
The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020 799

The Performance of Penalty Methods on Tree-Seed

Algorithm for Numerical Constrained Optimization

Problems

Ahmet Cinar1 and Mustafa Kiran2
1Department of Computer Engineering, Selçuk University, Turkey

2Department of Computer Engineering, Konya Technical University, Turkey

Abstract: The constraints are the most important part of many optimization problems. The metaheuristic algorithms are

designed for solving continuous unconstrained optimization problems initially. The constraint handling methods are integrated

into these algorithms for solving constrained optimization problems. Penalty approaches are not only the simplest way but

also as effective as other constraint handling techniques. In literature, there are many penalty approaches and these are

grouped as static, dynamic and adaptive. In this study, we collect them and discuss the key benefits and drawbacks of these

techniques. Tree-Seed Algorithm (TSA) is a recently developed metaheuristic algorithm, and in this study, nine different

penalty approaches are integrated with the TSA. The performance of these approaches is analyzed on well-known thirteen

constrained benchmark functions. The obtained results are compared with state-of-art algorithms like Differential Evolution

(DE), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Genetic Algorithm (GA). The experimental

results and comparisons show that TSA outperformed all of them on these benchmark functions.

Keywords: Constrained optimization, penalty functions, penalty approaches, tree-seed algorithm.

Received January 3, 2019; accepted February 26, 2020

https://doi.org/10.34028/iajit/17/5/13

1. Introduction

Using penalty approaches for constrained optimization

is not only the simplest way but also as effective as

other constraint handling techniques. Penalty

approaches convert constrained optimization problems

to unconstrained optimization problems. The main idea

is penalizing the unfeasible solutions thus the

exploration process goes towards the feasible region.

Penalty functions are divided into two separate groups

in the literature. These are named as exterior and

interior. Interior penalty approaches penalize the

feasible solutions, and exterior penalty approaches

penalize the infeasible solutions. The infeasible

solutions are created easier than feasible solutions by

evolutionary computation techniques. Therefore,

researchers mostly interested in the exterior penalty

approach. In this study, we also interested in these

techniques. The significant thing is to tune the penalty

factor. If we use a big penalty factor, then the search is

tending to local optimums, otherwise, if we use small

penalty factor, exploring the feasible region is needed

very time-consuming process. Thus, if an efficient

penalty factor is found, it is an important improvement

to the constrained optimization problem area.

Therefore, this subject constantly is studied in the

literature. Schoenauer and Xanthakis [41] suggested a

new method which handles constraints one by one. At

initialization, a random population is created, then the

algorithm tries to handle the first constraint. When the

first constraint is satisfied, the algorithm deal with the

second constraint. This process continues until all

constraints are satisfied. This method is specific and

some studies [35] show that this method does not solve

any problems. Therefore, we did not use this technique

in our study. Michalewicz and Attia [36] proposed

Genocop II for solving constrained problems. Genocop

II handles any type of constraints while Genocop I, the

previous version, handles only linear constraints.

Michalewicz [35] compared six methods on five test

problems. These methods are given in [23, 24, 36, 39,

41] death penalty. Five problems that have different

characteristics (linear, nonlinear, quadratic, and

polynomial) are solved by these methods. Results show

that there is no superior method for solving constrained

optimization problems. Michalewicz and Schoenauer

[37] prepared a survey on constrained optimization

with evolutionary computation methods. In section 5.2

of the Handbook of Evolutionary Computation [6],

Smith and Coit [42] discussed the penalty functions

very deeply. Coello [16] introduces a self-adaptive

penalty approach for constrained optimization. This

approach is used not only the total constraint violation

but also the number of unsatisfied constraints. These

two properties are controlled by two weighting factors.

These weighting factors are optimized with another

population during the search process. This technique is

also a co-evolution penalty approach. Hamida and

800 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

Schoenauer [22] improved ASCHEA [21] technique.

ASCHEA consists of three main parts, the first is the

population-based adaptive penalty function, the second

is the mate feasible individuals by infeasible

individuals, and the third is segregational selection

similar to [19]. Kuri-Morales and Gutiérrez-García

[28] integrated five different penalty approaches with

the genetic algorithm. The experimental results are

examined with statistical analysis information. Coello

[15] prepared a comprehensive survey on constraint

handling techniques. These techniques discussed

deeply and compared positive and negative features.

Farmani and Wright [20] proposed a self-adaptive

fitness formulation for solving constrained

optimization problems. This method requires no

parameter tuning. Lemonge and Barbosa [29] proposed

a parameterless adaptive penalty approach. This

procedure is named as an Adaptive Penalty Method

(APM) and it is used for solving structural and

benchmark problems. Yeniay [47] collected penalty

functions that are found in the literature. This work

discusses the main advantages and drawbacks of

penalty approaches. Yuchi and Kim [48] proposed a

new method that divides the population into two

groups. This method labels individuals as feasible or

infeasible. After this phase, new children are created

with feasible parents. The pipe network optimization

problem is solved with a penalty adapting ant

algorithm [1]. GA [44] and PSO [2] have properly

solved the cost optimization problems that are a type of

constrained optimization problems. Babaeizadeh and

Ahmad [4] solved 24 constrained benchmark problems

with the enhanced artificial bee colony algorithm.

Mallipeddi and Suganthan [32] mention the no free

lunch theorem and propose the Ensemble of Constraint

Handling Techniques (ECHT). ECHT contains four

different constraint handling techniques. The

superiority of feasible solutions [19], Self-adaptive

Penalty [46], ε–Constraint [45] and Stochastic Ranking

[40] techniques are used for constraint handling. Liu et

al. [31] added static and dynamic penalty approaches

to the differential search algorithm. The dynamic

penalty approach produced more quality solutions than

the static penalty approach. Chehouri et al. [9] criticize

the penalty approaches and suggest a new constraint

handling mechanism named as Violation Constraint-

Handling-VCH. VCH method is compared with

penalty approaches in the literature. This is a

parameter-free constraint-handling technique. The

VCH is remarkably similar to Deb’s rules which use in

the work of Babalik et al. [5]. The differences are VCH

takes account of a number of violated constraints and

using elitism. Babalik et al. [5] integrated Deb’s rules

to the tree-seed algorithm for solving constrained

optimization problems. Constrained TSA (CTSA)

solved well-known thirteen constrained optimization

benchmark problems and four engineering design

problems. De Castro Rodrigues et al. [18] presented a

constraint handling method whose name is Extended

Balanced Ranking Method (E-BRM). E-BRM is a self-

adaptive procedure. E-BRM creates two rank lists for

feasible and infeasible solutions. These lists are unified

during the exploration process. Metaheuristic

algorithms have different inspiration sources like

animal behaviors [33, 34], chemical reactions [3] and

so on. The main inspiration of TSA [27] is the

relationship between seeds and their seeds. TSA is

proposed for solving low dimensional unconstrained

continuous numerical optimization problems. Cinar

and Kiran [10, 12] proposed the parallel version of

TSA. Kiran [26] investigated the performance of TSA

on constrained optimization which is an engineering

design problem (the pressure vessel design problem).

Cinar and Kiran [11] studied the effectiveness of

search space limitation methods on TSA. TSA is

modified for constrained optimization in [5], binary

optimization in [13] and discrete optimization in [14].

The remainder of the paper is organized as follows:

our study is presented and literature is given in the first

section and the constrained optimization is explained

in section 2. The basic TSA is introduced in section 3

and the detailed information about penalty approaches

is given in section 4. The experimental setup, results

and discussions are presented in section 5. Finally, the

study is concluded, and a future direction is given in

section 6.

2. Constrained Optimization

A Constrained Optimization Problem (COP) is usually

defined as follows [31]:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑔𝑗(𝑥) ≤ 0, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑞

ℎ𝑗(𝑥) = 0, 𝑓𝑜𝑟 𝑗 = 1, … , 𝑚

Where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 =
1, … , 𝑛, q is the number of total inequality constraint

and m is the number of total equality constraints. The

objective function f(x) is defined on a search space, S,

defined by 𝑆 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ∈ 𝑅𝑛: 𝑙𝑖 ≤ 𝑥𝑖 ≤
𝑢𝑖, 𝑖 = 1, … , 𝑛}

Let F be the set which contains all those x ∈ S such

that the inequality and equality constraints given by

Equation (1) are fulfilled. The feasible region is

denoted as F. The equality constraints can be

transformed to inequality constraints given as follows:

|ℎ𝑗(𝑥)| ≤ 𝜉 𝑗 = 1,2,3, … , 𝑚

𝜉 is set to 1e-4 in this study, m is the number of total

equality constraints. Minimization problems are taken

as basis in this article.

3. Tree-Seed Algorithm

TSA was presented by Kiran [27] for solving

optimization problems. The relationship between trees

(1)

(2)

The Performance of Penalty Methods on Tree-Seed Algorithm for Numerical ... 801

and their seeds are the main inspiration of TSA. Trees

and seeds represent the potential solutions for

optimization problems. Trees are created randomly in

search space at the initialization phase. The number of

trees or population is named as “stand size” in TSA.

The number of seeds is analyzed in [27], and it is

recommended as between 10% and 25% of stand size.

Seeds are produced using Equations 3 or 4 for each

tree at every generation.

𝑆𝑒𝑒𝑑𝑠(𝑘) = 𝑇𝑟𝑒𝑒𝑠(𝑖) + 𝛼(𝐵𝑒𝑠𝑡𝑇𝑟𝑒𝑒 − 𝑇𝑟𝑒𝑒𝑠(𝑟))

𝑆𝑒𝑒𝑑𝑠(𝑘) = 𝑇𝑟𝑒𝑒𝑠(𝑖) + 𝛼(𝑇𝑟𝑒𝑒𝑠(𝑖) − 𝑇𝑟𝑒𝑒𝑠(𝑟))

where, Trees(i) is ith tree, Seeds(k) is kth seed of

Trees(i), 𝛼 is a uniformly distributed random number

between -1 and 1, BestTree is the best tree obtained so

far, Trees(r) is a random tree which is different from

the Trees(i). Search Tendency (ST) parameter controls

the selection of Equation (3) or Equation (4) ST has a

value between 0 and 1. In the course of the iterations, a

random number between 0 and 1 is produced and

compared with the ST parameter. If this random

number is smaller than ST, Equation (3) is used for

seed creation, otherwise, Equation (4) is used for seed

generation. Equation (3) provides exploitation, and

Equation4 provides exploration in TSA. For detailed

information for TSA, referenced works [10, 13, 27]

can help researchers.

4. Penalty Approaches

Simply, if any constraint is violated, then the penalty

value added (for minimization problems) to the

objective function in the penalty approach. Three

different types of penalty approaches are conducted.

These are static, dynamic and adaptive. The general

form of using penalty approaches in metaheuristic

algorithms is given in Equation (5):

𝑓(𝑥) = 𝑜(𝑥) + 𝑤 × 𝑝(𝑥)

Where f(x) is the fitness function, 𝑜(𝑥) is the objective

function, p(x) is the penalty function and 𝑤 is the

coefficient of the penalty. If a solution is feasible, then

p(x)=0 otherwise, p(x) is calculated as mentioned in the

subsections. If the penalty values are constant during

the iterations, this type of approaches is named as

static, if the coefficient of penalty is changed via

iterations, this type of approaches is named as

dynamic, and if the evolution process feedbacks the

coefficient of penalty, this type of approaches is named

as adaptive.

4.1. Static Penalty Approaches the Constant

Static Penalty Approach

The basic formulation of the constant static penalty

approach is as follows:

𝑝(𝑥) = ∑ 𝐶𝑖𝛿𝑖 , 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
𝑚
𝑖=1

Where Ci is the constant penalty value for constraint i.

For simplicity, in this study, we use a unique constant

value of all constraints. C is set as 109. This technique

is named as TSA1 in this study.

 Sum of the constraint violations approach

The formulation of the sum of the constraint violations

approach is as follows:

𝑓(𝑥) = 𝑜(𝑥) + ∑ |𝑉𝑖|𝛿𝑖 , 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
𝑚
𝑖=1

where Vi is the violation amount of constraint i. This

technique is named as TSA2 in this study.

 Sum of the constraint violations squared approach

The formulation of the sum of the constraint violations

squared approach is as follows:

𝑝(𝑥) = ∑ |𝑉𝑖|2𝛿𝑖, 𝑤ℎ𝑒𝑟𝑒 {
𝛿𝑖 = 1, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) > 0

𝛿𝑖 = 0, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑖) ≤ 0
 𝑚

𝑖=1

Where |𝑉𝑖|2 is the squared violation amount of

constraint i. This technique is named as TSA3 in this

study.

 Homaifar et al.’s [23] Static Penalty Approach

Homaifar et al. [23] propose a static penalty approach.

In this approach, a multi-stage penalty mechanism is

included in the Genetic algorithm. This approach is

problem-dependent because m(2s+1) (m is the number

of constraints and s is the number of stages) parameters

must be determined for the calculation. This is an

arbitrary and time-consuming process. Thus, in this

study, we did not use this approach in our experiments.

 Morales and Quezada’s Static Penalty Approach

Morales and Quezada [38] propose a static penalty

approach. This approach adds penalty value according

to the violated constraint number.

𝑝(𝑥) = 𝐾 − ∑
𝐾

𝑚

𝑠
𝑖=1

Where K is a large constant (i.e., 109), s is the number

of satisfied constraints, m is the number of constraints.

This technique is named as TSA4 in this study.

4.2. Dynamic Penalty Approaches

4.2.1. Joines and Houck’s Dynamic Penalty

Approach

Joines and Houck [24] propose a dynamic penalty

approach for the genetic algorithm. The main

inspiration of this technique is simulated annealing and

calculus-based penalty approach.

𝑝(𝑥) = (𝐶 × 𝑘)𝛼 × ∑ 𝑔𝑖(𝑥)𝛽𝑚
𝑖=1

Where α, β, C are constant parameters. k is the current

iteration number, m is the number of total constraints.

In this study, we used these values as C=0.5, 𝛼=2 and

β=2 as in [28]. This technique is named as TSA5 in

this study.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

802 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

4.2.2. Liu et al.’s Dynamic Penalty Approach

Liu et al. [31] proposed a dynamic penalty approach.

This approach depends on two new parameters.

𝑝(𝑥) = 10

𝜃2−𝜃1

1+𝑒

20(−𝑔+
𝐺
4

)

𝐺

+𝜃1

× ∑ 𝐶𝑖
𝑚
𝑖=1

Where, g is the current iteration number, G is the total

iteration number, θ2 and θ1 are the predefined lower

and upper values of the power of 10. In this study, we

used these values as θ2=6 and θ1=2 like as in Liu et al.

[31] work. This technique is named as TSA6 in this

study.

4.2.3. Kazarlis and Petridis’s Dynamic Penalty

Approach

Kazarlis and Petridis [25] propose a dynamic penalty

approach and named it as Varying Fitness Function

(VFF) technique. This dynamic penalty technique

contains three crucial parameters. These parameters are

A, B and w. A is the severity factor, B is the penalty

threshold value and w is the weights of the constraints.

The parameter definition process is a substantial

problem-dependent. Therefore, in this study, we did

not use this technique.

4.2.4. Carlson and Shonkwiler’s Annealing Penalty

Approach

Carlson and Shonkwiler [8] propose an annealing

penalty approach. This technique works as follows:

𝑝(𝑥) = 𝑒

−𝑀
1

√𝑡

Where t is the last temperature used in the previous

iteration, M is the total violation of constraints. Carlson

and Shonkwiler [8] solved the groundwater

management problem in their work. When we analyze

this technique on standard benchmark minimization

problems, it does not produce good solutions and most

of the time it found local optimums. Because of this, in

this study, we did not use this technique.

4.3. Adaptive Penalty Approaches

4.3.1. Ben Hadj-Alouane and Bean’s Adaptive

Penalty Approach

Ben Hadj-Alouane and Bean [7] propose an adaptive

penalty approach that depends on a penalty value that

changes through iterations.

𝑝(𝑥) + 𝜆(𝑡)[∑ 𝑔𝑖
2(𝑥)𝑞

𝑖=1 + ∑ |ℎ𝑗(𝑥)|𝑚
𝑗=𝑞+1]

𝜆(𝑡 + 1) = {

(
1

𝛽1
) 𝜆(𝑡)𝑖𝑓𝐶𝑎𝑠𝑒1

𝛽2𝜆(𝑡)𝑖𝑓𝐶𝑎𝑠𝑒2

𝜆(𝑡)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where t is the current iteration number, 𝜆(.) is the

penalty factor, if best individuals in the last k

generations are feasible, then Case # 1 occurs, if they

are not feasible then Case # 2 occurs. In this method, k,

𝛽1, and 𝛽2 parameters must be carefully selected. This

technique is the problem and the parameter-dependent

technique. Therefore, in this study, we did not use this

technique.

4.3.2. Smith et al.’s Adaptive Penalty Approach

Coit and Smith [17] and Smith and Tate [43] proposed

an improved Near Feasibility Threshold (NFT)

technique for constrained optimization. NFT uses a

threshold value for determining the additional feasible

area (NFT-infeasible region). The main formula of

NFT is as follows:

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑤𝑖

𝑁𝐹𝑇𝑤
)

𝐾

+ (
∆𝑐𝑖

𝑁𝐹𝑇𝑐
)

𝐾

)

Where BestF non-penalized solution value of the best

solution (maybe infeasible), Best is the best feasible

solution, K is the severity factor, NFTW is the weight of

constraint, NFTC is the cost of constraint, ∆𝑤𝑖 is the

weight of the ith solution, ∆𝑐𝑖 is the cost of the ith

solution. The main disadvantage of this formula is the

(BestF - Best) part because if a premature convergence

occurs BestF is equals to Best so the value of this part

is zero. Therefore, the fitness value equals to objective

function value and this method does not affect the

solution. The second disadvantage is the value of

(BestF - Best) is huge, then the penalty value is severe

so the search does not continue efficiently.

This method includes problem-dependent variables

such as NFTW and NFTC. Coit and Smith [17] proposed

a dynamic NFT as follows:

𝑁𝐹𝑇 =
𝑁𝐹𝑇0

1+𝜆𝑔

Where NFTO is the starting value, 𝜆 is a constant which

assures the area between NFTO and zero, g is the

current iteration number. As you see, in the formula

two new parameters should be determined for this

adaptive NFT. Especially, the selection of the 𝜆

parameter very critical for convergence. The main aim

is NFT not approach zero either too slowly or too

quickly.

In this study, our aim is to analyze problem-

independent penalty approaches. Therefore, we use this

technique as follows:

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑐𝑖

1000

1+𝑔

)

2

)

This technique, which is given in Equation (17) is

named as TSA7 in this study.

For determining the effect of adaptiveness, we

change this formula as follows:

𝑝(𝑥) = (𝐵𝑒𝑠𝑡𝐹 − 𝐵𝑒𝑠𝑡) × ((
∆𝑐𝑖

1000
)

2
)

This technique which is given in Equation (18) is

named as TSA8 in this study.

(11)

(12)

(14)

(13)

(15)

(16)

(17)

(18)

The Performance of Penalty Methods on Tree-Seed Algorithm for Numerical ... 803

4.3.3. Tessema and Yen’s Self Adaptive Penalty

Approach

Tessema and Yen [46] propose a self-adaptive penalty

approach. This approach has not special parameters.

This technique is named as TSA9 in this study.

4.3.4. Farmani and Wright’s Self Adaptive Penalty

Approach

Farmani and Wright [20] proposed a self-adaptive

penalty approach for constrained optimization

problems. We could not reproduce the code of this

approach via the article. Therefore, in this study, we

did not use this technique.

4.3.5. Powell and Skolnick’s Adaptive Penalty

Approach

Powell and Skolnick [39] presented a method which

mapped feasible solutions between -∞ and 1, and

infeasible solutions between 1 and +∞. Bevcause this

method is similar to the study of Deb [19], we did not

use this technique in this study.

4.4. Proposed Method

The blueprint of the proposed method is given in

Figure 1.

Figure 1. The blueprint of the proposed method.

In each version of TSA, the constrained handling

technique is integrated with TSA, and it is applied to

solve the constrained numeric benchmark functions.

5. Experiments

5.1. Experimental Setup

The performance investigations of penalty approaches

on constrained optimization for tree-seed algorithm

have been evaluated using a set of 13 benchmark

functions [5]. This set is also named as CEC2006 test

case and detailed information can be found in Liang et

al.’s [30] work. This test set is a comprehensive

benchmark suite because in this test set linear,

quadratic, cubic, polynomial, and nonlinear functions

are included. Babalik et al.’s [5] work gives some

feedback about the peculiar parameters of TSA.

Therefore, the stand size is taken as 20 and ST is taken

as 0.2 in this study. The termination condition is the

maximum number of function evaluations and it is set

to 2.4E+5. The “mean” means “mean of the final

obtained fitness functions of 30 different runs”.

5.2. Results and Discussions

In the first experiment, 9 different penalty approaches

are integrated into TSA and compared to each other.

TSA1, TSA2, TSA3 and TSA4 are static penalty

approaches, TSA5 and TSA6 dynamic penalty

approaches, TSA7, TSA8 and TSA9 are adaptive

penalty approaches. The mean results of 30 different

runs are given in Table 1.

Table 1. The mean results of 30 different runs.

Optimum TSA1 TSA2 TSA3 TSA4

G01 -1.50E+01 -1.50E+01 -1.50E+01 -1.52E+01 1.00E+09

G02 -8.04E-01 -8.01E-01 -8.01E-01 -8.03E-01 1.00E+09

G03 -1.00E+00 6.67E+08 -1.00E+05 -9.99E+04 1.00E+09

G04 -3.07E+04 -3.07E+04 -3.22E+04 -3.22E+04 1.00E+09

G05 5.13E+03 2.93E+09 1.60E+03 5.11E+03 1.00E+09

G06 -6.96E+03 3.33E+07 -7.96E+03 -7.95E+03 1.00E+09

G07 2.43E+01 2.46E+01 2.08E+01 2.30E+01 1.00E+09

G08 -9.58E-02 -9.58E-02 -1.54E+03 -1.27E+03 1.00E+09

G09 6.81E+02 6.81E+02 6.79E+02 6.80E+02 1.00E+09

G10 7.05E+03 9.33E+08 2.10E+03 2.10E+03 1.00E+09

G11 7.50E-01 3.00E+08 7.50E-01 5.00E-01 1.00E+09

G12 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 1.00E+09

G13 5.40E-02 2.00E+09 2.83E-01 1.16E-01 1.00E+09

TSA5 TSA6 TSA7 TSA8 TSA9

G01 -1.08E-01 -1.50E+01 -2.75E+02 -2.95E+02 -1.50E+01

G02 -8.01E-01 -8.00E-01 -2.48E-01 -2.54E-01 -8.01E-01

G03 -6.68E+04 -9.80E+04 -1.70E+04 -1.54E+04 -1.00E+05

G04 -3.21E+04 -3.20E+04 -3.21E+04 -3.21E+04 -3.22E+04

G05 8.95E+03 5.21E+03 2.99E+02 1.93E+01 3.20E+03

G06 -7.92E+03 -7.85E+03 -7.75E+03 -7.86E+03 -7.95E+03

G07 2.48E+01 2.45E+01 1.88E+02 8.23E+01 2.45E+01

G08 -1.17E+02 -9.58E-02 -1.15E+03 -1.27E+03 -1.47E+03

G09 6.81E+02 6.81E+02 7.04E+02 3.29E+02 6.81E+02

G10 2.56E+03 2.27E+03 3.35E+03 3.28E+03 2.10E+03

G11 2.03E-01 7.50E-01 9.94E-05 1.68E-05 7.50E-01

G12 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

G13 1.06E+00 8.98E+00 1.49E-07 1.91E-09 5.17E-01

For a detailed analysis, we added Table 2, which

shows the percentage of the deviation from the

optimum solution for the obtained mean results. In

Table 2, if the percentage value is bigger than 100, we

write N/A in this cell.

TSA

The constant static penalty approach TSA1

Sum of the constraint violations approach TSA2

Sum of the constraint violations squared approach TSA3

Morales and Quezada’s Static Penalty Approach TSA4

Joines and Houck’s Dynamic Penalty Approach TSA5

Liu et al.’s Dynamic Penalty Approach TSA6

Smith et al.’s Adaptive Penalty Approach 1 TSA7

Smith et al.’s Adaptive Penalty Approach 2 TSA8

Tessema and Yen’s Self Adaptive Penalty
Approach

TSA9

804 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

Table 2. The percentage of the deviation from the optimum
solution for the obtained mean results.

Optimum TSA1 TSA2 TSA3 TSA4 TSA5 TSA6 TSA7 TSA8

TSA

9

G01 -1.50E+01 0.00 0.00 1.00 N/A 99.28 0.00 N/A N/A 0.00

G02 -8.04E-01 0.35 0.34 0.13 N/A 0.38 0.48 69.20 68.34 0.28

G03 -1.00E+00 N/A N/A N/A N/A N/A N/A N/A N/A N/A

G04 -3.07E+04 0.00 5.05 5.04 N/A 4.58 4.21 4.71 4.74 5.05

G05 5.13E+03 N/A 68.79 0.30 N/A 74.62 1.62 94.17 99.62 37.58

G06 -6.96E+03 N/A 14.37 14.23 N/A 13.71 12.82 11.37 12.97 14.22

G07 2.43E+01 1.04 14.24 5.20 N/A 2.09 0.86 N/A N/A 0.89

G08 -9.58E-02 0.00 N/A N/A N/A N/A 0.00 N/A N/A N/A

G09 6.81E+02 0.00 0.21 0.05 N/A 0.00 0.00 3.43 51.71 0.00

G10 7.05E+03 N/A 70.19 70.19 N/A 63.73 67.85 52.46 53.43 70.18

G11 7.50E-01 N/A 0.01 33.35 N/A 72.93 0.04 99.99 100.00 0.01

G12 -1.00E+00 0.00 0.00 0.00 N/A 0.00 0.00 0.01 0.01 0.00

G13 5.40E-02 N/A N/A N/A N/A N/A N/A 100.00 100.00 N/A

To review from a different perspective, the manual

ranking was conducted and mean ranks are given in

Table 3.

Table 3. The ranking results.

Optimum TSA1 TSA2 TSA3 TSA4 TSA5 TSA6 TSA7 TSA8 TSA9

G01 -1.50E+01 1 1 2 4 3 1 4 4 1

G02 -8.04E-01 4 3 1 9 5 6 8 7 2

G03 -1.00E+00 1 1 1 1 1 1 1 1 1

G04 -3.07E+04 1 7 6 8 3 2 4 5 7

G05 5.13E+03 8 4 1 8 5 2 6 7 3

G06 -6.96E+03 8 7 6 8 4 2 1 3 5

G07 2.43E+01 3 6 5 7 4 1 7 7 2

G08 -9.58E-02 1 2 2 2 2 1 2 2 2

G09 6.81E+02 1 3 2 6 1 1 4 5 1

G10 7.05E+03 7 6 6 7 3 4 1 2 5

G11 7.50E-01 7 1 3 7 4 2 5 6 1

G12 -1.00E+00 1 1 1 3 1 1 2 2 1

G13 5.40E-02 2 2 2 2 2 2 1 1 2

Total Ranks 45 44 38 72 38 26 46 52 33

According to Table 3, the best approach is TSA6,

the second approach is TSA9. TSA6 is a dynamic

penalty approach, and TSA9 is an adaptive penalty

approach. At first view, dynamic and adaptive penalty

approaches are better than static penalty approaches.

TSA5 is another dynamic penalty approach, and it was

third. TSA3 is a static penalty approach and the rank

point same as TSA5. TSA4 is worst because TSA4

does not improve the starting solutions and at the

initialization phase, TSA4 shows premature

convergence characteristics on the test functions. The

convergence characteristics of the TSA with penalty

approaches for the G05 problem are presented in

Figure 2. TSA1 and TSA4 could not solve the G05

problem so we do not add these approaches to the

convergence graph. Only TSA6 and TSA3 converge

properly for the G05 problem. The other approaches do

not converge in a reasonable time violate the

constraints, so they break the optimum line and trapped

in local optimums. TSA6 uses the current iteration

number, the total iteration number, and an exponential

product of the constraint value. This dynamism puts

TSA6 ahead of the others.

Figure 2. The convergence characteristics of the TSA penalty

approaches for G05 problem.

In the second experiment, TSA6 is compared with

state-of-art algorithms. The other results are directly

taken from [5] and all conditions are the same for a fair

comparison. The mean results of TSA6, CTSA, PSO,

GA, DE and ABC algorithms are given in Table 4.

Table 4. The comparison results of TSA6, CTSA, PSO, GA, DE

and ABC algorithms.

Problem Optimum ABC PSO GA DE CTSA TSA6

G01 -1.50E+01 -1.50E+01 -1.06E+01 -1.42E+01 -1.42E+01 -1.50E+01 -1.50E+01

G02 8.04E-01 4.80E-01 4.04E-01 7.89E-01 6.66E-01 8.01E-01 8.00E-01

G03 1.00E+00 3.02E+00 1.17E+00 9.76E-01 1.17E+00 1.02E+00 9.80E+04

G04 -3.07E+04 -3.06E+04 -3.07E+04 -3.06E+04 -3.07E+04 -3.07E+04 -3.20E+04

G05 5.13E+03 5.12E+03 5.30E+03 N/A 5.33E+03 5.17E+03 5.21E+03

G06 -6.96E+03 -7.58E+03 -6.96E+03 -6.87E+03 -6.77E+03 -6.96E+03 -7.85E+03

G07 2.43E+01 2.91E+01 2.87E+01 3.50E+01 2.43E+01 2.45E+01 2.45E+01

G08 9.58E-02 6.53E+00 8.47E-02 9.58E-02 9.58E-02 9.58E-02 9.58E-02

G09 6.81E+02 6.84E+02 6.81E+02 6.92E+02 6.81E+02 6.81E+02 6.81E+02

G10 7.05E+03 7.26E+03 8.13E+03 1.00E+04 7.16E+03 7.12E+03 2.27E+03

G11 7.50E-01 7.17E-01 7.63E-01 7.50E-01 9.55E-01 8.00E-01 7.50E-01

G12 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

G13 5.40E-02 9.55E-02 1.42E+00 N/A 9.49E-01 9.67E-01 8.98E+00

For a complete analysis, we added Table 5, which

shows the percentage of the deviation from the

optimum solution for the obtained mean results. In

Table 5, if the percentage value is bigger than 100, we

write N/A in this cell.

Table 5. The percentage of the deviation from the optimum
solution for the mean results.

Problem Optimum ABC PSO GA DE CTSA TSA6

G01 -1.50E+01 0.14 29.63 5.09 5.06 0.00 0.00

G02 8.04E-01 40.33 49.69 1.87 17.12 0.39 0.48

G03 1.00E+00 N/A 16.75 2.40 16.94 1.58 N/A

G04 -3.07E+04 0.18 0.01 0.24 0.00 0.00 4.21

G05 5.13E+03 0.22 3.35 N/A 3.95 0.89 1.62

G06 -6.96E+03 8.87 0.00 1.29 N/A 0.00 12.82

G07 2.43E+01 19.71 18.25 43.92 0.04 0.80 0.86

G08 9.58E-02 N/A 11.61 0.03 0.03 0.03 0.00

G09 6.81E+02 0.48 0.02 1.68 0.00 0.00 0.00

G10 7.05E+03 2.98 15.31 41.90 1.61 0.95 67.85

G11 7.50E-01 4.39 1.68 0.00 27.27 6.71 0.04

G12 1.00E+00 0.01 0.00 0.00 0.00 0.00 0.00

G13 5.40E-02 77.02 N/A N/A N/A N/A N/A

The ranking results are given in Table 6.

The Performance of Penalty Methods on Tree-Seed Algorithm for Numerical ... 805

Table 6. The ranking results.

Problem Optimum ABC PSO GA DE CTSA TSA6

G01 -1.50E+01 2 5 4 3 1 1

G02 8.04E-01 5 6 3 4 1 2

G03 1.00E+00 5 3 2 4 1 5

G04 -3.07E+04 3 2 4 1 1 5

G05 5.13E+03 1 4 6 5 2 3

G06 -6.96E+03 3 1 2 5 1 4

G07 2.43E+01 5 4 6 1 2 3

G08 9.58E-02 4 3 2 2 2 1

G09 6.81E+02 3 2 4 1 1 1

G10 7.05E+03 3 4 5 2 1 6

G11 7.50E-01 4 3 1 6 5 2

G12 1.00E+00 2 1 1 1 1 1

G13 5.40E-02 1 2 2 2 2 2

Total Ranks 41 40 42 37 21 36

According to Table 6, at first view, TSA6 is better

than ABC, PSO, GA and DE, but CTSA is better than

TSA6. These results show that TSA6 outperforms the

state-of-art algorithms for constrained optimization.

TSA integrated with the dynamic penalty approach of

Liu et al. [31] and this approach is named as TSA6. In

this study, TSA6 produces promising and comparable

results on benchmark functions. TSA has two peculiar

parameters. These are the number of seeds and search

tendency. The number of seeds improves the

exploitation of the algorithm and search tendency

controls the balance between exploration and

exploitation. Because of these mechanisms, the TSA

outperforms the other algorithms.

6. Conclusions and Future Work

In this work, penalty approaches are used for solving

constrained optimization problems with the TSA. Most

of the optimization problems have constraints.

Metaheuristic algorithms are produced by optimal and

near-optimal solutions for constrained optimization

problems. TSA is a population-based swarm

intelligence algorithm. The penalty approaches are the

simplest way to handle constraints. In literature, there

are many penalty approaches. These approaches are

grouped as static, dynamic and adaptive. The pros and

cons of the penalty approaches are discussed in this

study. Nine different penalty approaches are integrated

TSA and experimental results are conducted on well-

known benchmark functions. Experiments show that

dynamic and adaptive penalty approaches are better

than static penalty approaches. TSA integrated with the

dynamic penalty approach of Liu et al. [31] and this

approach is named as TSA6. TSA6 uses the current

iteration number, the total iteration number, and an

exponential product of the constraint value. This

dynamism puts TSA6 ahead of the others. TSA6

solved G01, G08, G09 and G12 optimally. We also

compared TSA variants wit state-of-art algorithms.

The results show that, the TSA is better than ABC,

PSO, GA and DE. In future works, we will study on

new constraint handling methods for metaheuristic

algorithms and especially on TSA. As future work, we

will examine the sea lion optimization algorithm [33]

and will apply the penalty approaches for improving

the capabilities of this algorithm.

Acknowledgments

The first author wish to thank Scientific Research

Projects Coordinatorship at Selcuk University and The

Scientific and Technological Research Council of

Turkey for their institutional supports.

References

[1] Afshar M., “Penalty Adapting Ant Algorithm:

Application to Pipe Network Optimization,”

Engineering Optimization, vol. 40, no. 10, pp.

969-987, 2008.

[2] Altun A. and Şahman M., “Cost Optimization of

Mixed Feeds with the Particle Swarm

Optimization Method,” Neural Computing and

Applications, vol. 22, no. 2, pp. 383-390, 2013.

[3] Asmaran M., Sharieh A., and Mahafzah B.,

“Chemical Reaction Optimization Algorithm to

Find Maximum Independent Set in a Graph,”

International Journal of Advanced Computer

Science and Applications, vol. 10, no. 9, 2019.

[4] Babaeizadeh S. and Ahmad R., “Enhanced

Constrained Artificial Bee Colony Algorithm for

Optimization Problems,” The International Arab

Journal of Information Technology, vol. 14, no.

2, pp. 246-253, 2017.

[5] Babalik A., Cinar A., and Kiran M., “A

Modification of Tree-Seed Algorithm Using

Deb’s Rules for Constrained Optimization,”

Applied Soft Computing, vol. 63, pp. 289-305,

2018.

[6] Bäck T., Fogel D., and Michalewicz Z.,

Handbook of Evolutionary Computation, Oxford

University Press, 1997.
[7] Ben Hadj-Alouane A. and Bean J., “A Genetic

Algorithm for the Multiple-Choice Integer

Program,” Operations Research, vol. 45, no. 1,

pp. 92-101, 1997.

[8] Carlson S. and Shonkwiler R., “Annealing A

Genetic Algorithm over Constraints,” in

Proceedings of Systems, Man, and Cybernetics,

IEEE International Conference on, San Diego,

pp. 3931-3936, 1998.

[9] Chehouri A., Younes R., Perron J., and Ilinca A.,

“A Constraint-Handling Technique for Genetic

Algorithms Using A Violation Factor,” Journal

of Computer Science, vol. 12, no. 7, pp. 350-362,

2016.

[10] Cinar A. and Kiran M., “A Cuda-based Parallel

Programming Approach to Tree-Seed

Algorithm,” MSc Thesis, Selcuk University,

2016.

806 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

[11] Cinar A. and Kiran M., “Boundary Conditions In

Tree-Seed Algorithm: Analysis of The Success of

Search Space Limitation Techniques In Tree-

Seed Algorithm,” in Proceedings of International

Conference on Computer Science and

Engineering, Antalya, pp. 571-576, 2017.

[12] Cinar A. and Kiran M., “A Parallel Version of

Tree-Seed Algorithm (TSA) within CUDA

Platform,” in Proceedings of International

Scientific Conference on Applied Sciences, At

Antalya, pp. 174-178, 2016.

[13] Cinar A. and Kiran M., “Similarity and Logic

Gate-Based Tree-Seed Algorithms for Binary

Optimization,” Computers and Industrial

Engineering, vol. 115, no. pp. 631-646, 2018.

[14] Cinar A., Korkmaz S., and Kiran M., “A Discrete

Tree-Seed Algorithm for Solving Symmetric

Traveling Salesman Problem,” Engineering

Science and Technology, an International

Journal, vol. 22, no. 6, pp. 1169-1200, 2019.
[15] Coello C., “Theoretical and Numerical

Constraint-Handling Techniques Used With

Evolutionary Algorithms: A Survey of the State

of the Art,” Computer Methods in Applied

Mechanics and Engineering, vol. 191, no. 11, pp.

1245-1287, 2002.

[16] Coello C., “Use of A Self-Adaptive Penalty

Approach for Engineering Optimization

Problems,” Computers in Industry, vol. 41, no. 2,

pp. 113-127, 2000.

[17] Coit D. and Smith A., “Penalty Guided Genetic

Search for Reliability Design Optimization,”

Computers and Industrial Engineering, vol. 30,

no. 4, pp. 895-904, 1996.

[18] De Castro Rodrigues M., Guimarães S., and De

Lima B., “E-BRM: A Constraint Handling

Technique to Solve Optimization Problems With

Evolutionary Algorithms,” Applied Soft

Computing, vol. 72, pp. 14-29, 2018.

[19] Deb K., “An Efficient Constraint Handling

Method for Genetic Algorithms,” Computer

Methods in Applied Mechanics and Engineering,

vol. 186, no. 2-4, pp. 311-338, 2000.

[20] Farmani R. and Wright J., “Self-Adaptive Fitness

Formulation for Constrained Optimization,”

IEEE Transactions on Evolutionary

Computation, vol. 7, no. 5, pp. 445-455, 2003.

[21] Hamida S. and Schoenauer M., “An Adaptive

Algorithm for Constrained Optimization

Problems,” in Proceedings of International

Conference on Parallel Problem Solving from

Nature, Paris, pp. 529-538, 2000.
[22] Hamida S. and Schoenauer M., “ASCHEA: New

Results Using Adaptive Segregational Constraint

Handling,” in Proceedings of Evolutionary

Computation, CEC'02, Honolulu, pp. 884-889,

2002.

[23] Homaifar A., Qi C., and Lai S., “Constrained

Optimization Via Genetic Algorithms,”

Simulation, vol. 62, no. 4, pp. 242-253, 1994.

[24] Joines J. and Houck C., “On The Use of Non-

Stationary Penalty Functions To Solve Nonlinear

Constrained Optimization Problems with GA's,”

in Proceedings of Evolutionary Computation,

IEEE World Congress on Computational

Intelligence, Orlando, pp. 579-584, 1994.

[25] Kazarlis S. and Petridis V., “Varying Fitness

Functions in Genetic Algorithms: Studying the

Rate of Increase of the Dynamic Penalty Terms,”

in Proceedings of International Conference on

Parallel Problem Solving from Nature,

Amsterdam, pp. 211-220, 1998.

[26] Kiran M., in Intelligent and Evolutionary

Systems, Springer, 2016.

[27] Kiran M., “TSA: Tree-Seed Algorithm for

Continuous Optimization,” Expert Systems with

Applications, vol. 42, no. 19, pp. 6686-6698,

2015.

[28] Kuri-Morales A. and Gutiérrez-García J.,

“Penalty Function Methods for Constrained

Optimization With Genetic Algorithms: A

Statistical Analysis,” in Proceedings of Mexican

International Conference on Artificial

Intelligence, Yucatan, pp. 108-117, 2002.
[29] Lemonge A. and Barbosa H., “An Adaptive

Penalty Scheme for Genetic Algorithms in

Structural Optimization,” International Journal

for Numerical Methods in Engineering, vol. 59,

no. 5, pp. 703-736, 2004.

[30] Liang J., Runarsson T., Mezura-Montes E., Clerc

M., Suganthan P., Coello C., and Deb K.,

“Problem Definitions and Evaluation Criteria for

The CEC 2006 Special Session on Constrained

Real-Parameter Optimization,” Journal of

Applied Mechanics, vol. 41, no. 8, pp. 8-31,

2006.

[31] Liu J., Teo K., Wang X., and Wu C.,“An Exact

Penalty Function-Based Differential Search

Algorithm for Constrained Global Optimization,”

Soft Computing, vol. 20, no. 4, pp. 1305-1313,

2016.

[32] Mallipeddi R. and Suganthan P., “Differential

Evolution With Ensemble of Constraint Handling

Techniques for Solving CEC 2010 Benchmark

Problemsm,” in Proceedings of Evolutionary

Computation, IEEE Congress on, Barcelona, pp.

1-8, 2010.

[33] Masadeh R., Mahafzah B., and Sharieh A., “Sea

Lion Optimization Algorithm,” International

Journal of Advanced Computer Science and

Applications, vol. 10, no. 5, pp. 388-395, 2019.

[34] Masadeh R., Sharieh A., and Mahafzah B.,

“Humpback whale Optimization Algorithm

Based on Vocal Behavior for Task Scheduling in

Cloud Computing,” International Journal of

Advanced Science and Technology, vol. 13, no. 3,

The Performance of Penalty Methods on Tree-Seed Algorithm for Numerical ... 807

pp. 121-140, 2019.

[35] Michalewicz Z. “Genetic Algorithms, Numerical

Optimization, and Constraints,” in Proceedings

of 6th International Conference on Genetic

Algorithms, pp. 151-158, 1995.

[36] Michalewicz Z. and Attia N., “Evolutionary

optimization of constrained problems,” in

Proceedings of 3rd annual conference on

Evolutionary Programming, pp. 98-108, 1994.

[37] Michalewicz Z. and Schoenauer M.,

“Evolutionary Algorithms for Constrained

Parameter Optimization Problems,” Evolutionary

Computation, vol. 4, no. 1, pp. 1-32, 1996.

[38] Morales A. and Quezada C., “A Universal

Eclectic Genetic Algorithm for Constrained

Optimization,” in Proceedings of 6th European

Congress on Intelligent Techniques and Soft

Computing, pp. 518-522, 1998.

[39] Powell D. and Skolnick M., “Using Genetic

Algorithms in Engineering Design Optimization

with Non-Linear Constraints,” in Proceedings of

5th International Conference on Genetic

Algorithms, San Francisco, pp. 424-431, 1993.

[40] Runarsson T. and Yao X., “Stochastic Ranking

for Constrained Evolutionary Optimization,”

IEEE Transactions on Evolutionary

Computation, vol. 4, no. 3, pp. 284-294, 2000.

[41] Schoenauer M. and Xanthakis S., “Constrained

GA optimization,” in Proceedings of the 5th

International Conference on Genetic Algorithms

Urbana Champaign, pp. 573-580, 1993.

[42] Smith A. and Coit D., C5.2 of Handbook of

Evolutionary Computation in Handbook of

Evolutionary Computation, A Joint Publication

of Oxford University Press and Institute of

Physics Publishing, 1996.

[43] Smith A. and Tate D., “Genetic Optimization

Using A Penalty Function,” in Proceedings of 5th

International Conference on Genetic Algorithms,

San Francisco, pp. 499-505, 1993.

[44] Şahman, M., Çunkaş M., İnal Ş., İnal F., Coşkun

B., and Taşkiran U., “Cost Optimization of Feed

Mixes by Genetic Algorithms,” Advances in

Engineering Software, vol. 40, no. 10, pp. 965-

974, 2009.

[45] Takahama T. and Sakai S., “Constrained

Optimization by the Ε Constrained Differential

Evolution with an Archive and Gradient-Based

Mutation,” in Proceedings of IEEE Congress on

Evolutionary Computation, Barcelona, pp. 1-9,

2010.

[46] Tessema B. and Yen G., “A Self Adaptive

Penalty Function Based Algorithm for

Constrained Optimization,” in Proceedings of

International Conference on Evolutionary

Computation, Vancouver, 246-253, 2006.

[47] Yeniay Ö., “Penalty Function Methods for

Constrained Optimization with Genetic

Algorithms,” Mathematical and computational

Applications, vol. 10, no. 1, pp. 45-56, 2005.

[48] Yuchi M. and Kim J., “Evolutionary Algorithm

Using Feasibility-Based Grouping for Numerical

Constrained Optimization Problems,” Applied

Mathematics and Computation, vol. 175, no. 2,

pp. 1298-1319, 2006.

Ahmet Cinar was born in Turkey,

in 1986. He graduated from the

Department of Computer

Engineering, Selçuk University,

Turkey, in 2009. He received the

M.S. degree from the Computer

Engineering Department, Selcuk

University in 2016. He is currently pursuing his Ph.D.

at the Konya Technical University. He is a Research

Staff at the Department of Computer Engineering,

Selçuk University. His current research interests

include swarm intelligence, nature-inspired algorithms,

machine learning and artificial intelligence systems.

Mustafa Kiran received the B.S.

and Ph.D. degrees in computer

engineering from the Institute of

Natural and Applied Sciences,

Selcuk University, Konya, Turkey,

in 2010 and 2014, respectively. He is

currently an Associate Professor at

the Computer Engineering Department, Konya

Technical University. His current research interests

include swarm intelligence, evolutionary algorithms,

and their real-world applications.

https://www.sciencedirect.com/science/article/abs/pii/S0965997809000866#!

