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1. Introduction 

Using penalty approaches for constrained optimization 

is not only the simplest way but also as effective as 

other constraint handling techniques. Penalty 

approaches convert constrained optimization problems 

to unconstrained optimization problems. The main idea 

is penalizing the unfeasible solutions thus the 

exploration process goes towards the feasible region. 

Penalty functions are divided into two separate groups 

in the literature. These are named as exterior and 

interior. Interior penalty approaches penalize the 

feasible solutions, and exterior penalty approaches 

penalize the infeasible solutions. The infeasible 

solutions are created easier than feasible solutions by 

evolutionary computation techniques. Therefore, 

researchers mostly interested in the exterior penalty 

approach. In this study, we also interested in these 

techniques. The significant thing is to tune the penalty 

factor. If we use a big penalty factor, then the search is 

tending to local optimums, otherwise, if we use small 

penalty factor, exploring the feasible region is needed 

very time-consuming process. Thus, if an efficient 

penalty factor is found, it is an important improvement 

to the constrained optimization problem area. 

Therefore, this subject constantly is studied in the 

literature. Schoenauer and Xanthakis [41] suggested a 

new method which handles constraints one by one. At 

initialization, a random population is created, then the  

 
algorithm tries to handle the first constraint. When the 

first constraint is satisfied, the algorithm deal with the 

second constraint. This process continues until all 

constraints are satisfied. This method is specific and 

some studies [35] show that this method does not solve 

any problems. Therefore, we did not use this technique 

in our study. Michalewicz and Attia [36] proposed 

Genocop II for solving constrained problems. Genocop 

II handles any type of constraints while Genocop I, the 

previous version, handles only linear constraints. 

Michalewicz [35] compared six methods on five test 

problems. These methods are given in [23, 24, 36, 39, 

41] death penalty. Five problems that have different 

characteristics (linear, nonlinear, quadratic, and 

polynomial) are solved by these methods. Results show 

that there is no superior method for solving constrained 

optimization problems. Michalewicz and Schoenauer 

[37] prepared a survey on constrained optimization 

with evolutionary computation methods. In section 5.2 

of the Handbook of Evolutionary Computation [6], 

Smith and Coit [42] discussed the penalty functions 

very deeply. Coello [16] introduces a self-adaptive 

penalty approach for constrained optimization. This 

approach is used not only the total constraint violation 

but also the number of unsatisfied constraints. These 

two properties are controlled by two weighting factors. 

These weighting factors are optimized with another 

population during the search process. This technique is 

also a co-evolution penalty approach. Hamida and 
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Schoenauer [22] improved ASCHEA [21] technique. 

ASCHEA consists of three main parts, the first is the 

population-based adaptive penalty function, the second 

is the mate feasible individuals by infeasible 

individuals, and the third is segregational selection 

similar to [19]. Kuri-Morales and Gutiérrez-García 

[28] integrated five different penalty approaches with 

the genetic algorithm. The experimental results are 

examined with statistical analysis information. Coello 

[15] prepared a comprehensive survey on constraint 

handling techniques. These techniques discussed 

deeply and compared positive and negative features. 

Farmani and Wright [20] proposed a self-adaptive 

fitness formulation for solving constrained 

optimization problems. This method requires no 

parameter tuning. Lemonge and Barbosa [29] proposed 

a parameterless adaptive penalty approach. This 

procedure is named as an Adaptive Penalty Method 

(APM) and it is used for solving structural and 

benchmark problems. Yeniay [47] collected penalty 

functions that are found in the literature. This work 

discusses the main advantages and drawbacks of 

penalty approaches. Yuchi and Kim [48] proposed a 

new method that divides the population into two 

groups. This method labels individuals as feasible or 

infeasible. After this phase, new children are created 

with feasible parents. The pipe network optimization 

problem is solved with a penalty adapting ant 

algorithm [1]. GA [44] and PSO [2] have properly 

solved the cost optimization problems that are a type of 

constrained optimization problems. Babaeizadeh and 

Ahmad [4] solved 24 constrained benchmark problems 

with the enhanced artificial bee colony algorithm. 

Mallipeddi and Suganthan [32] mention the no free 

lunch theorem and propose the Ensemble of Constraint 

Handling Techniques (ECHT). ECHT contains four 

different constraint handling techniques. The 

superiority of feasible solutions [19], Self-adaptive 

Penalty [46], ε–Constraint [45] and Stochastic Ranking 

[40] techniques are used for constraint handling. Liu et 

al. [31] added static and dynamic penalty approaches 

to the differential search algorithm. The dynamic 

penalty approach produced more quality solutions than 

the static penalty approach. Chehouri et al. [9] criticize 

the penalty approaches and suggest a new constraint 

handling mechanism named as Violation Constraint-

Handling-VCH. VCH method is compared with 

penalty approaches in the literature. This is a 

parameter-free constraint-handling technique. The 

VCH is remarkably similar to Deb’s rules which use in 

the work of Babalik et al. [5]. The differences are VCH 

takes account of a number of violated constraints and 

using elitism. Babalik et al. [5] integrated Deb’s rules 

to the tree-seed algorithm for solving constrained 

optimization problems. Constrained TSA (CTSA) 

solved well-known thirteen constrained optimization 

benchmark problems and four engineering design 

problems. De Castro Rodrigues et al. [18] presented a 

constraint handling method whose name is Extended 

Balanced Ranking Method (E-BRM). E-BRM is a self-

adaptive procedure. E-BRM creates two rank lists for 

feasible and infeasible solutions. These lists are unified 

during the exploration process. Metaheuristic 

algorithms have different inspiration sources like 

animal behaviors [33, 34], chemical reactions [3] and 

so on. The main inspiration of TSA [27] is the 

relationship between seeds and their seeds. TSA is 

proposed for solving low dimensional unconstrained 

continuous numerical optimization problems. Cinar 

and Kiran [10, 12] proposed the parallel version of 

TSA. Kiran [26] investigated the performance of TSA 

on constrained optimization which is an engineering 

design problem (the pressure vessel design problem). 

Cinar and Kiran [11] studied the effectiveness of 

search space limitation methods on TSA. TSA is 

modified for constrained optimization in [5], binary 

optimization in [13] and discrete optimization in [14]. 

The remainder of the paper is organized as follows: 

our study is presented and literature is given in the first 

section and the constrained optimization is explained 

in section 2. The basic TSA is introduced in section 3 

and the detailed information about penalty approaches 

is given in section 4. The experimental setup, results 

and discussions are presented in section 5. Finally, the 

study is concluded, and a future direction is given in 

section 6. 

2. Constrained Optimization 

A Constrained Optimization Problem (COP) is usually 

defined as follows [31]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑔𝑗(𝑥) ≤ 0, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑞

ℎ𝑗(𝑥) = 0, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑚
 

Where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 =
1, … , 𝑛, q is the number of total inequality constraint 

and m is the number of total equality constraints. The 

objective function f(x) is defined on a search space, S, 

defined by 𝑆 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ∈ 𝑅𝑛: 𝑙𝑖 ≤ 𝑥𝑖 ≤
𝑢𝑖, 𝑖 = 1, … , 𝑛} 

Let F be the set which contains all those x ∈ S such 

that the inequality and equality constraints given by 

Equation (1) are fulfilled. The feasible region is 

denoted as F. The equality constraints can be 

transformed to inequality constraints given as follows:  

|ℎ𝑗(𝑥)| ≤ 𝜉 𝑗 = 1,2,3, … , 𝑚 

𝜉 is set to 1e-4 in this study, m is the number of total 

equality constraints. Minimization problems are taken 

as basis in this article. 

3. Tree-Seed Algorithm 

TSA was presented by Kiran [27] for solving 

optimization problems. The relationship between trees 

(1) 

(2) 
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and their seeds are the main inspiration of TSA. Trees 

and seeds represent the potential solutions for 

optimization problems. Trees are created randomly in 

search space at the initialization phase. The number of 

trees or population is named as “stand size” in TSA. 

The number of seeds is analyzed in [27], and it is 

recommended as between 10% and 25% of stand size. 

Seeds are produced using Equations 3 or 4 for each 

tree at every generation.  

𝑆𝑒𝑒𝑑𝑠(𝑘) = 𝑇𝑟𝑒𝑒𝑠(𝑖) + 𝛼(𝐵𝑒𝑠𝑡𝑇𝑟𝑒𝑒 − 𝑇𝑟𝑒𝑒𝑠(𝑟)) 

𝑆𝑒𝑒𝑑𝑠(𝑘) = 𝑇𝑟𝑒𝑒𝑠(𝑖) + 𝛼(𝑇𝑟𝑒𝑒𝑠(𝑖) − 𝑇𝑟𝑒𝑒𝑠(𝑟)) 

where, Trees(i) is ith tree, Seeds(k) is kth seed of 

Trees(i), 𝛼 is a uniformly distributed random number 

between -1 and 1, BestTree is the best tree obtained so 

far, Trees(r) is a random tree which is different from 

the Trees(i). Search Tendency (ST) parameter controls 

the selection of Equation (3) or Equation (4) ST has a 

value between 0 and 1. In the course of the iterations, a 

random number between 0 and 1 is produced and 

compared with the ST parameter. If this random 

number is smaller than ST, Equation (3) is used for 

seed creation, otherwise, Equation (4) is used for seed 

generation. Equation (3) provides exploitation, and 

Equation4 provides exploration in TSA. For detailed 

information for TSA, referenced works [10, 13, 27] 

can help researchers. 

4. Penalty Approaches 

Simply, if any constraint is violated, then the penalty 

value added (for minimization problems) to the 

objective function in the penalty approach. Three 

different types of penalty approaches are conducted. 

These are static, dynamic and adaptive. The general 

form of using penalty approaches in metaheuristic 

algorithms is given in Equation (5):  

𝑓(𝑥) = 𝑜(𝑥) + 𝑤 × 𝑝(𝑥) 

Where f(x) is the fitness function, 𝑜(𝑥) is the objective 

function, p(x) is the penalty function and 𝑤 is the 

coefficient of the penalty. If a solution is feasible, then 

p(x)=0 otherwise, p(x) is calculated as mentioned in the 

subsections. If the penalty values are constant during 

the iterations, this type of approaches is named as 

static, if the coefficient of penalty is changed via 

iterations, this type of approaches is named as 

dynamic, and if the evolution process feedbacks the 

coefficient of penalty, this type of approaches is named 

as adaptive.  

4.1. Static Penalty Approaches the Constant 

Static Penalty Approach 

The basic formulation of the constant static penalty 

approach is as follows:  

𝑝(𝑥) = ∑ 𝐶𝑖𝛿𝑖 , 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
𝑚
𝑖=1  

Where Ci is the constant penalty value for constraint i. 

For simplicity, in this study, we use a unique constant 

value of all constraints. C is set as 109. This technique 

is named as TSA1 in this study. 

 Sum of the constraint violations approach 

The formulation of the sum of the constraint violations 

approach is as follows:  

𝑓(𝑥) = 𝑜(𝑥) + ∑ |𝑉𝑖|𝛿𝑖 , 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
𝑚
𝑖=1  

where Vi is the violation amount of constraint i. This 

technique is named as TSA2 in this study. 

 Sum of the constraint violations squared approach 

The formulation of the sum of the constraint violations 

squared approach is as follows:  

𝑝(𝑥) = ∑ |𝑉𝑖|2𝛿𝑖, 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
 𝑚

𝑖=1  

Where |𝑉𝑖|2 is the squared violation amount of 

constraint i. This technique is named as TSA3 in this 

study. 

 Homaifar et al.’s [23] Static Penalty Approach 

Homaifar et al. [23] propose a static penalty approach. 

In this approach, a multi-stage penalty mechanism is 

included in the Genetic algorithm. This approach is 

problem-dependent because m(2s+1) (m is the number 

of constraints and s is the number of stages) parameters 

must be determined for the calculation. This is an 

arbitrary and time-consuming process. Thus, in this 

study, we did not use this approach in our experiments. 

 Morales and Quezada’s Static Penalty Approach 

Morales and Quezada [38] propose a static penalty 

approach. This approach adds penalty value according 

to the violated constraint number.  

𝑝(𝑥) = 𝐾 − ∑
𝐾

𝑚

𝑠
𝑖=1  

Where K is a large constant (i.e., 109), s is the number 

of satisfied constraints, m is the number of constraints. 

This technique is named as TSA4 in this study. 

4.2. Dynamic Penalty Approaches 

4.2.1. Joines and Houck’s Dynamic Penalty 

Approach 

Joines and Houck [24] propose a dynamic penalty 

approach for the genetic algorithm. The main 

inspiration of this technique is simulated annealing and 

calculus-based penalty approach.  

𝑝(𝑥) = (𝐶 × 𝑘)𝛼 × ∑ 𝑔𝑖(𝑥)𝛽𝑚
𝑖=1  

Where α, β, C are constant parameters. k is the current 

iteration number, m is the number of total constraints. 

In this study, we used these values as C=0.5, 𝛼=2 and 

β=2 as in [28]. This technique is named as TSA5 in 

this study. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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4.2.2. Liu et al.’s Dynamic Penalty Approach 

Liu et al. [31] proposed a dynamic penalty approach. 

This approach depends on two new parameters.  

𝑝(𝑥) = 10

𝜃2−𝜃1

1+𝑒

20(−𝑔+
𝐺
4

)

𝐺

+𝜃1

× ∑ 𝐶𝑖
𝑚
𝑖=1  

Where, g is the current iteration number, G is the total 

iteration number, θ2 and θ1 are the predefined lower 

and upper values of the power of 10. In this study, we 

used these values as θ2=6 and θ1=2 like as in Liu et al. 

[31] work. This technique is named as TSA6 in this 

study. 

4.2.3. Kazarlis and Petridis’s Dynamic Penalty 

Approach 

Kazarlis and Petridis [25] propose a dynamic penalty 

approach and named it as Varying Fitness Function 

(VFF) technique. This dynamic penalty technique 

contains three crucial parameters. These parameters are 

A, B and w. A is the severity factor, B is the penalty 

threshold value and w is the weights of the constraints. 

The parameter definition process is a substantial 

problem-dependent. Therefore, in this study, we did 

not use this technique.  

4.2.4. Carlson and Shonkwiler’s Annealing Penalty 

Approach 

Carlson and Shonkwiler [8] propose an annealing 

penalty approach. This technique works as follows: 

𝑝(𝑥) = 𝑒

−𝑀
1

√𝑡  

Where t is the last temperature used in the previous 

iteration, M is the total violation of constraints. Carlson 

and Shonkwiler [8] solved the groundwater 

management problem in their work. When we analyze 

this technique on standard benchmark minimization 

problems, it does not produce good solutions and most 

of the time it found local optimums. Because of this, in 

this study, we did not use this technique. 

4.3. Adaptive Penalty Approaches 

4.3.1. Ben Hadj-Alouane and Bean’s Adaptive 

Penalty Approach 

Ben Hadj-Alouane and Bean [7] propose an adaptive 

penalty approach that depends on a penalty value that 

changes through iterations.  

𝑝(𝑥) + 𝜆(𝑡)[∑ 𝑔𝑖
2(𝑥)𝑞

𝑖=1 + ∑ |ℎ𝑗(𝑥)|𝑚
𝑗=𝑞+1 ] 

𝜆(𝑡 + 1) = {

(
1

𝛽1
) 𝜆(𝑡)𝑖𝑓𝐶𝑎𝑠𝑒1

𝛽2𝜆(𝑡)𝑖𝑓𝐶𝑎𝑠𝑒2

𝜆(𝑡)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where t is the current iteration number, 𝜆(. ) is the 

penalty factor, if best individuals in the last k 

generations are feasible, then Case # 1 occurs, if they 

are not feasible then Case # 2 occurs. In this method, k, 

𝛽1, and 𝛽2 parameters must be carefully selected. This 

technique is the problem and the parameter-dependent 

technique. Therefore, in this study, we did not use this 

technique.  

4.3.2. Smith et al.’s Adaptive Penalty Approach 

Coit and Smith [17] and Smith and Tate [43] proposed 

an improved Near Feasibility Threshold (NFT) 

technique for constrained optimization. NFT uses a 

threshold value for determining the additional feasible 

area (NFT-infeasible region). The main formula of 

NFT is as follows: 

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑤𝑖

𝑁𝐹𝑇𝑤
)

𝐾

+ (
∆𝑐𝑖

𝑁𝐹𝑇𝑐
)

𝐾

) 

Where BestF non-penalized solution value of the best 

solution (maybe infeasible), Best is the best feasible 

solution, K is the severity factor, NFTW is the weight of 

constraint, NFTC is the cost of constraint, ∆𝑤𝑖 is the 

weight of the ith solution, ∆𝑐𝑖 is the cost of the ith 

solution. The main disadvantage of this formula is the 

(BestF - Best) part because if a premature convergence 

occurs BestF is equals to Best so the value of this part 

is zero. Therefore, the fitness value equals to objective 

function value and this method does not affect the 

solution. The second disadvantage is the value of 

(BestF - Best) is huge, then the penalty value is severe 

so the search does not continue efficiently.  

This method includes problem-dependent variables 

such as NFTW and NFTC. Coit and Smith [17] proposed 

a dynamic NFT as follows: 

𝑁𝐹𝑇 =
𝑁𝐹𝑇0

1+𝜆𝑔
 

Where NFTO is the starting value, 𝜆 is a constant which 

assures the area between NFTO and zero, g is the 

current iteration number. As you see, in the formula 

two new parameters should be determined for this 

adaptive NFT. Especially, the selection of the 𝜆 

parameter very critical for convergence. The main aim 

is NFT not approach zero either too slowly or too 

quickly. 

In this study, our aim is to analyze problem-

independent penalty approaches. Therefore, we use this 

technique as follows: 

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑐𝑖

1000

1+𝑔

)

2

) 

This technique, which is given in Equation (17) is 

named as TSA7 in this study. 

For determining the effect of adaptiveness, we 

change this formula as follows: 

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑐𝑖

1000
)

2
) 

This technique which is given in Equation (18) is 

named as TSA8 in this study. 

(11) 

(12) 

(14) 

(13) 

(15) 

(16) 

(17) 

(18) 
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4.3.3. Tessema and Yen’s Self Adaptive Penalty 

Approach 

Tessema and Yen [46] propose a self-adaptive penalty 

approach. This approach has not special parameters. 

This technique is named as TSA9 in this study. 

4.3.4. Farmani and Wright’s Self Adaptive Penalty 

Approach 

Farmani and Wright [20] proposed a self-adaptive 

penalty approach for constrained optimization 

problems. We could not reproduce the code of this 

approach via the article. Therefore, in this study, we 

did not use this technique. 

4.3.5. Powell and Skolnick’s Adaptive Penalty 

Approach 

Powell and Skolnick [39] presented a method which 

mapped feasible solutions between -∞ and 1, and 

infeasible solutions between 1 and +∞. Bevcause this 

method is similar to the study of Deb [19], we did not 

use this technique in this study. 

4.4. Proposed Method 

The blueprint of the proposed method is given in 

Figure 1.  

 

Figure 1. The blueprint of the proposed method. 

In each version of TSA, the constrained handling 

technique is integrated with TSA, and it is applied to 

solve the constrained numeric benchmark functions. 

5. Experiments 

5.1. Experimental Setup 

The performance investigations of penalty approaches 

on constrained optimization for tree-seed algorithm 

have been evaluated using a set of 13 benchmark 

functions [5]. This set is also named as CEC2006 test 

case and detailed information can be found in Liang et 

al.’s [30] work. This test set is a comprehensive 

benchmark suite because in this test set linear, 

quadratic, cubic, polynomial, and nonlinear functions 

are included. Babalik et al.’s [5] work gives some 

feedback about the peculiar parameters of TSA. 

Therefore, the stand size is taken as 20 and ST is taken 

as 0.2 in this study. The termination condition is the 

maximum number of function evaluations and it is set 

to 2.4E+5. The “mean” means “mean of the final 

obtained fitness functions of 30 different runs”. 

5.2. Results and Discussions 

In the first experiment, 9 different penalty approaches 

are integrated into TSA and compared to each other. 

TSA1, TSA2, TSA3 and TSA4 are static penalty 

approaches, TSA5 and TSA6 dynamic penalty 

approaches, TSA7, TSA8 and TSA9 are adaptive 

penalty approaches. The mean results of 30 different 

runs are given in Table 1.  

Table 1. The mean results of 30 different runs. 

 
Optimum TSA1 TSA2 TSA3 TSA4 

G01 -1.50E+01 -1.50E+01 -1.50E+01 -1.52E+01 1.00E+09 

G02 -8.04E-01 -8.01E-01 -8.01E-01 -8.03E-01 1.00E+09 

G03 -1.00E+00 6.67E+08 -1.00E+05 -9.99E+04 1.00E+09 

G04 -3.07E+04 -3.07E+04 -3.22E+04 -3.22E+04 1.00E+09 

G05 5.13E+03 2.93E+09 1.60E+03 5.11E+03 1.00E+09 

G06 -6.96E+03 3.33E+07 -7.96E+03 -7.95E+03 1.00E+09 

G07 2.43E+01 2.46E+01 2.08E+01 2.30E+01 1.00E+09 

G08 -9.58E-02 -9.58E-02 -1.54E+03 -1.27E+03 1.00E+09 

G09 6.81E+02 6.81E+02 6.79E+02 6.80E+02 1.00E+09 

G10 7.05E+03 9.33E+08 2.10E+03 2.10E+03 1.00E+09 

G11 7.50E-01 3.00E+08 7.50E-01 5.00E-01 1.00E+09 

G12 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 1.00E+09 

G13 5.40E-02 2.00E+09 2.83E-01 1.16E-01 1.00E+09 

 
TSA5 TSA6 TSA7 TSA8 TSA9 

G01 -1.08E-01 -1.50E+01 -2.75E+02 -2.95E+02 -1.50E+01 

G02 -8.01E-01 -8.00E-01 -2.48E-01 -2.54E-01 -8.01E-01 

G03 -6.68E+04 -9.80E+04 -1.70E+04 -1.54E+04 -1.00E+05 

G04 -3.21E+04 -3.20E+04 -3.21E+04 -3.21E+04 -3.22E+04 

G05 8.95E+03 5.21E+03 2.99E+02 1.93E+01 3.20E+03 

G06 -7.92E+03 -7.85E+03 -7.75E+03 -7.86E+03 -7.95E+03 

G07 2.48E+01 2.45E+01 1.88E+02 8.23E+01 2.45E+01 

G08 -1.17E+02 -9.58E-02 -1.15E+03 -1.27E+03 -1.47E+03 

G09 6.81E+02 6.81E+02 7.04E+02 3.29E+02 6.81E+02 

G10 2.56E+03 2.27E+03 3.35E+03 3.28E+03 2.10E+03 

G11 2.03E-01 7.50E-01 9.94E-05 1.68E-05 7.50E-01 

G12 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

G13 1.06E+00 8.98E+00 1.49E-07 1.91E-09 5.17E-01 

For a detailed analysis, we added Table 2, which 

shows the percentage of the deviation from the 

optimum solution for the obtained mean results. In 

Table 2, if the percentage value is bigger than 100, we 

write N/A in this cell.  

TSA

The constant static penalty approach TSA1

Sum of the constraint violations approach TSA2

Sum of the constraint violations squared approach TSA3

Morales and Quezada’s Static Penalty Approach TSA4

Joines and Houck’s Dynamic Penalty Approach TSA5

Liu et al.’s Dynamic Penalty Approach TSA6

Smith et al.’s Adaptive Penalty Approach 1 TSA7

Smith et al.’s Adaptive Penalty Approach 2 TSA8

Tessema and Yen’s Self Adaptive Penalty 
Approach

TSA9
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Table 2. The percentage of the deviation from the optimum 
solution for the obtained mean results. 

 
Optimum TSA1 TSA2 TSA3 TSA4 TSA5 TSA6 TSA7 TSA8 

TSA

9 

G01 -1.50E+01 0.00 0.00 1.00 N/A 99.28 0.00 N/A N/A 0.00 

G02 -8.04E-01 0.35 0.34 0.13 N/A 0.38 0.48 69.20 68.34 0.28 

G03 -1.00E+00 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

G04 -3.07E+04 0.00 5.05 5.04 N/A 4.58 4.21 4.71 4.74 5.05 

G05 5.13E+03 N/A 68.79 0.30 N/A 74.62 1.62 94.17 99.62 37.58 

G06 -6.96E+03 N/A 14.37 14.23 N/A 13.71 12.82 11.37 12.97 14.22 

G07 2.43E+01 1.04 14.24 5.20 N/A 2.09 0.86 N/A N/A 0.89 

G08 -9.58E-02 0.00 N/A N/A N/A N/A 0.00 N/A N/A N/A 

G09 6.81E+02 0.00 0.21 0.05 N/A 0.00 0.00 3.43 51.71 0.00 

G10 7.05E+03 N/A 70.19 70.19 N/A 63.73 67.85 52.46 53.43 70.18 

G11 7.50E-01 N/A 0.01 33.35 N/A 72.93 0.04 99.99 100.00 0.01 

G12 -1.00E+00 0.00 0.00 0.00 N/A 0.00 0.00 0.01 0.01 0.00 

G13 5.40E-02 N/A N/A N/A N/A N/A N/A 100.00 100.00 N/A 

To review from a different perspective, the manual 

ranking was conducted and mean ranks are given in 

Table 3. 

Table 3. The ranking results. 

 
Optimum TSA1 TSA2 TSA3 TSA4 TSA5 TSA6 TSA7 TSA8 TSA9 

G01 -1.50E+01 1 1 2 4 3 1 4 4 1 

G02 -8.04E-01 4 3 1 9 5 6 8 7 2 

G03 -1.00E+00 1 1 1 1 1 1 1 1 1 

G04 -3.07E+04 1 7 6 8 3 2 4 5 7 

G05 5.13E+03 8 4 1 8 5 2 6 7 3 

G06 -6.96E+03 8 7 6 8 4 2 1 3 5 

G07 2.43E+01 3 6 5 7 4 1 7 7 2 

G08 -9.58E-02 1 2 2 2 2 1 2 2 2 

G09 6.81E+02 1 3 2 6 1 1 4 5 1 

G10 7.05E+03 7 6 6 7 3 4 1 2 5 

G11 7.50E-01 7 1 3 7 4 2 5 6 1 

G12 -1.00E+00 1 1 1 3 1 1 2 2 1 

G13 5.40E-02 2 2 2 2 2 2 1 1 2 

Total Ranks 45 44 38 72 38 26 46 52 33 

According to Table 3, the best approach is TSA6, 

the second approach is TSA9. TSA6 is a dynamic 

penalty approach, and TSA9 is an adaptive penalty 

approach. At first view, dynamic and adaptive penalty 

approaches are better than static penalty approaches. 

TSA5 is another dynamic penalty approach, and it was 

third. TSA3 is a static penalty approach and the rank 

point same as TSA5. TSA4 is worst because TSA4 

does not improve the starting solutions and at the 

initialization phase, TSA4 shows premature 

convergence characteristics on the test functions. The 

convergence characteristics of the TSA with penalty 

approaches for the G05 problem are presented in 

Figure 2. TSA1 and TSA4 could not solve the G05 

problem so we do not add these approaches to the 

convergence graph. Only TSA6 and TSA3 converge 

properly for the G05 problem. The other approaches do 

not converge in a reasonable time violate the 

constraints, so they break the optimum line and trapped 

in local optimums. TSA6 uses the current iteration 

number, the total iteration number, and an exponential 

product of the constraint value. This dynamism puts 

TSA6 ahead of the others. 

 

Figure 2. The convergence characteristics of the TSA penalty 

approaches for G05 problem. 

In the second experiment, TSA6 is compared with 

state-of-art algorithms. The other results are directly 

taken from [5] and all conditions are the same for a fair 

comparison. The mean results of TSA6, CTSA, PSO, 

GA, DE and ABC algorithms are given in Table 4.  

Table 4. The comparison results of TSA6, CTSA, PSO, GA, DE 

and ABC algorithms. 

Problem Optimum ABC PSO GA DE CTSA TSA6 

G01 -1.50E+01 -1.50E+01 -1.06E+01 -1.42E+01 -1.42E+01 -1.50E+01 -1.50E+01 

G02 8.04E-01 4.80E-01 4.04E-01 7.89E-01 6.66E-01 8.01E-01 8.00E-01 

G03 1.00E+00 3.02E+00 1.17E+00 9.76E-01 1.17E+00 1.02E+00 9.80E+04 

G04 -3.07E+04 -3.06E+04 -3.07E+04 -3.06E+04 -3.07E+04 -3.07E+04 -3.20E+04 

G05 5.13E+03 5.12E+03 5.30E+03 N/A 5.33E+03 5.17E+03 5.21E+03 

G06 -6.96E+03 -7.58E+03 -6.96E+03 -6.87E+03 -6.77E+03 -6.96E+03 -7.85E+03 

G07 2.43E+01 2.91E+01 2.87E+01 3.50E+01 2.43E+01 2.45E+01 2.45E+01 

G08 9.58E-02 6.53E+00 8.47E-02 9.58E-02 9.58E-02 9.58E-02 9.58E-02 

G09 6.81E+02 6.84E+02 6.81E+02 6.92E+02 6.81E+02 6.81E+02 6.81E+02 

G10 7.05E+03 7.26E+03 8.13E+03 1.00E+04 7.16E+03 7.12E+03 2.27E+03 

G11 7.50E-01 7.17E-01 7.63E-01 7.50E-01 9.55E-01 8.00E-01 7.50E-01 

G12 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

G13 5.40E-02 9.55E-02 1.42E+00 N/A 9.49E-01 9.67E-01 8.98E+00 

For a complete analysis, we added Table 5, which 

shows the percentage of the deviation from the 

optimum solution for the obtained mean results. In 

Table 5, if the percentage value is bigger than 100, we 

write N/A in this cell.  

Table 5. The percentage of the deviation from the optimum 
solution for the mean results. 

Problem Optimum ABC PSO GA DE CTSA TSA6 

G01 -1.50E+01 0.14 29.63 5.09 5.06 0.00 0.00 

G02 8.04E-01 40.33 49.69 1.87 17.12 0.39 0.48 

G03 1.00E+00 N/A 16.75 2.40 16.94 1.58 N/A 

G04 -3.07E+04 0.18 0.01 0.24 0.00 0.00 4.21 

G05 5.13E+03 0.22 3.35 N/A 3.95 0.89 1.62 

G06 -6.96E+03 8.87 0.00 1.29 N/A 0.00 12.82 

G07 2.43E+01 19.71 18.25 43.92 0.04 0.80 0.86 

G08 9.58E-02 N/A 11.61 0.03 0.03 0.03 0.00 

G09 6.81E+02 0.48 0.02 1.68 0.00 0.00 0.00 

G10 7.05E+03 2.98 15.31 41.90 1.61 0.95 67.85 

G11 7.50E-01 4.39 1.68 0.00 27.27 6.71 0.04 

G12 1.00E+00 0.01 0.00 0.00 0.00 0.00 0.00 

G13 5.40E-02 77.02 N/A N/A N/A N/A N/A 

The ranking results are given in Table 6. 
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Table 6. The ranking results. 

Problem Optimum ABC PSO GA DE CTSA TSA6 

G01 -1.50E+01 2 5 4 3 1 1 

G02 8.04E-01 5 6 3 4 1 2 

G03 1.00E+00 5 3 2 4 1 5 

G04 -3.07E+04 3 2 4 1 1 5 

G05 5.13E+03 1 4 6 5 2 3 

G06 -6.96E+03 3 1 2 5 1 4 

G07 2.43E+01 5 4 6 1 2 3 

G08 9.58E-02 4 3 2 2 2 1 

G09 6.81E+02 3 2 4 1 1 1 

G10 7.05E+03 3 4 5 2 1 6 

G11 7.50E-01 4 3 1 6 5 2 

G12 1.00E+00 2 1 1 1 1 1 

G13 5.40E-02 1 2 2 2 2 2 

Total Ranks 41 40 42 37 21 36 

According to Table 6, at first view, TSA6 is better 

than ABC, PSO, GA and DE, but CTSA is better than 

TSA6. These results show that TSA6 outperforms the 

state-of-art algorithms for constrained optimization. 

TSA integrated with the dynamic penalty approach of 

Liu et al. [31] and this approach is named as TSA6. In 

this study, TSA6 produces promising and comparable 

results on benchmark functions. TSA has two peculiar 

parameters. These are the number of seeds and search 

tendency. The number of seeds improves the 

exploitation of the algorithm and search tendency 

controls the balance between exploration and 

exploitation. Because of these mechanisms, the TSA 

outperforms the other algorithms. 

6. Conclusions and Future Work 

In this work, penalty approaches are used for solving 

constrained optimization problems with the TSA. Most 

of the optimization problems have constraints. 

Metaheuristic algorithms are produced by optimal and 

near-optimal solutions for constrained optimization 

problems. TSA is a population-based swarm 

intelligence algorithm. The penalty approaches are the 

simplest way to handle constraints. In literature, there 

are many penalty approaches. These approaches are 

grouped as static, dynamic and adaptive. The pros and 

cons of the penalty approaches are discussed in this 

study. Nine different penalty approaches are integrated 

TSA and experimental results are conducted on well-

known benchmark functions. Experiments show that 

dynamic and adaptive penalty approaches are better 

than static penalty approaches. TSA integrated with the 

dynamic penalty approach of Liu et al. [31] and this 

approach is named as TSA6. TSA6 uses the current 

iteration number, the total iteration number, and an 

exponential product of the constraint value. This 

dynamism puts TSA6 ahead of the others. TSA6 

solved G01, G08, G09 and G12 optimally. We also 

compared TSA variants wit state-of-art algorithms. 

The results show that, the TSA is better than ABC, 

PSO, GA and DE. In future works, we will study on 

new constraint handling methods for metaheuristic 

algorithms and especially on TSA. As future work, we 

will examine the sea lion optimization algorithm [33] 

and will apply the penalty approaches for improving 

the capabilities of this algorithm. 
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