
758                                                   The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020 

Ontology-Based Transformation and Verification 

of UML Class Model 

Abdul Hafeez1, Syed Abbas2, and Aqeel-ur-Rehman3 
1Department of Computer Science, SMI University, Karachi 

2Faculty Engineering Science and Technology, Indus University, Karachi 
3Faculty of Engineering Science and Technology, Hamdard University, Karachi 

Abstract: Software models describe structures, relationships and features of the software system. Especially, in Model Driven 

Engineering (MDE), they are considered as first-class elements instead of programming code and all software development 

activities move around these models. In MDE, programming code is automatically generated by the models and models’ 

defects can implicitly transfer to the code. These defects can harder to discover and rectify. Model verification is a promising 

solution to the problem. The Unified Modelling Language (UML) class model is an important part of UML and is used in both 

analysis and design. However, UML only provides graphical elements without any formal foundation. Therefore, verification 

of formal properties such as consistency, satisfiability and consequences are not possible in UML. This paper mainly focuses 

on ontology-based transformation and verification of the UML class model elements which have not been addressed in any 

existing verification methods e.g. xor association constraint, and dependencies relationships. We validate the scalability and 

effectiveness of the proposed solution using various UML class models. The empirical study shows that the proposed approach 

scales in the presence of the large and complex model.  
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1. Introduction 

Software design models represent real-world entities 

on a smaller scale and provide a clear understanding of 

the system. In Model Driven Engineering (MDE), they 

are considered as the nucleus of all development 

activities and are recognized as first-class elements 

instead of programming language code [21, 25, 45]. 

They are not only used for documentation, but they are 

core arte facts and processable by a computer [38]. In 

MDE, the model to model transformation 

automatically transfer source model to the target model 

[45]. The automatic transformation provides the 

systematic reuse of existing arte facts. However, it can 

cause some problems, for example, models may be 

developed with errors, and these errors can implicitly 

transfer to the target model (in MDE, programming 

code is also considered as a model) [41, 46]. 

Unified Modelling Language (UML) is a graphical 

modelling language and is commonly used in MDE 

[21, 37]. It offers various diagrams for dealing with 

different aspects of software [14, 29]. The class 

diagram is the most important part of UML [2, 14, 29, 

37, 41] and performs a key role in software analysis 

and design [38, 42]. It describes the system through 

concepts, relationships, and constraints [16]. The main 

elements of the class diagram are classes and different 

types of relationships such as dependency, association, 

and generalization [39]. Association and generalization 

 are also dependency relationships; however, they have 

specific semantics. [39]. These three relationships 

(dependency, association, generalization) are the basic 

relational building block of UML and in object-

oriented modeling, they are considered most important 

elements [9]. 

UML only provides graphical elements for 

designing models without reasoning support, due to 

lack of formal foundation [27, 48]. Therefore, many 

researchers have used many formal and semi-formal 

methods for verification of UML class model such as Z 

notation, B method, Alloy, Constraint Satisfaction 

Problem (CSP). The current UML class model 

verification methods are sound and provide great effort 

to check the correctness of the model. However, they 

do not support some important elements of the UML 

class model. A comparison of existing class model 

verification methods presented in [43], which claimed 

that the dependency relationships have not been 

supported by any verification method. The xor 

constraint on association is another graphical constraint 

which is not supported by current verification methods. 

However, some verification methods which support 

verification of Object Constraints Language (OCL) 

cam verified xor constraint if xor specified in the form 

of OCL. Although, OCL has some limitations such as 

UML specification does not restrict constraint 

specification language and constraints can be defined 

through any formal language such as OCL or informal 
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language such as JAVA, C# or even natural language 

[33, 50]. Furthermore, most of the UML CASE tools 

do not support OCL or provide limited support [24, 

34]. The actual use of OCL in the software industry 

has been nearly insignificant [19, 34]. Due to its pure 

textual nature, designers are uncomfortable when they 

combine it with diagrammatic paradigm and 

organizations which heavily use UML even they 

lightly use OCL in their projects [19, 34, 47]. 

The ontology also specifies the real-world concepts 

like UML class model and also supports reasoning. It 

has various elements such as classes, relations, and 

individuals like the UML class model. Recently, 

software engineering practitioners have started 

integrating ontology in software development practices 

(processes, methods, tools, etc.,) and in software 

components for improving the quality [15]. 

This work proposes ontology-based formalization 

and verification of UML class model elements 

(graphical xor constraint and dependency 

relationships) which have not been addressed by any 

existing verification method. 

The rest of the paper is organized as follows. 

Section 2 discusses the related work. Section 3 

presents an ontology-based formalization of the UML 

class model elements. Section 4 describes ontology-

based reasoning on UML class model elements. 

Section 5 presents the implementation and empirical 

results obtained. Finally, section 6 presents our 

conclusions and points out future work. 

1.1. Motivation 

Most of the existing verification methods use formal or 

semi-formal methods and their specification notations 

are enormously inspired by mathematics. They are 

greatly different from the UML class model and they 

are difficult to be understood by software practitioners. 

On the other side, ontology and UML class model have 

many similar elements such as classes, relationships, 

and generalization. However, in this work, ontology as 

the target notation for transformation and verification 

is motivated by the fact that the reasoning on the 

ontology-based model can be easily performed by 

ontology reasoner and they have matured enough to 

support large problem space. They can perform 

reasoning and knowledge inference on thousands of 

ontological items within a reasonable time [44]. 

Therefore, ontology-based verification can improve the 

reliability of Model Driven Engineering in order to 

check the correctness of the model before the model to 

model transformation. 

2. Related Work 

Verification of UML class model has been addressed 

in several works. In the existing literature, different 

correctness properties have been addressed by 

researchers according to different aspects such as static 

model, dynamic model, inter-model and intra-model 

[11]. In the static UML class model, only structure 

elements such as association and generalization are 

considered for verification. In dynamic model, the 

behavior parts of the model such as operations are 

considered for verification. In the inter-model, 

consistency among different models is verified, and in 

the intra-model, consistency of model against the 

constraints is verified. Early verification works focused 

on the formalization of meta-model and well-

formedness rules through different formal methods 

such a Z notation, B method, and Description Logic [6, 

20, 27]. Furthermore, they also performed different 

analyses on UML class model such as diagrammatical 

transformation analysis performed by [19], in which a 

model is deduced from the other model through the 

numerous transformations. The authors of [37] 

performed an intersection between two or more class 

diagrams and performed refinement analysis. 

However, most of the recent works focus on the 

consistency of UML class models and almost all works 

verified satisfiability of the model [1, 6, 10, 11, 31, 

43].  

France et al. [20] proposed a precise formal 

foundation for UML core meta-model in Z notation 

and argued that a formal representation of UML meta-

model provides many benefits such as clarity, 

consistency checking, extendibility, refinement, and 

proof checking. In this work, the UML core model is 

represented through a compositional schema which has 

many sub-schemas and each sub-schema closely 

correspond to the elements of core UML meta-model. 

Kim and Carrington [22, 23] defined abstract syntax of 

UML meta-model in Object-Z. In [23] authors argued 

that the formal representation of abstract syntax (meta-

model) of language is a most recurrent technique for 

defining the semantics of the language. In [22] authors 

argued that the different formal methods have different 

strengths in different areas and a single method cannot 

deal with all aspects of UML model verification and 

validation. Consequently, the authors presented an 

integrated verification and validation framework which 

supports different formalisms. 

Ledang and Souquières [27] and, Ledang [28] 

proposed transformation of the class model into the B 

method. In [28] authors checked the consistency of the 

UML class diagram against the well-formedness rules 

through B prover. In this approach, well-formedness 

rules are transformed into the invariants of B abstract 

machine. In [27] authors presented the transformation 

of OCL constraints into the B method. In this 

approach, OCL basic types (integer, float, etc.,) are 

transformed into the B basic types and operators (+, -, 

etc.,) transformed into the B basic operations. In [49] 

authors integrated all their previous work and 

presented the transformation of the class model and 

UML meta-model with well-formedness rules into the 

B specification for verification. 
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Cadoli et al. [14] presented the transformation of 

UML class model into the Constraint Satisfaction 

Problem (CSP) and proposed linear inequality-based 

method for finite model verification. In this work, 

authors addressed two verification problems  

1. Satisfiability. 

2. Full satisfiability. 

The satisfiability verifies whether a finite non-empty 

instance model (object diagram) of the UML class 

model can be generated without violation of the 

constraints, and full satisfiability verifies whether an 

instance model can be generated without violation of 

the constraints where all classes can be successfully 

populated. However, this method does not support 

attributes, association classes and n-ary associations. 

Cabot and Teniente [12] proposed incremental 

verification of a class model with OCL integrity 

constraints. In [12] authors argued that the verification 

of integrity constraints after every structure event 

(insert an entity, update attribute, delete an entity, etc.,) 

may be very expensive and inefficient. This work 

introduced, the term “Potential Structure Events” 

(PSEs) that includes only those events which can 

render constraints violation. In this approach, PSEs for 

every integrity constraint are recorded and only those 

instances of entities and relationships are verified 

which relate to any PSEs. In [13] authors used 

constraint programming for their method which was 

proposed in [12] and presented fully automatic, 

decidable solution for bounded verification of the 

UML Class/OCL model. The decidability is achieved 

through establishing finite bounds on instances of 

classes, associations, and domain for attributes. They 

also pointed out issues of the bounded verification and 

argued that the inadequate finite bound can miss 

defects if it is set too small or it may be time-

consuming if set too large. Their proposed approach 

set initially large finite bounds and then bounds are 

tightened as much as possible through the interval 

constraint propagation technique [16]. 

Bordbar and Anastasakis [10] transformed UML 

Class/OCL model into the Alloy. In this method, UML 

meta-model transformed into Alloy and class model 

into the Alloy signature as an instance of the meta-

model. Przigoda et al. [37] proposed the 

transformation of advanced features (multiple 

inheritance, and interface) of UML class model into 

the alloy. This work also supports various analyses on 

a class diagram such as intersection and refinement 

analysis. 

Berardi et al. [6] represented UML class model 

through description logic and verified inconsistencies 

and redundancies. They argued that description logic-

based reasoning supports high expressiveness of UML 

class model. Mainly, this work performs consistency 

verification (satisfiability) and class equivalence. They 

reported that the reasoning complexity of the UML 

class model is exptime-hard with minimum supporting 

features such as binary association, minimal 

multiplicity and generalization [7]. Maraee and Maraee 

[4], Maraee and Balaban [30], and Maraee et al. [31]. 

represented generalization set, qualified association, 

and association classes through linear inequalities. 

They also presented redundancy elimination method 

for wider constraints (Universal, and Extensional) of 

association, generalization, aggregation, composition 

and qualified association.  

Shaikh et al. [43] used a model slicing technique for 

reducing the verification complexity of UML 

Class/OCL model. They reported that the slicing 

techniques decrease verification time of large model 

with fewer constraints and if the model has many 

disjoint sub-models then minimum slices will be 

created and efficiency will not be gained. They 

extended the work with the support of non-disjoint 

sub-models where the common class is used among 

several constraints. They also introduced a feedback 

technique for unsatisfiable UML Class/OCL model 

[42]. Seiter and Drechsler [40] pointed out the 

consistency among verified models is also important 

and current UML model verification methods do not 

focus on consistency among verified models. They 

proposed a framework for managing consistency 

among verified models. 

Various research works have also used ontology for 

transformation and verification of UML class model. 

Xu et al. [51] performed a comparison of UML and 

Web Ontology Language (OWL) and specified that 

both have many similarities e.g., classes, relationships, 

and attributes. They also pointed out differences 

between UML and OWL such as UML has various 

relationships among classes (such as association, 

aggregation, and composition) and OWL only has an 

object property. Finally, they concluded that both are 

compatible with each other. Bahaj and Bakkas [3] 

proposed a transformation technique from class 

diagram to ontology and considered encapsulation, 

aggregation, and composition as special types of 

association. Belghiat and Bourahla [5] presented 

graph-based transformation of class diagram meta-

model into the ontology. Parreiras and Staab [35] 

combined UML with OWL-DL for representing 

software model. They They integrated Metaobject 

Factory (MOF) meta-model as the backbone of both 

UML and OWL. 

3. Class Model to Ontology 

This section describes the transformation of UML class 

model elements into the ontology. Firstly, elements 

which are common in both and have already been 

represented in existing work are presented with little 

augmentation. Then transformations of elements which 

do not have direct corresponding ontology elements 
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and have not been addressed in any existing work are 

presented. 

As an example, consider the UML class model 

shown in Figure 1 a partial representation of the library 

information system. The class model involves several 

classes (Book, publisher, Librarian, etc.,) as well as 

various associations (Record, Write, Review, etc.,) a 

dependency relationship between Librarian and 

Catalog classes. In the model, the Book class is 

connected to Person class by Write and Review 

associations which are mutually exclusive by xor 

constraint and semantically specifies that if a person 

writes a book, then he/she cannot review the same 

book and vice versa. Further, the Book class is 

connected to Member class by Borrowed and Reserved 

associations which are also mutually exclusive by xor 

constraint and semantically specifies that if a member 

borrows a book, then he/she cannot reserve the same 

book and vice versa. Finally, the Book class connects 

to Publisher class by Donated by and Purchase by 

associations which are mutually exclusive by xor 

constraint, and semantically specify that if a book 

purchased by the publisher then it will not be donated 

by the publisher and vice versa.  

 

Figure 1. A partial UML class model of the library information 

system. 

3.1. Translation of Classes, Attributes, and 

Associations  

In the existing work, UML classes are transformed into 

ontology’s classes. However, UML supports Unique 

Name Assumption (UNA) where each instance of the 

class is considered as a different entity. On the other 

side, the ontology does not support UNA. Although, 

the semantic of UNA can be achieved in the ontology 

by the addition of some supplementary elements for 

example, at the class level an additional functional data 

property Object Identifier (OID) is attached to each 

class as a key through the Has Key construct. At the 

instance level, the all different assertion is used to 

differentiate instances of classes. The attributes of 

classes are transformed into the data type property. The 

association relationships between classes are 

represented by the object property, and related classes 

are assigned as domain and range. Additionally, an 

inverse property is also declared for representing two-

way communication. The multiplicities are 

transformed into qualified cardinalities.  

3.2. XOR Association Constraints 

In a class diagram, classes are connected to each other 

through multiple associations and these associations 

can be mutually exclusive by xor constraint as shown 

in Figure 1 where the Book and Member classes are 

connected by Reserved and Borrowed associations. 

The xor constraint can also be applied on single 

association when an association is connected to more 

than one class as shown in Figure 2 where Account 

class (source) is connected to the Person and Company 

classes (target) by Belong association. In this case, xor 

constraint restricts the instance of source class can be 

linked to the instance of one target class. 

 

Figure 2. XOR constraint on single association. 

In the proposed method, for the first case (where xor 

applied on multiple associations) xor associations are 

declared as disjoint to each other. For example, 

Reserved and Borrowed associations of library 

information system (shown in Figure 1) are formalized 

as: 

𝐵𝑜𝑜𝑘 ⊑ ∀(𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑. 𝐵𝑜𝑜𝑘 ⊔ 𝐵𝑜𝑟𝑟𝑜𝑤𝑒𝑑. 𝐵𝑜𝑜𝑘 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ⊑ ¬𝐵𝑜𝑟𝑟𝑜𝑤𝑒𝑑 

For the second case (where a single association 

connects multiple classes) the source class declared 

with additional restrictions. For example, the Belong 

association of bank model (shown in Figure 2) is 

formalized as: 

𝐴𝑐𝑐𝑜𝑢𝑛𝑡 ⊑ ∃(𝐵𝑒𝑙𝑜𝑛𝑔. 𝑝𝑒𝑟𝑠𝑜𝑛 ⊔ 𝐵𝑒𝑙𝑜𝑛𝑔. 𝐶𝑜𝑚𝑝𝑛𝑎𝑦) ⊓
(¬∃(𝐵𝑒𝑙𝑜𝑛𝑔. 𝐶𝑜𝑚𝑝𝑛𝑎𝑦 ⊓ 𝐵𝑒𝑙𝑜𝑛𝑔. 𝑃𝑒𝑟𝑠𝑜𝑛)) 

3.3. Dependency Relationship 

The dependency relationships between classes are 

semantic relationships, which specify that a change in 

the class (independent/supplier class) can affect other 

classes (dependent/client classes). In UML, the 

dependency relationships are used in various diagrams. 

This work only focuses on the dependency 

relationships which are relevant to the class model and 

especially impact on the model consistency and 

satisfiability. The dependency relationships can be 

categorized into different groups:  

Publisher Book

Member

Person

Catalog Librarian

Purchase By

Donated By Write

Review

Reserved Borrowed

Record Search

<<Use>>

{xor} {xor}

{xor}

(1) 

(2) 
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 Abstraction: shows the relationship between two 

classes on different levels of abstraction (for 

example analysis and design model) or same level 

(client represents a more concrete form of supplier). 

Generally, abstraction dependency is subdivided 

into the trace, refine, realization and derivation. 

 Permission: in the permission dependency, supplier 

class grants access it private contents to the client 

class. Generally, permission dependency is 

subdivided into access, import, and permit. The 

access and import dependencies are used in the 

package diagram.  

 Usage: the usage dependency specifies that a class 

requires another class for proper execution. In usage 

dependency, the presence of supplier is mandatory 

for the client. It is only dependency type which is 

used in the same model level. Generally, usage 

dependency is subdivided into the call, create, 

insatiate, send and use.  

The create and insatiate dependencies create an 

instance of the supplier class. In insatiate dependency, 

the operation of client class creates an instance of the 

supplier class and in create dependency supplier class 

object is declared as property of client class.  

The trace and refine are used when the connection is 

established between classes in the different models. In 

these relationships, the client is considered more detail 

specification of the supplier. The realization 

dependency is established between abstract 

class/interface and a concrete class. The concrete class 

provides an implementation of operations specified in 

abstract class/interface. In all abstract dependency 

types except drive, client class instance does not need 

the instance of the supplier and they relate to each 

other only on classifier level. In model verification, the 

crucial dependencies are: where the presence of 

supplier class instance is mandatory for client class 

instance. Therefore, the drive, call, create, and use are 

dependency types in which instance of the client 

requires the supplier’s instance. Therefore, this work 

only considers these dependencies for transformation 

and verification. 

In the proposed approach, dependency relationships 

are transformed into the object property with additional 

restrictions. For example, the use and call 

dependencies are transitive and drive, create are 

transitive as well as asymmetric. However, OWL-DL 

does not support reasoning over object property which 

is declared both transitive and asymmetric. Though, 

the semantic of transitive and asymmetric can be 

achieved through some techniques for example in the 

proposed solution dependency relationships which are 

transitive and asymmetric are declared as object 

property with two additional sub-properties. One sub-

property is marked as transitive and other is marked as 

asymmetric. Then related classes are connected with 

the sub-properties. When inference is generated by the 

reasoner then consequently the related classes are 

linked by the parent object property. Table 1 shows the 

transformation of dependency relationships into the 

ontology. 

Table 1. Representation of different dependency relationships in 
ontology. 

Dependency 

Relationships 
Equivalent ontology Description 

Create 
𝑐𝑟𝑒𝑎𝑡𝑒𝑇, 𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ⊑ 𝑐𝑟𝑒𝑎𝑡𝑒 

𝑐𝑟𝑒𝑎𝑡𝑒𝑇 ≡ 𝑐𝑟𝑒𝑎𝑡𝑒𝑇 ∘ 𝑐𝑟𝑎𝑒𝑡𝑒𝑇 

𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ≡  𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ̅  

Sub-property 

Transitive 

Asymmetric 

Drive 
𝑑𝑟𝑖𝑣𝑒𝑇, 𝑑𝑟𝑖𝑣𝑒𝐴 ⊑ 𝑑𝑟𝑖𝑣𝑒 

𝑑𝑟𝑖𝑣𝑒𝑇 ≡ 𝑑𝑟𝑖𝑣𝑒𝑇 ∘ 𝑑𝑟𝑖𝑣𝑒𝑇 

𝑑𝑟𝑖𝑣𝑒𝐴 ≡  𝑑𝑟𝑖𝑣𝑒𝐴 ̅ 

Sub-property 

Transitive 
Asymmetric 

Call 𝑐𝑎𝑙𝑙 ≡ 𝑐𝑎𝑙𝑙 ∘ 𝑐𝑎𝑙𝑙 Transitive 

Use 𝑢𝑠𝑒 ≡ 𝑢𝑠𝑒 ∘ 𝑢𝑠𝑒 Transitive 

4. Reasoning on Class Model 

A class model is a combination of various relationships 

such as associations, generalization, dependency 

relationship and aggregation. If the verification method 

does not support any one of them, thus verification of 

the entire model cannot be possible. Existing 

verification methods either ontology-based or others do 

not support dependency relationships and graphical 

XOR constraints. Moreover, they do not deal with the 

consequences, which is an important part of the 

verification. Since due to the consequences sometimes 

the model can be inconsistent. Thus, the transformation 

of a class model into the ontology perfectly captures 

the semantics of the elements and provides the ability 

to reason.  

The next section shows the soundness and 

completeness of the proposed transformation of xor 

constraints and dependency relationships. 

4.1. Soundness and Completeness  
4.1.1. Case 1 xor Constraint (Soundness) 

Given a transformed ontology model (which has type 1 

xor constraints) M. The model is considered sound  

𝑖𝑓𝑓 ∀ 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2 … 𝑝𝑛 ∈ 𝑃, 
ℳ ⊨ 𝑝𝑖 ⊓ 𝑝𝑖+1 ⊓ 𝑝𝑖+2 ⊓ … ⊓ 𝑝𝑛 ⊑⊥ 

Where P is set represents the disjoint object properties. 

4.1.2. Case 1 xor Constraint (Completeness) 

Any complete and constraint violation free set of 

instances I has a model. This can be proved by 

defining the canonical interpretation 𝔗I induced by I: 

a) The domain of ∆𝔗𝐼  of 𝔗𝐼 consist of all the instance 

of classes in I; 

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼}; 
c) For disjoint object properties 𝑃1 𝑎𝑛𝑑 𝑃2 we define 

𝑃𝔗𝐼 = {(𝑏, 𝑑)| 𝑃1
𝔗𝐼(𝑏, 𝑑) ⊓ (⇁  𝑃2

𝔗𝐼(𝑏, 𝑑)) ∈ 𝐼} 

According to the definition 𝔗I satisfies all the assertion 

in I. 

(3) 
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 Example 1 (Case 1 XOR Constraint) Consider a 

fragment of the class model presented in Figure 1 

where an instance of the class Person can be linked 

to Book class instance either through Write or 

Review Otherwise, the model will be unsatisfied.  

4.1.3. Case 2 Xor Constraint (Soundness)  

Given a transformed ontology model (which has type 2 

xor constraints) M. The model is considered sound  

𝑖𝑓𝑓 ∀ 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2 … 𝑝𝑛 ∈ 𝑃, 
ℳ ⊨ 𝑝𝑖 . (𝑎, 𝑏)  ⊓  𝑝𝑖 . (𝑎, 𝑐) ⊑ ⊥ 

Where a is an instance of source class and b and c are 

instances of the target classes and P represent set of an 

object property. 

4.1.4. Case 2 Xor Constraint (Completeness) 

Any complete and constraint violation free set of 

instances I has a model. This can be proved by 

defining the canonical interpretation 𝔗I induced by I: 

a) The domain of ∆𝔗𝐼  of 𝔗𝐼 consist of all the 

instance of classes in I; 

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼}; 
c) For object properties 𝑃1 𝑎𝑛𝑑 𝑃2 we define 𝑃𝔗𝐼 =

{(𝑏, 𝑑)(𝑑, 𝑐)| 𝑃1
𝔗𝐼(𝑏, 𝑑) ⊓ (⇁  𝑃1

𝔗𝐼(𝑏, 𝑐)) ∈ 𝐼}  

 According to the definition 𝔗I satisfies all the 

assertion in I. 

 Example 2 (Case 2 XOR Constraint) Consider a 

class model presented in Figure 2, according to the 

proposed approach an instance of Account class can 

be connected to either Person or Company instance 

through association “belong”. Otherwise, the model 

will be unsatisfied. 

4.1.5. Create and Drive Dependency (Soundness) 

Given a transformed ontology model (which has create 

or drive dependency constraints) M. The model is 

considered sound 

𝑖𝑓𝑓 ∀ 𝑡𝑖 , 𝑡𝑖+1, 𝑡𝑖+2 … 𝑡𝑛 ∈ 𝑇, 
∀ 𝑎𝑖 , 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑛 ∈ 𝐴, 
∀ 𝑐𝑖 , 𝑐𝑖+1, 𝑐𝑖+2 … 𝑐𝑛 ∈ 𝐶 

𝑇, 𝐴 ⊑ 𝐶 

𝑡𝑖 . (𝑏, 𝑑)  ⊓  𝑡𝑖 . (𝑏, 𝑒) ≡ 𝑡𝑖(𝑏, 𝑒) 

𝑎𝑖(𝑏, 𝑑) ≡⇁ 𝑎𝑖(𝑑, 𝑏) 

ℳ ⊨ 𝑡𝑖(𝑏, 𝑒),⊓ (⇁ 𝑎𝑖(𝑏, 𝑑))  ⊑ 𝑐𝑖 

Where T is a transitive object property, A is an 

asymmetric object property, C is the super property of 

T and A and b,d and e, are classes. 

4.1.6. Create and Drive Dependency 

(Completeness) 

Any complete and constraint violation free set of 

instances I has a model. This can be proved by 

defining the canonical interpretation 𝔗I induced by I:  

a) The domain of ∆𝔗𝐼  of 𝔗𝐼 consist of all the 

instance of classes in I; 

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼}; 
c) For all transitive object properties T we define 

𝑇𝔗𝐼 = {(𝑏, 𝑑, 𝑐)| (𝑇𝔗𝐼(𝑏, 𝑑) ⊓ 𝑇𝔗𝐼(𝑑, 𝑐)) ⇒
𝑇𝔗𝐼(𝑏, 𝑐) ∈ 𝐼} 

d) For all asymmetric object properties A we define 

𝐴𝔗𝐼 = {(𝑏, 𝑑)| (𝐴𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝐴𝔗𝐼(𝑑, 𝑏)) ∈ 𝐼} For 

all super properties S of A and T we define 𝑆𝔗𝐼 =
{(𝑏, 𝑑, 𝑐)| (𝐴𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝐴𝔗𝐼(𝑑, 𝑏) ⊓
((𝑇𝔗𝐼(𝑏, 𝑑) ⊓ 𝑇𝔗𝐼(𝑑, 𝑐))  ⇒ 𝑆𝔗𝐼(𝑏, 𝑐) ⊓
⇁ 𝑆𝔗𝐼(𝑐, 𝑏)) ∈ 𝐼} 

According to the definition 𝔗I satisfies all the assertion 

in I. 

5. Empirical Evaluation 

We conducted an empirical evaluation to answer the 

two research questions: which address the scalability 

and performance of the proposed approach. The 

research questions are: 

 Does the proposed approach scale to a practical 

extent? 

 How does the proposed approach compare to OCL 

based approaches? 

The following subsections overview the subject of the 

study and the experimental setup, and describe, for 

each research question, the measurements performed 

and the achieved results. 

5.1. Experiment Setup and Subject of the Study 

We implemented our approach as a Java prototype1 

that relies upon the Jena library for processing the 

ontology. The Jena is an open source Java framework 

which provides support for extracting and writing 

Resource Development Framework (RDF), and OWL 

graph. It includes a rule-based inference engine to 

perform reasoning on ontology. The input UML class 

model of the prototype tool is represented in 

Extendable Markup language (XMI) XML Metadata 

Interchange). XMI is an Object Management Group 

(OMG) standard for exchanging metadata information 

by XML. Specifically, the XMI is intended to provide 

a common format for UML diagrams for sharing 

among different Computer Added Software 

Engineering (CASE) tools. So the input models of our 

tool must be specified in XMI version 2.41. 

As the subject of our study, we considered 9 UML 

class models in which 5 models have xor constraints 

and 4 models have dependency relationships. The brief 

detail of class models used in the analysis are as 

follows: 

                                                           
1All source files of prototype tool and model files are 

available on https://sites.google.com/view/uml2onto  

(5) 

(4) 

(5) 
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 Salesman: the Salesman model is an invalid model 

which contains 3 classes and 1 xor. This model is 

variant of XOR model which presented in [36].  

 Library: the first example library model contains 8 

classes, 8 associations in which 6 associations 

annotated with xor constraint (first case multiple 

associations). This model derived from model 

which presented in [18]. 

 Restaurant: the second example “Restaurant” has 8 

classes, 8 associations in which 6 associations 

annotated with xor constraint (second case single 

association). This model derived from model which 

presented in [32]. 

 Cinema Ticking: the second example “Cinema 

Ticking” has 4 classes, 4 associations in which 4 

annotated with xor constraint (both cases).  

 Script 3: the script 3 model is a programmatically 

generated model, for verification of many xor 

associations. This model is variant of script model 

which presented in [43]. 

 REST Full Web Service: the Representational State 

Transfer (REST) Full Web service class model 

describes the simpler extensible framework for 

REST full web service [17].  

 Monopoly Game: the Monopoly Game class 

diagram illustrates the static view of a game startup 

that describes the creation of various startup 

components through Create dependency [26].  

 Monitor Web Service Usage: the Monitor Web 

Service Usage class model describes the technical 

implementation of several web services for business 

models including a free trial, charging on calls, 

charging on a monthly subscription [8]. 

 Script 5: The script 5 model is a programmatically 

generated model, for verification of many 

dependency relationships. This model is variant of 

script model which presented in [43]. 

We used UML to CSP and Alloy for comparison with 

the proposed method because these two verification 

methods are widely used and other methods such as 

USE and Mova are used for model validation. 

UML2Alloy transforms the UML/OCL class model 

into Alloy specification; therefore, they are same as in 

Alloy. For checking performance and scalability of the 

proposed method, the experiments run on Intel Core i7 

3.40 GHz machine with 4GB of RAM. However, to 

allow for a fair comparison between the different 

methods, the experimental runs were each executed on 

a computer having the same characteristics. The 

comparison experiments were run Intel Core2Duo 1.34 

GHz machine with 2 GB of RAM. Due to UMLtoCSP 

does not support 64-bit architecture. 

 

 

 

 Table 2. Description of xor models used in the evaluation and 
verification time. 

Model 

Name 
Classes Associations Xor Case 1 

Case 

2 

Verification 

Time 

Salesman 3 2 1  × 0.035 

Library 6 8 3 ×  0.103 

Cinema 
Ticking 

4 4 2  × 0.080 

Restaurant 8 8 3   0.100 

Script III 100 200 100 ×  0.547 

5.2. RQ1: Does the Proposed Approach Scale to 

A Practical Extent? 
5.2.1. Measurements and Setup 

The proposed approach should be fast enough and 

scale effectively as classes and xor associations 

increase. For this reason, to respond to RQ1, we 

applied the proposed approach to various class models 

as shown in Table 2. For each UML class model, we 

measured the verification time with the proposed 

approach. In the experiment, we used different UML 

class models which focus on different types of xor 

constraints. Table 2. Shows the detail of each model 

regarding the number of classes, number of 

associations, number of xor constraints and type of xor 

constraint.  

For verification of dependency relationships, we 

also performed an analysis on four different models as 

shown in Table 3. For each model we measured the 

verification time, especially, we analyzed the 

relationship between execution time and model size. 

Table 3. Description of dependency relationships models used in 
the evaluation and verification Time.  

Model 

Name 
Classes Associations Xor Case 1 

Case 

2 

Verification 

Time 

Salesman 3 2 1  × 0.035 

Library 6 8 3 ×  0.103 

Cinema 

Ticking 
4 4 2  × 0.080 

Restaurant 8 8 3   0.100 

Script III 100 200 100 ×  0.547 

5.2.2. Results  

Table 2 shows the average execution time (in seconds) 

required to verify the xor model. The Table 2 also 

shows that the approach scales to a practical extent. 

For first model Salesman, the proposed approach 

requires on average 0.035 seconds with 3 classes and 1 

xor association. In the case of Library model which 

have xor constraints of type 2 (xor on multiple 

associations), the proposed approach requires on 

average 0.103 seconds with 8 classes and 3 xor 

association constraints. In the case of Restaurant model 

which have xor constraints of type 1 (xor on single 

association), the proposed approach required on 

average 0.100 seconds with 8 classes and 3 xor 

associations. In the case of Cinema model which has 

both types of xor constraints takes on average 0.080 

seconds. Finally, for checking the performance of the 

proposed method on a large model experiment 
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performed on Script III which has 100 classes, 200 

associations, and 100 xor constraints and requires on 

average 0.570 seconds. Library and Restaurant have 

the same number of classes, associations, and xor 

constraints but the type of xor constraints are different. 

The verification result shows that the verification time 

of both types of xor constraint more or less same.  

Table 3 shows the average execution time (in 

seconds) required to verify dependency relationships. 

In the case of test inputs containing 9 classes and 3 

dependency relationships, the approach requires on 

average 0.079 seconds. In the case of test inputs 

containing 6 classes and 5 dependency relationships 

the proposed approach requires on average 0.157 

seconds. In the case of input containing 11 classes and 

10 dependency relationships the proposed approach 

required on average 0.109 seconds. Finally, in the case 

of test input containing 100 classes and 100 

dependency relationships, the proposed approach 

requires on average 0.473 seconds to verify the model.  

Models containing hundreds of xor association and 

dependency relationships are particularly complex to 

verify and there is very less chance that a single model 

contains a number of elements like Scripts 3 and 5, 

which highlighted the scalabils and efficiency of our 

approach. 

5.3. RQ2: How Does the Proposed Approach 

Compare to OCL Based Approaches? 

5.3.1. Measurements and Setup 

To be justified, the proposed approach should provide 

an advantage over OCL based approach that does not 

support direct verification of xor constraint. To 

respond to RQ2, we thus compared the performance of 

the approach proposed with UML to CSP and 

UML2Alloy which support verification of UML class 

model with OCL. In the comparison, we used four xor 

models 

1. Salesman.  
2. Library. 

3. Cinema Ticketing.  

4. Restaurant.  

The comparison of dependency relationship 

verification with other verification method is not 

possible due to current verification methods do not 

support verification of the dependency relationships.  

5.3.2. Results  

Figure 3 shows the compassion results between 

existing methods (UML to CSP and UML to Alloy) 

and the proposed method. The x-axis of Figure 3 

reports models and the y-axis reports the execution 

time taken in a second. As the results show proposed 

approach is a little bit efficient from the existing 

method. However, the proposed method has the 

following additional advantages over the OCL based 

approaches:  

1. The graphical xor constraint automatically 

transformed into the ontology for verification and 

there is no need to manually transformed graphical 

xor constraints into the OCL which is also a time 

consuming and hectic task. Furthermore, OCL has 

many limitations which have been discussed in 

section 1.  

2. The existing methods (UML to CSP and UML 2 

Alloy) support bounded verification where they find 

a solution on limited search space. For example, in 

this evaluation, we set scope 4 for Alloy. 

 
Figure 3. Comparison of different verification methods. 

6. Conclusions and Future Work 

This paper presents an ontology-based transformation 

and verification of UML class model elements (xor 

constraint and dependency relationships) which have 

been not supported by any existing method. Such 

transformations map class model elements into the 

ontology and facilitate the analysis such as 

consistency, satisfiability, and consequences. A benefit 

of this approach is that ontology has efficient reasoners 

which can perform reasoning on a large model in a 

reasonable time. As our future work, we plan to 

explore the transformation of OCL constraints into the 

ontology and perform verification of other unsupported 

UML class model elements, which will reveal further 

insight into existing state of relevant knowledge.  
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