysis and Data Logging Through CAN Sniffing 495

Figure 5. Message Structure.

A simple network was created that could generate

CAN messages. A baud rate of 500 KBPS was selected

as shown in Figure 6. The network has a basic

interactive generator block.

CANoe has the option to set the rate at which CAN

messages are sent out on the CAN bus.

Figure 6. Simulated Network.

Round robin scheduling technique was used with a

time slice of 50ms to manage the CAN messages. So

messages are sent periodically with a time difference

of 50ms between them. The CAN messages that were

chosen in the proposed system are the ones which are

required to analyses the condition of the vehicle,

behavior of the driver and vehicle terrain. Only 10

messages were selected to show that the system works

(proof of concept) and other messages can be added as

needed. The selected messages that this proposed

system and their respective ID are as follows:

● 0x64A-Exhaust temp (50ms).

● 0X640-engine speed (100ms).

● 0x65D- Brake temperature (150ms).

● 0x641 -Fuel level (200ms).

● 0x65C-power steering temp (250ms).

● 0x649 -Engine coolant temp (240).

● 0x658 - vehicle longitudinal accel (250ms).

● 0x1F- vehicle speed (300ms).

● 0x10- Vehicle Angle (350ms).

Figure 7 shows the loaded messages used in the

proposed system with their schedule.

Figure 7.CAN Message Scheduling.

4.2. Can Sniffing and Analysis

An incoming CAN message is picked up by the

Arduino (CPU1) with the help of the CAN shield. The

entire processing of Vehicle condition analysis, Driver

behavior detection, CAN logging and the vehicle

terrain detection is split between the two CPUs to

achieve actual parallel processing. Firstly, on receiving

a CAN message, CPU1 (Arduino) sends a copy of the

CAN data to CPU2 via UART where the driver

behavior, CAN logging and the terrain detection is

performed. The Arduino (CPU1) performs the vehicle

condition analysis.

In the Arduino pooled loop with interrupt type of

Real Time Operating System (RTOS) was used, where

the system continuously checks for the CAN messages

on the CAN line. Whenever it encounters a CAN

message an interrupt is raised and all the tasks are

sequentially executed. The interrupt is then cleared and

the system goes back to looking for a new CAN

message. The entire process that the CPU1 is supposed

to perform is broken into several tasks. For example,

once a CAN message is received, CPU1 is supposed to

send a copy of data to CPU2. This is made as a task.

Another task is to perform message filtering by

checking the address of the message. If the message is

one of the required messages then it will be processed.

If it is not required, then it will be filleted out.

Checking the output of the calculation and displaying a

proper message on the LCD display is also made as a

task.

Figure 8 presents the flowchart that shows the

control flow for CPU1.

496 The International Arab Journal of Information Technology, Vol. 16, No. 3A, Special Issue 2019

Figure 8. The Logical Flow followed by CPU1.

When the data is received, a copy of the data is sent

to CPU2 for logging and other analysis. Later, the

message address is checked to determine if the packet

is of interest or not. Then the actual data in HEX is

converted to decimal. If the incoming data is a big

number such as 0xAFD2, then it will be stored in 2

buffers (8 bits for each buffer). The actual values are

calculated from these 2 buffers. For every checked

parameter, a manually acceptable limit is set. If the

values are above the acceptable limit then a suitable

caution message is displayed on the 16*2 LCD display

device.

In reading a sensor value, due to some external

condition, the sensor might give erroneous values. The

proposed system would not react to these erroneous

values and display a wrong message to the driver. A

state machine was implemented so that an erroneous

value is detected if and only if 5 off-limit values are

encountered consecutively for the system to recognize

that there is an issue. Figure 9 shows the implemented

state machine where 1 denotes faulty values (off-limit)

and 0 denotes in-range values.

For Example, if we are checking the brake

temperature, where the manually set accepted range is

0C to 600C, if the sensor send out one off-limit value

then the system wouldn't alert the driver. But if 5

continuous off-limit values are obtained consecutively

then only the system would alert the driver by

displaying “HIGH BREAK TEMP!” error.

Figure 9. Mealy State Machine.

The output at the Arduino’s serial monitor is as

shown in the Figure 10. It can be seen that when the

message is received, then an appropriate message is

printed.

Figure 10. Output at the Arduino Serial Monitor.

Figure 11 shows the actual output message shown to

the driver when 5 off-limit sensor values are read from

the brake temperature sensor.

Figure 11. Actual message shown to the driver.

4.3. Can Logging Driver Behavior Analysis and

Terrain Detection

A copy of all received CAN messages are sent to the

Teensy (CPU2). The driver behavior analysis, CAN

logging and the terrain detection are all processed by

the Teensy processor.

Similar to the Arduino, a pooling loop with interrupt

type RTOS was implemented for the Teensy which

Vehicle Condition, Driver Behavior Analysis and Data Logging Through CAN Sniffing 497

checks for the data through the UART. When a CAN

message is coming, then an interrupt is raised and the

message is read. All of the incoming CAN messages

are directly written to the SD card in a form of a text

file.

When a turn is made in a vehicle then there would

be an opposite force in the other direction of the turn.

This force is called Longitudinal Acceleration force

(LA). This force is sensed by longitudinal acceleration

sensor. By looking into the value read from this sensor,

a turn by the vehicle can be detected. If the value of

this sensor is high, then it means that the vehicle is

making a steep turn. By combining this sensor value

with the vehicle speed the behavior of the driver can be

determined.

As a proof of concept 3 limits were manually set to

differentiate the driver as efficient, moderately

efficient and reckless driver. To avoid the erroneous

values and to reduce the miss-prediction at a point of

time, the last 10 sensor values are considered. The

three limits that were selected in this paper are as

follows:

● If speed is below 75 MPH and the LA is below

0.2G, then efficient driver.

● If speed is between 75 and 120 MPH and LA is

between 0.2 and 0.6G, then moderately efficient

driver.

● If speed is above 120 MPH and LA is above 0.6G,

then inefficient driver.

Teensy in this paper is programmed to lookout for

messages sent from the angle sensor (LA) of the

vehicle. By reading this sensor the vehicle going uphill

or downhill can be determined.

Figure 12 shows a sample run messages received by

Teensy and the analysis (prediction) done by the

Teensy processor in the serial monitor.

Figure 12. Output at the Teensy with the prediction.

The CAN messages are stored as a text file in the

SD card.

Figure 13 show a sample of the logged CAN data in

decimal.

Figure 13. The logged CAN data in Decimal.

5. Testing

A single CPU was initially used in designing the

proposed system. The system functioned properly

when the time between the messages was equal to or

greater than 50ms. But when the time between the

messages was reduced by decreasing the time slice in

the scheduler in the CANoe to match the real life

conditions, the initial system started to drop messages.

That is, the system would still be processing a previous

message when a new message is in. This was

happening because writing the message on to the SD

card was taking too much time.

A decision was to split the number of tasks between

two processors to reduce the workload and to meet the

timing requirements. The enhanced proposed system

with two CPUs has been tested for extreme cases by

reducing the inter message time to as small as 5ms and

the system still did not drop any messages. The

proposed system in this paper has been tested for

different CAN speeds such as 125Kbps, 250Kbps and

500Kbps and it did work fine without any issues.

6. Conclusions

The proposed real time system mainly focuses on

vehicle condition analysis, driver assistance and

behavior analysis aiming to make the vehicle efficient

and improve road safety. The paper introduced a

method of simulating and analyzing vehicle CAN data.

The system used CANoe 9.0 to simulate the ECU data

and CAN 1610 hardware tool to send the data on to the

CAN bus.

498 The International Arab Journal of Information Technology, Vol. 16, No. 3A, Special Issue 2019

The data was read by the first CPU (Arduino) with

the help of the CAN shield for processing it and then it

was sent to the second CPU (Teensy 3.6) over UART

to store the data. The stored CAN data could then be

used for fault analysis. Achieving the same results with

a single CPU by adopting interrupt based techniques

would be our future scope of work.

References

[1] Abbott-McCune S. and Shay L., “Techniques in

Hacking And Simulating A Modern Automotive

Controller Area Network,” in Proceedings of

IEEE International Carnahan Conference on

Security Technology, Orlando, pp. 1-7, 2016.

[2] Buttigieg R., Farrugia M., and Meli C., “Security

Issues in Controller Area Networks in

Automobiles,” in Proceedings of 18th

International Conference on Sciences and

Techniques of Automatic Control and Computer

Engineering, Monastir, pp. 93-98, 2017.

[3] Johanson M. and Karlsson L., “Improving

Vehicle Diagnostics through Wireless Data

Collection and Statistical Analysis,” in

Proceedings of IEEE 66th Vehicular Technology

Conference, Baltimore, pp. 2184-2188, 2007.

[4] Know-How & Solutions for CAN/CAN FD

https://vector.com/vi_can_solutions_en.html,

Last Visited 2018.

[5] Lin C. and Sangiovanni-Vincentelli A., “Cyber-

Security for the Controller Area Network (CAN)

Communication Protocol,” in Proceedings of

International Conference on Cyber Security,

Washington, pp. 1-7, 2012.

[6] Shah N., Cho B., Geth F., Clement K., Tant P.,

and Driesen J., “Electric Vehicle Impact

Assessment Study Based on Data-logged Vehicle

and Driver Behavior,” in Proceedings of Vehicle

Power and Propulsion Conference, Chicago, pp.

1-6, 2011.

[7] Teensy USB Development Board

https://www.pjrc.com/store/teensy.html, Last

Visited 2018.

[8] Testing ECUs and Networks with CANoe

https://vector.com/vi_canoe_en.html, Last

Visited 2018.

[9] VN1600 - Network Interfaces with USB for

CAN FD, LIN, K-Line, J1708 and IO

https://vector.com/vi_vn1600_en.html, Last

Visited 2018.

[10] Zhou F., Li S., and Hou X., “Development

Method of Simulation and Test System for

Vehicle Body CAN Bus Based on CANoe,” in

Proceedings of 7th World Congress on Intelligent

Control and Automation, Chongqing, pp. 7515-

7519, 2008.

Adnan Shaout is a full professor

and a Fulbright Scholar in the

Computer Science Department at the

Electrical and Computer

Engineering Department at the

University of Michigan-Dearborn.

His current research is in

applications of software engineering methods, cloud

computing, embedded systems, fuzzy systems, real

time systems and artificial intelligence. Dr. Shaout has

more than 36 years of experience in teaching and

conducting research in the Computer Science,

Electrical and Computer Engineering fields at Syracuse

University and the University of Michigan-Dearborn.

Dr. Shaout has published over 250 papers in topics

related to Computer Science, Electrical and Computer

Engineering fields. Dr. Shaout has obtained his B.S.c,

M.S. and Ph.D. in Computer Engineering from

Syracuse University, Syracuse, NY, in 1982, 1983,

1987, respectively.

Dhanush Mysuru is a graduate

student in the Electrical and

Computer Engineering department at

the University of Michigan-

Dearborn. He is a Software

Developer at Navitas Systems, LLC

Electrical.

Karthik Raghupathy is a graduate

student in the Electrical and

Computer Engineering department at

the University of Michigan-

Dearborn. Karthik was a Software

Engineer Intern at Continental

Automotive Systems.

