
758 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

Ontology-Based Transformation and Verification

of UML Class Model

Abdul Hafeez1, Syed Abbas2, and Aqeel-ur-Rehman3
1Department of Computer Science, SMI University, Karachi

2Faculty Engineering Science and Technology, Indus University, Karachi
3Faculty of Engineering Science and Technology, Hamdard University, Karachi

Abstract: Software models describe structures, relationships and features of the software system. Especially, in Model Driven

Engineering (MDE), they are considered as first-class elements instead of programming code and all software development

activities move around these models. In MDE, programming code is automatically generated by the models and models’

defects can implicitly transfer to the code. These defects can harder to discover and rectify. Model verification is a promising

solution to the problem. The Unified Modelling Language (UML) class model is an important part of UML and is used in both

analysis and design. However, UML only provides graphical elements without any formal foundation. Therefore, verification

of formal properties such as consistency, satisfiability and consequences are not possible in UML. This paper mainly focuses

on ontology-based transformation and verification of the UML class model elements which have not been addressed in any

existing verification methods e.g. xor association constraint, and dependencies relationships. We validate the scalability and

effectiveness of the proposed solution using various UML class models. The empirical study shows that the proposed approach

scales in the presence of the large and complex model.

Keywords: UML Class Model Verification, Dependency Relationship, XOR Association Constraints.

Received September 11, 2017; accepted January 28, 2019

https://doi.org/10.34028/iajit/17/5/9

1. Introduction

Software design models represent real-world entities

on a smaller scale and provide a clear understanding of

the system. In Model Driven Engineering (MDE), they

are considered as the nucleus of all development

activities and are recognized as first-class elements

instead of programming language code [21, 25, 45].

They are not only used for documentation, but they are

core arte facts and processable by a computer [38]. In

MDE, the model to model transformation

automatically transfer source model to the target model

[45]. The automatic transformation provides the

systematic reuse of existing arte facts. However, it can

cause some problems, for example, models may be

developed with errors, and these errors can implicitly

transfer to the target model (in MDE, programming

code is also considered as a model) [41, 46].

Unified Modelling Language (UML) is a graphical

modelling language and is commonly used in MDE

[21, 37]. It offers various diagrams for dealing with

different aspects of software [14, 29]. The class

diagram is the most important part of UML [2, 14, 29,

37, 41] and performs a key role in software analysis

and design [38, 42]. It describes the system through

concepts, relationships, and constraints [16]. The main

elements of the class diagram are classes and different

types of relationships such as dependency, association,

and generalization [39]. Association and generalization

 are also dependency relationships; however, they have

specific semantics. [39]. These three relationships

(dependency, association, generalization) are the basic

relational building block of UML and in object-

oriented modeling, they are considered most important

elements [9].

UML only provides graphical elements for

designing models without reasoning support, due to

lack of formal foundation [27, 48]. Therefore, many

researchers have used many formal and semi-formal

methods for verification of UML class model such as Z

notation, B method, Alloy, Constraint Satisfaction

Problem (CSP). The current UML class model

verification methods are sound and provide great effort

to check the correctness of the model. However, they

do not support some important elements of the UML

class model. A comparison of existing class model

verification methods presented in [43], which claimed

that the dependency relationships have not been

supported by any verification method. The xor

constraint on association is another graphical constraint

which is not supported by current verification methods.

However, some verification methods which support

verification of Object Constraints Language (OCL)

cam verified xor constraint if xor specified in the form

of OCL. Although, OCL has some limitations such as

UML specification does not restrict constraint

specification language and constraints can be defined

through any formal language such as OCL or informal

Ontology-Based Transformation and Verification of UML Class Model 759

language such as JAVA, C# or even natural language

[33, 50]. Furthermore, most of the UML CASE tools

do not support OCL or provide limited support [24,

34]. The actual use of OCL in the software industry

has been nearly insignificant [19, 34]. Due to its pure

textual nature, designers are uncomfortable when they

combine it with diagrammatic paradigm and

organizations which heavily use UML even they

lightly use OCL in their projects [19, 34, 47].

The ontology also specifies the real-world concepts

like UML class model and also supports reasoning. It

has various elements such as classes, relations, and

individuals like the UML class model. Recently,

software engineering practitioners have started

integrating ontology in software development practices

(processes, methods, tools, etc.,) and in software

components for improving the quality [15].

This work proposes ontology-based formalization

and verification of UML class model elements

(graphical xor constraint and dependency

relationships) which have not been addressed by any

existing verification method.

The rest of the paper is organized as follows.

Section 2 discusses the related work. Section 3

presents an ontology-based formalization of the UML

class model elements. Section 4 describes ontology-

based reasoning on UML class model elements.

Section 5 presents the implementation and empirical

results obtained. Finally, section 6 presents our

conclusions and points out future work.

1.1. Motivation

Most of the existing verification methods use formal or

semi-formal methods and their specification notations

are enormously inspired by mathematics. They are

greatly different from the UML class model and they

are difficult to be understood by software practitioners.

On the other side, ontology and UML class model have

many similar elements such as classes, relationships,

and generalization. However, in this work, ontology as

the target notation for transformation and verification

is motivated by the fact that the reasoning on the

ontology-based model can be easily performed by

ontology reasoner and they have matured enough to

support large problem space. They can perform

reasoning and knowledge inference on thousands of

ontological items within a reasonable time [44].

Therefore, ontology-based verification can improve the

reliability of Model Driven Engineering in order to

check the correctness of the model before the model to

model transformation.

2. Related Work

Verification of UML class model has been addressed

in several works. In the existing literature, different

correctness properties have been addressed by

researchers according to different aspects such as static

model, dynamic model, inter-model and intra-model

[11]. In the static UML class model, only structure

elements such as association and generalization are

considered for verification. In dynamic model, the

behavior parts of the model such as operations are

considered for verification. In the inter-model,

consistency among different models is verified, and in

the intra-model, consistency of model against the

constraints is verified. Early verification works focused

on the formalization of meta-model and well-

formedness rules through different formal methods

such a Z notation, B method, and Description Logic [6,

20, 27]. Furthermore, they also performed different

analyses on UML class model such as diagrammatical

transformation analysis performed by [19], in which a

model is deduced from the other model through the

numerous transformations. The authors of [37]

performed an intersection between two or more class

diagrams and performed refinement analysis.

However, most of the recent works focus on the

consistency of UML class models and almost all works

verified satisfiability of the model [1, 6, 10, 11, 31,

43].

France et al. [20] proposed a precise formal

foundation for UML core meta-model in Z notation

and argued that a formal representation of UML meta-

model provides many benefits such as clarity,

consistency checking, extendibility, refinement, and

proof checking. In this work, the UML core model is

represented through a compositional schema which has

many sub-schemas and each sub-schema closely

correspond to the elements of core UML meta-model.

Kim and Carrington [22, 23] defined abstract syntax of

UML meta-model in Object-Z. In [23] authors argued

that the formal representation of abstract syntax (meta-

model) of language is a most recurrent technique for

defining the semantics of the language. In [22] authors

argued that the different formal methods have different

strengths in different areas and a single method cannot

deal with all aspects of UML model verification and

validation. Consequently, the authors presented an

integrated verification and validation framework which

supports different formalisms.

Ledang and Souquières [27] and, Ledang [28]

proposed transformation of the class model into the B

method. In [28] authors checked the consistency of the

UML class diagram against the well-formedness rules

through B prover. In this approach, well-formedness

rules are transformed into the invariants of B abstract

machine. In [27] authors presented the transformation

of OCL constraints into the B method. In this

approach, OCL basic types (integer, float, etc.,) are

transformed into the B basic types and operators (+, -,

etc.,) transformed into the B basic operations. In [49]

authors integrated all their previous work and

presented the transformation of the class model and

UML meta-model with well-formedness rules into the

B specification for verification.

760 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

Cadoli et al. [14] presented the transformation of

UML class model into the Constraint Satisfaction

Problem (CSP) and proposed linear inequality-based

method for finite model verification. In this work,

authors addressed two verification problems

1. Satisfiability.

2. Full satisfiability.

The satisfiability verifies whether a finite non-empty

instance model (object diagram) of the UML class

model can be generated without violation of the

constraints, and full satisfiability verifies whether an

instance model can be generated without violation of

the constraints where all classes can be successfully

populated. However, this method does not support

attributes, association classes and n-ary associations.

Cabot and Teniente [12] proposed incremental

verification of a class model with OCL integrity

constraints. In [12] authors argued that the verification

of integrity constraints after every structure event

(insert an entity, update attribute, delete an entity, etc.,)

may be very expensive and inefficient. This work

introduced, the term “Potential Structure Events”

(PSEs) that includes only those events which can

render constraints violation. In this approach, PSEs for

every integrity constraint are recorded and only those

instances of entities and relationships are verified

which relate to any PSEs. In [13] authors used

constraint programming for their method which was

proposed in [12] and presented fully automatic,

decidable solution for bounded verification of the

UML Class/OCL model. The decidability is achieved

through establishing finite bounds on instances of

classes, associations, and domain for attributes. They

also pointed out issues of the bounded verification and

argued that the inadequate finite bound can miss

defects if it is set too small or it may be time-

consuming if set too large. Their proposed approach

set initially large finite bounds and then bounds are

tightened as much as possible through the interval

constraint propagation technique [16].

Bordbar and Anastasakis [10] transformed UML

Class/OCL model into the Alloy. In this method, UML

meta-model transformed into Alloy and class model

into the Alloy signature as an instance of the meta-

model. Przigoda et al. [37] proposed the

transformation of advanced features (multiple

inheritance, and interface) of UML class model into

the alloy. This work also supports various analyses on

a class diagram such as intersection and refinement

analysis.

Berardi et al. [6] represented UML class model

through description logic and verified inconsistencies

and redundancies. They argued that description logic-

based reasoning supports high expressiveness of UML

class model. Mainly, this work performs consistency

verification (satisfiability) and class equivalence. They

reported that the reasoning complexity of the UML

class model is exptime-hard with minimum supporting

features such as binary association, minimal

multiplicity and generalization [7]. Maraee and Maraee

[4], Maraee and Balaban [30], and Maraee et al. [31].

represented generalization set, qualified association,

and association classes through linear inequalities.

They also presented redundancy elimination method

for wider constraints (Universal, and Extensional) of

association, generalization, aggregation, composition

and qualified association.

Shaikh et al. [43] used a model slicing technique for

reducing the verification complexity of UML

Class/OCL model. They reported that the slicing

techniques decrease verification time of large model

with fewer constraints and if the model has many

disjoint sub-models then minimum slices will be

created and efficiency will not be gained. They

extended the work with the support of non-disjoint

sub-models where the common class is used among

several constraints. They also introduced a feedback

technique for unsatisfiable UML Class/OCL model

[42]. Seiter and Drechsler [40] pointed out the

consistency among verified models is also important

and current UML model verification methods do not

focus on consistency among verified models. They

proposed a framework for managing consistency

among verified models.

Various research works have also used ontology for

transformation and verification of UML class model.

Xu et al. [51] performed a comparison of UML and

Web Ontology Language (OWL) and specified that

both have many similarities e.g., classes, relationships,

and attributes. They also pointed out differences

between UML and OWL such as UML has various

relationships among classes (such as association,

aggregation, and composition) and OWL only has an

object property. Finally, they concluded that both are

compatible with each other. Bahaj and Bakkas [3]

proposed a transformation technique from class

diagram to ontology and considered encapsulation,

aggregation, and composition as special types of

association. Belghiat and Bourahla [5] presented

graph-based transformation of class diagram meta-

model into the ontology. Parreiras and Staab [35]

combined UML with OWL-DL for representing

software model. They They integrated Metaobject

Factory (MOF) meta-model as the backbone of both

UML and OWL.

3. Class Model to Ontology

This section describes the transformation of UML class

model elements into the ontology. Firstly, elements

which are common in both and have already been

represented in existing work are presented with little

augmentation. Then transformations of elements which

do not have direct corresponding ontology elements

Ontology-Based Transformation and Verification of UML Class Model 761

and have not been addressed in any existing work are

presented.

As an example, consider the UML class model

shown in Figure 1 a partial representation of the library

information system. The class model involves several

classes (Book, publisher, Librarian, etc.,) as well as

various associations (Record, Write, Review, etc.,) a

dependency relationship between Librarian and

Catalog classes. In the model, the Book class is

connected to Person class by Write and Review

associations which are mutually exclusive by xor

constraint and semantically specifies that if a person

writes a book, then he/she cannot review the same

book and vice versa. Further, the Book class is

connected to Member class by Borrowed and Reserved

associations which are also mutually exclusive by xor

constraint and semantically specifies that if a member

borrows a book, then he/she cannot reserve the same

book and vice versa. Finally, the Book class connects

to Publisher class by Donated by and Purchase by

associations which are mutually exclusive by xor

constraint, and semantically specify that if a book

purchased by the publisher then it will not be donated

by the publisher and vice versa.

Figure 1. A partial UML class model of the library information

system.

3.1. Translation of Classes, Attributes, and

Associations

In the existing work, UML classes are transformed into

ontology’s classes. However, UML supports Unique

Name Assumption (UNA) where each instance of the

class is considered as a different entity. On the other

side, the ontology does not support UNA. Although,

the semantic of UNA can be achieved in the ontology

by the addition of some supplementary elements for

example, at the class level an additional functional data

property Object Identifier (OID) is attached to each

class as a key through the Has Key construct. At the

instance level, the all different assertion is used to

differentiate instances of classes. The attributes of

classes are transformed into the data type property. The

association relationships between classes are

represented by the object property, and related classes

are assigned as domain and range. Additionally, an

inverse property is also declared for representing two-

way communication. The multiplicities are

transformed into qualified cardinalities.

3.2. XOR Association Constraints

In a class diagram, classes are connected to each other

through multiple associations and these associations

can be mutually exclusive by xor constraint as shown

in Figure 1 where the Book and Member classes are

connected by Reserved and Borrowed associations.

The xor constraint can also be applied on single

association when an association is connected to more

than one class as shown in Figure 2 where Account

class (source) is connected to the Person and Company

classes (target) by Belong association. In this case, xor

constraint restricts the instance of source class can be

linked to the instance of one target class.

Figure 2. XOR constraint on single association.

In the proposed method, for the first case (where xor

applied on multiple associations) xor associations are

declared as disjoint to each other. For example,

Reserved and Borrowed associations of library

information system (shown in Figure 1) are formalized

as:

𝐵𝑜𝑜𝑘 ⊑ ∀(𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑. 𝐵𝑜𝑜𝑘 ⊔ 𝐵𝑜𝑟𝑟𝑜𝑤𝑒𝑑. 𝐵𝑜𝑜𝑘

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ⊑ ¬𝐵𝑜𝑟𝑟𝑜𝑤𝑒𝑑

For the second case (where a single association

connects multiple classes) the source class declared

with additional restrictions. For example, the Belong

association of bank model (shown in Figure 2) is

formalized as:

𝐴𝑐𝑐𝑜𝑢𝑛𝑡 ⊑ ∃(𝐵𝑒𝑙𝑜𝑛𝑔. 𝑝𝑒𝑟𝑠𝑜𝑛 ⊔ 𝐵𝑒𝑙𝑜𝑛𝑔. 𝐶𝑜𝑚𝑝𝑛𝑎𝑦) ⊓
(¬∃(𝐵𝑒𝑙𝑜𝑛𝑔. 𝐶𝑜𝑚𝑝𝑛𝑎𝑦 ⊓ 𝐵𝑒𝑙𝑜𝑛𝑔. 𝑃𝑒𝑟𝑠𝑜𝑛))

3.3. Dependency Relationship

The dependency relationships between classes are

semantic relationships, which specify that a change in

the class (independent/supplier class) can affect other

classes (dependent/client classes). In UML, the

dependency relationships are used in various diagrams.

This work only focuses on the dependency

relationships which are relevant to the class model and

especially impact on the model consistency and

satisfiability. The dependency relationships can be

categorized into different groups:

Publisher Book

Member

Person

Catalog Librarian

Purchase By

Donated By Write

Review

Reserved Borrowed

Record Search

<<Use>>

{xor} {xor}

{xor}

(1)

(2)

762 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

 Abstraction: shows the relationship between two

classes on different levels of abstraction (for

example analysis and design model) or same level

(client represents a more concrete form of supplier).

Generally, abstraction dependency is subdivided

into the trace, refine, realization and derivation.

 Permission: in the permission dependency, supplier

class grants access it private contents to the client

class. Generally, permission dependency is

subdivided into access, import, and permit. The

access and import dependencies are used in the

package diagram.

 Usage: the usage dependency specifies that a class

requires another class for proper execution. In usage

dependency, the presence of supplier is mandatory

for the client. It is only dependency type which is

used in the same model level. Generally, usage

dependency is subdivided into the call, create,

insatiate, send and use.

The create and insatiate dependencies create an

instance of the supplier class. In insatiate dependency,

the operation of client class creates an instance of the

supplier class and in create dependency supplier class

object is declared as property of client class.

The trace and refine are used when the connection is

established between classes in the different models. In

these relationships, the client is considered more detail

specification of the supplier. The realization

dependency is established between abstract

class/interface and a concrete class. The concrete class

provides an implementation of operations specified in

abstract class/interface. In all abstract dependency

types except drive, client class instance does not need

the instance of the supplier and they relate to each

other only on classifier level. In model verification, the

crucial dependencies are: where the presence of

supplier class instance is mandatory for client class

instance. Therefore, the drive, call, create, and use are

dependency types in which instance of the client

requires the supplier’s instance. Therefore, this work

only considers these dependencies for transformation

and verification.

In the proposed approach, dependency relationships

are transformed into the object property with additional

restrictions. For example, the use and call

dependencies are transitive and drive, create are

transitive as well as asymmetric. However, OWL-DL

does not support reasoning over object property which

is declared both transitive and asymmetric. Though,

the semantic of transitive and asymmetric can be

achieved through some techniques for example in the

proposed solution dependency relationships which are

transitive and asymmetric are declared as object

property with two additional sub-properties. One sub-

property is marked as transitive and other is marked as

asymmetric. Then related classes are connected with

the sub-properties. When inference is generated by the

reasoner then consequently the related classes are

linked by the parent object property. Table 1 shows the

transformation of dependency relationships into the

ontology.

Table 1. Representation of different dependency relationships in
ontology.

Dependency

Relationships
Equivalent ontology Description

Create
𝑐𝑟𝑒𝑎𝑡𝑒𝑇, 𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ⊑ 𝑐𝑟𝑒𝑎𝑡𝑒

𝑐𝑟𝑒𝑎𝑡𝑒𝑇 ≡ 𝑐𝑟𝑒𝑎𝑡𝑒𝑇 ∘ 𝑐𝑟𝑎𝑒𝑡𝑒𝑇

𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ≡ 𝑐𝑟𝑒𝑎𝑡𝑒𝐴 ̅

Sub-property

Transitive

Asymmetric

Drive
𝑑𝑟𝑖𝑣𝑒𝑇, 𝑑𝑟𝑖𝑣𝑒𝐴 ⊑ 𝑑𝑟𝑖𝑣𝑒

𝑑𝑟𝑖𝑣𝑒𝑇 ≡ 𝑑𝑟𝑖𝑣𝑒𝑇 ∘ 𝑑𝑟𝑖𝑣𝑒𝑇

𝑑𝑟𝑖𝑣𝑒𝐴 ≡ 𝑑𝑟𝑖𝑣𝑒𝐴 ̅

Sub-property

Transitive
Asymmetric

Call 𝑐𝑎𝑙𝑙 ≡ 𝑐𝑎𝑙𝑙 ∘ 𝑐𝑎𝑙𝑙 Transitive

Use 𝑢𝑠𝑒 ≡ 𝑢𝑠𝑒 ∘ 𝑢𝑠𝑒 Transitive

4. Reasoning on Class Model

A class model is a combination of various relationships

such as associations, generalization, dependency

relationship and aggregation. If the verification method

does not support any one of them, thus verification of

the entire model cannot be possible. Existing

verification methods either ontology-based or others do

not support dependency relationships and graphical

XOR constraints. Moreover, they do not deal with the

consequences, which is an important part of the

verification. Since due to the consequences sometimes

the model can be inconsistent. Thus, the transformation

of a class model into the ontology perfectly captures

the semantics of the elements and provides the ability

to reason.

The next section shows the soundness and

completeness of the proposed transformation of xor

constraints and dependency relationships.

4.1. Soundness and Completeness
4.1.1. Case 1 xor Constraint (Soundness)

Given a transformed ontology model (which has type 1

xor constraints) M. The model is considered sound

𝑖𝑓𝑓 ∀ 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2 … 𝑝𝑛 ∈ 𝑃,
ℳ ⊨ 𝑝𝑖 ⊓ 𝑝𝑖+1 ⊓ 𝑝𝑖+2 ⊓ … ⊓ 𝑝𝑛 ⊑⊥

Where P is set represents the disjoint object properties.

4.1.2. Case 1 xor Constraint (Completeness)

Any complete and constraint violation free set of

instances I has a model. This can be proved by

defining the canonical interpretation 𝔗I induced by I:

a) The domain of ∆𝔗𝐼 of 𝔗𝐼 consist of all the instance

of classes in I;

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼};
c) For disjoint object properties 𝑃1 𝑎𝑛𝑑 𝑃2 we define

𝑃𝔗𝐼 = {(𝑏, 𝑑)| 𝑃1
𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝑃2

𝔗𝐼(𝑏, 𝑑)) ∈ 𝐼}

According to the definition 𝔗I satisfies all the assertion

in I.

(3)

Ontology-Based Transformation and Verification of UML Class Model 763

 Example 1 (Case 1 XOR Constraint) Consider a

fragment of the class model presented in Figure 1

where an instance of the class Person can be linked

to Book class instance either through Write or

Review Otherwise, the model will be unsatisfied.

4.1.3. Case 2 Xor Constraint (Soundness)

Given a transformed ontology model (which has type 2

xor constraints) M. The model is considered sound

𝑖𝑓𝑓 ∀ 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2 … 𝑝𝑛 ∈ 𝑃,
ℳ ⊨ 𝑝𝑖 . (𝑎, 𝑏) ⊓ 𝑝𝑖 . (𝑎, 𝑐) ⊑ ⊥

Where a is an instance of source class and b and c are

instances of the target classes and P represent set of an

object property.

4.1.4. Case 2 Xor Constraint (Completeness)

Any complete and constraint violation free set of

instances I has a model. This can be proved by

defining the canonical interpretation 𝔗I induced by I:

a) The domain of ∆𝔗𝐼 of 𝔗𝐼 consist of all the

instance of classes in I;

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼};
c) For object properties 𝑃1 𝑎𝑛𝑑 𝑃2 we define 𝑃𝔗𝐼 =

{(𝑏, 𝑑)(𝑑, 𝑐)| 𝑃1
𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝑃1

𝔗𝐼(𝑏, 𝑐)) ∈ 𝐼}

 According to the definition 𝔗I satisfies all the

assertion in I.

 Example 2 (Case 2 XOR Constraint) Consider a

class model presented in Figure 2, according to the

proposed approach an instance of Account class can

be connected to either Person or Company instance

through association “belong”. Otherwise, the model

will be unsatisfied.

4.1.5. Create and Drive Dependency (Soundness)

Given a transformed ontology model (which has create

or drive dependency constraints) M. The model is

considered sound

𝑖𝑓𝑓 ∀ 𝑡𝑖 , 𝑡𝑖+1, 𝑡𝑖+2 … 𝑡𝑛 ∈ 𝑇,
∀ 𝑎𝑖 , 𝑎𝑖+1, 𝑎𝑖+2 … 𝑎𝑛 ∈ 𝐴,
∀ 𝑐𝑖 , 𝑐𝑖+1, 𝑐𝑖+2 … 𝑐𝑛 ∈ 𝐶

𝑇, 𝐴 ⊑ 𝐶

𝑡𝑖 . (𝑏, 𝑑) ⊓ 𝑡𝑖 . (𝑏, 𝑒) ≡ 𝑡𝑖(𝑏, 𝑒)

𝑎𝑖(𝑏, 𝑑) ≡⇁ 𝑎𝑖(𝑑, 𝑏)

ℳ ⊨ 𝑡𝑖(𝑏, 𝑒),⊓ (⇁ 𝑎𝑖(𝑏, 𝑑)) ⊑ 𝑐𝑖

Where T is a transitive object property, A is an

asymmetric object property, C is the super property of

T and A and b,d and e, are classes.

4.1.6. Create and Drive Dependency

(Completeness)

Any complete and constraint violation free set of

instances I has a model. This can be proved by

defining the canonical interpretation 𝔗I induced by I:

a) The domain of ∆𝔗𝐼 of 𝔗𝐼 consist of all the

instance of classes in I;

b) For all classes C we define 𝐶𝔗𝐼 = {𝑏|𝑐(𝑏) ∈ 𝐼};
c) For all transitive object properties T we define

𝑇𝔗𝐼 = {(𝑏, 𝑑, 𝑐)| (𝑇𝔗𝐼(𝑏, 𝑑) ⊓ 𝑇𝔗𝐼(𝑑, 𝑐)) ⇒
𝑇𝔗𝐼(𝑏, 𝑐) ∈ 𝐼}

d) For all asymmetric object properties A we define

𝐴𝔗𝐼 = {(𝑏, 𝑑)| (𝐴𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝐴𝔗𝐼(𝑑, 𝑏)) ∈ 𝐼} For

all super properties S of A and T we define 𝑆𝔗𝐼 =
{(𝑏, 𝑑, 𝑐)| (𝐴𝔗𝐼(𝑏, 𝑑) ⊓ (⇁ 𝐴𝔗𝐼(𝑑, 𝑏) ⊓
((𝑇𝔗𝐼(𝑏, 𝑑) ⊓ 𝑇𝔗𝐼(𝑑, 𝑐)) ⇒ 𝑆𝔗𝐼(𝑏, 𝑐) ⊓
⇁ 𝑆𝔗𝐼(𝑐, 𝑏)) ∈ 𝐼}

According to the definition 𝔗I satisfies all the assertion

in I.

5. Empirical Evaluation

We conducted an empirical evaluation to answer the

two research questions: which address the scalability

and performance of the proposed approach. The

research questions are:

 Does the proposed approach scale to a practical

extent?

 How does the proposed approach compare to OCL

based approaches?

The following subsections overview the subject of the

study and the experimental setup, and describe, for

each research question, the measurements performed

and the achieved results.

5.1. Experiment Setup and Subject of the Study

We implemented our approach as a Java prototype1

that relies upon the Jena library for processing the

ontology. The Jena is an open source Java framework

which provides support for extracting and writing

Resource Development Framework (RDF), and OWL

graph. It includes a rule-based inference engine to

perform reasoning on ontology. The input UML class

model of the prototype tool is represented in

Extendable Markup language (XMI) XML Metadata

Interchange). XMI is an Object Management Group

(OMG) standard for exchanging metadata information

by XML. Specifically, the XMI is intended to provide

a common format for UML diagrams for sharing

among different Computer Added Software

Engineering (CASE) tools. So the input models of our

tool must be specified in XMI version 2.41.

As the subject of our study, we considered 9 UML

class models in which 5 models have xor constraints

and 4 models have dependency relationships. The brief

detail of class models used in the analysis are as

follows:

1All source files of prototype tool and model files are

available on https://sites.google.com/view/uml2onto

(5)

(4)

(5)

764 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

 Salesman: the Salesman model is an invalid model

which contains 3 classes and 1 xor. This model is

variant of XOR model which presented in [36].

 Library: the first example library model contains 8

classes, 8 associations in which 6 associations

annotated with xor constraint (first case multiple

associations). This model derived from model

which presented in [18].

 Restaurant: the second example “Restaurant” has 8

classes, 8 associations in which 6 associations

annotated with xor constraint (second case single

association). This model derived from model which

presented in [32].

 Cinema Ticking: the second example “Cinema

Ticking” has 4 classes, 4 associations in which 4

annotated with xor constraint (both cases).

 Script 3: the script 3 model is a programmatically

generated model, for verification of many xor

associations. This model is variant of script model

which presented in [43].

 REST Full Web Service: the Representational State

Transfer (REST) Full Web service class model

describes the simpler extensible framework for

REST full web service [17].

 Monopoly Game: the Monopoly Game class

diagram illustrates the static view of a game startup

that describes the creation of various startup

components through Create dependency [26].

 Monitor Web Service Usage: the Monitor Web

Service Usage class model describes the technical

implementation of several web services for business

models including a free trial, charging on calls,

charging on a monthly subscription [8].

 Script 5: The script 5 model is a programmatically

generated model, for verification of many

dependency relationships. This model is variant of

script model which presented in [43].

We used UML to CSP and Alloy for comparison with

the proposed method because these two verification

methods are widely used and other methods such as

USE and Mova are used for model validation.

UML2Alloy transforms the UML/OCL class model

into Alloy specification; therefore, they are same as in

Alloy. For checking performance and scalability of the

proposed method, the experiments run on Intel Core i7

3.40 GHz machine with 4GB of RAM. However, to

allow for a fair comparison between the different

methods, the experimental runs were each executed on

a computer having the same characteristics. The

comparison experiments were run Intel Core2Duo 1.34

GHz machine with 2 GB of RAM. Due to UMLtoCSP

does not support 64-bit architecture.

 Table 2. Description of xor models used in the evaluation and
verification time.

Model

Name
Classes Associations Xor Case 1

Case

2

Verification

Time

Salesman 3 2 1 × 0.035

Library 6 8 3 × 0.103

Cinema
Ticking

4 4 2 × 0.080

Restaurant 8 8 3 0.100

Script III 100 200 100 × 0.547

5.2. RQ1: Does the Proposed Approach Scale to

A Practical Extent?
5.2.1. Measurements and Setup

The proposed approach should be fast enough and

scale effectively as classes and xor associations

increase. For this reason, to respond to RQ1, we

applied the proposed approach to various class models

as shown in Table 2. For each UML class model, we

measured the verification time with the proposed

approach. In the experiment, we used different UML

class models which focus on different types of xor

constraints. Table 2. Shows the detail of each model

regarding the number of classes, number of

associations, number of xor constraints and type of xor

constraint.

For verification of dependency relationships, we

also performed an analysis on four different models as

shown in Table 3. For each model we measured the

verification time, especially, we analyzed the

relationship between execution time and model size.

Table 3. Description of dependency relationships models used in
the evaluation and verification Time.

Model

Name
Classes Associations Xor Case 1

Case

2

Verification

Time

Salesman 3 2 1 × 0.035

Library 6 8 3 × 0.103

Cinema

Ticking
4 4 2 × 0.080

Restaurant 8 8 3 0.100

Script III 100 200 100 × 0.547

5.2.2. Results

Table 2 shows the average execution time (in seconds)

required to verify the xor model. The Table 2 also

shows that the approach scales to a practical extent.

For first model Salesman, the proposed approach

requires on average 0.035 seconds with 3 classes and 1

xor association. In the case of Library model which

have xor constraints of type 2 (xor on multiple

associations), the proposed approach requires on

average 0.103 seconds with 8 classes and 3 xor

association constraints. In the case of Restaurant model

which have xor constraints of type 1 (xor on single

association), the proposed approach required on

average 0.100 seconds with 8 classes and 3 xor

associations. In the case of Cinema model which has

both types of xor constraints takes on average 0.080

seconds. Finally, for checking the performance of the

proposed method on a large model experiment

Ontology-Based Transformation and Verification of UML Class Model 765

performed on Script III which has 100 classes, 200

associations, and 100 xor constraints and requires on

average 0.570 seconds. Library and Restaurant have

the same number of classes, associations, and xor

constraints but the type of xor constraints are different.

The verification result shows that the verification time

of both types of xor constraint more or less same.

Table 3 shows the average execution time (in

seconds) required to verify dependency relationships.

In the case of test inputs containing 9 classes and 3

dependency relationships, the approach requires on

average 0.079 seconds. In the case of test inputs

containing 6 classes and 5 dependency relationships

the proposed approach requires on average 0.157

seconds. In the case of input containing 11 classes and

10 dependency relationships the proposed approach

required on average 0.109 seconds. Finally, in the case

of test input containing 100 classes and 100

dependency relationships, the proposed approach

requires on average 0.473 seconds to verify the model.

Models containing hundreds of xor association and

dependency relationships are particularly complex to

verify and there is very less chance that a single model

contains a number of elements like Scripts 3 and 5,

which highlighted the scalabils and efficiency of our

approach.

5.3. RQ2: How Does the Proposed Approach

Compare to OCL Based Approaches?

5.3.1. Measurements and Setup

To be justified, the proposed approach should provide

an advantage over OCL based approach that does not

support direct verification of xor constraint. To

respond to RQ2, we thus compared the performance of

the approach proposed with UML to CSP and

UML2Alloy which support verification of UML class

model with OCL. In the comparison, we used four xor

models

1. Salesman.
2. Library.

3. Cinema Ticketing.

4. Restaurant.

The comparison of dependency relationship

verification with other verification method is not

possible due to current verification methods do not

support verification of the dependency relationships.

5.3.2. Results

Figure 3 shows the compassion results between

existing methods (UML to CSP and UML to Alloy)

and the proposed method. The x-axis of Figure 3

reports models and the y-axis reports the execution

time taken in a second. As the results show proposed

approach is a little bit efficient from the existing

method. However, the proposed method has the

following additional advantages over the OCL based

approaches:

1. The graphical xor constraint automatically

transformed into the ontology for verification and

there is no need to manually transformed graphical

xor constraints into the OCL which is also a time

consuming and hectic task. Furthermore, OCL has

many limitations which have been discussed in

section 1.

2. The existing methods (UML to CSP and UML 2

Alloy) support bounded verification where they find

a solution on limited search space. For example, in

this evaluation, we set scope 4 for Alloy.

Figure 3. Comparison of different verification methods.

6. Conclusions and Future Work

This paper presents an ontology-based transformation

and verification of UML class model elements (xor

constraint and dependency relationships) which have

been not supported by any existing method. Such

transformations map class model elements into the

ontology and facilitate the analysis such as

consistency, satisfiability, and consequences. A benefit

of this approach is that ontology has efficient reasoners

which can perform reasoning on a large model in a

reasonable time. As our future work, we plan to

explore the transformation of OCL constraints into the

ontology and perform verification of other unsupported

UML class model elements, which will reveal further

insight into existing state of relevant knowledge.

References

[1] Anastasakis K., Bordbar B., Georg G., and Ray

I., “On Challenges of Model Transformation

from UML to Alloy,” Software and Systems

Modeling, vol. 9, no. 1, pp. 69-86, 2010.

[2] Artale A., Calvanese D., and Ibáñez-García A.,

“Full Satisfiability of UML Class Diagrams,” in

Proceedings of International Conference on

Conceptual Modeling, Vancouver, pp. 317-331,

2010.

[3] Bahaj M. and Bakkas J., “Automatic Conversion

Method of Class Diagrams to Ontologies

Maintaining their Semantic Features,”

International Journal of Soft Computing and

Engineering, vol. 2, no. 6, pp.65-69, 2013.

766 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

[4] Balaban M. and Maraee A., “Finite Satisfiability

of UML Class Diagrams with Constrained Class

Hierarchy,” ACM Transactions on Software

Engineering and Methodology, vol. 22, no. 3, pp.

1-45, 2013.

[5] Belghiat A. and Bourahla M., “From UML Class

Diagrams to OWL Ontologies: A Graph

Transformation Based Approach,” in

Proceedings of International conference on Web

and Information Technologies, Sidi Bel Abbes,

pp. 330-335, 2012.

[6] Berardi D., Calvanese D., and Giacomo G.,

“Reasoning on UML Class Diagrams,” Artificial

Intelligence, vol. 168, no. 1-2, pp. 70-118, 2005.

[7] Berardi D., Calvanese D., and Giacomo G.,

“Reasoning on UML Class Diagrams is

EXPTIME-Hard,” in Proceedings of the

International Workshop on Description Logics,

Rome, 2003.

[8] Bilgrami K.,

https://www.codeproject.com/Articles/34993/M

nitor-your-Web-Services-usage-via-NET-SOAP-

Exten, Last Visited, 2016.

[9] Booch G., Rumbaugh J., and Jacobson I., the

Unified Modeling Language User Guide,

Addison-Wesley Professional, 2005.

[10] Bordbar B. and Anastasakis K., “UML2ALLOY:

A Tool for Lightweight Modelling of Discrete

Event Systems,” in Proceedings of the IADIS

International Conference on Applied Computing,

Algarve, pp. 209-216, 2005.

[11] Cabot J. and Clarisó R., “UML-OCL Verification

in Practice,” in Proceedings of International

Workshop on Challenges in Model-Driven

Software Engineering, Toulouse, pp. 31-35,

2008.

[12] Cabot J. and Teniente E., “Incremental Integrity

Checking of UML/OCL Conceptual Schemas,”

Journal of Systems and Software, vol. 82, no. 9,

pp. 1459-1478, 2009.

[13] Cabot J., Claris R., and Riera D., “On the

Verification of UML/OCL Class Diagrams Using

Constraint Programming,” Journal of Systems

and Software, vol. 1, no. 93, pp. 1-23, 2014.

[14] Cadoli M., Calvanese D., De Giacomo G., and

Mancini T., “Finite Satisfiability of UML Class

Diagrams by Constraint Programming” in

Proceedings of Workshop on CSP Techniques

with Immediate Application, pp. 1-17, 2004.

[15] Calero C., Ruiz F., and Piattini M., Ontologies

for Software Engineering and Software

Technology, Springer Science and Business

Media, 2006.

[16] Clarisó R., González C., and Cabot J., “Towards

Domain Refinement for UML/OCL Bounded

Verification,” in Proceedings of Software

Engineering and Formal Methods, York, pp.

108-114, 2015.

[17] Dambal V.,

https://www.ibm.com/developerworks/library/ws

RESTservices/index.html, Last Visited, 2016.

[18] Somenath Mukhopadhyay.,

https://dzone.com/articles/designing-software-

system, Last Visited, 2018.

[19] Fish A., Howse J., Taentzer G., and Winkelmann

J., “Two Visualizations of OCL: A Comparison,”

[Online]. Available:

http://www.cmis.brighton.ac.uk/research/vmg/V

OCLTR.htm, Technical Report, University of

Brighton, 2005.

[20] France R., Evans A., Lano K., and Rumpe B.,

“The UML as a Formal Modeling Notation,”

Computer Standards and Interfaces, vol. 19, no.

7, pp. 325-334, 1998.

[21] Hilken F. and Gogolla M, “User Assistance

Characteristics of the USE Model Checking

Tool,” in Proceedings of the 3rd Workshop on

Formal Integrated Development Environment,

Limassol, pp. 91-97, 2017.

[22] Kim S. and Carrington D., “A Formal V&V

Framework for UML Models Based on Model

Transformation Techniques,” in Proceedings of

Model Validation (MoDeVa) Workshop,

Montego Bay, 2005.

[23] Kim S. and Carrington D.,”A Formal Mapping

between UML Models and Object-Z

Specifications,” in Proceedings of International

Conference of B and Z Users, Monte Verità, pp.

2-21, 2000.

[24] Kjetil M., “A Pratical Application of the Object

Constraint Language OCL,” Agder University

College, 2002.

[25] Lahrouni M., Cariou E., and Fazziki1 A., “A

Black-Box and Contract-Based Verification of

Model Transformations,” The International Arab

Journal of Information Technology, vol. 16, no.

4, pp. 651-659, 2019.

[26] Larman C., Applying UML and Patterns: An

Introduction to Object Oriented Analysis and

Design and Interative Development, Prentice

Hall, 2004.

[27] Ledang H. and Souquières J., “Integrating UML

and B Specification Techniques,” in Proceedings

of Informatik Workshop on Integrating

Diagrammatic and Formal Specification

Techniques, Vienna, 2001.

[28] Ledang H., “Automatic Translation from UML

Specifications to B,” in Proceedings of Workshop

on Refinement of Critical Systems: Methods,

Tools and Experience, San Diego, pp. 23-25,

2002.

[29] Malgouyres H. and Motet G., “A UML Model

Consistency Verification Approach Based on

Meta-Modeling Formalization,” in Proceedings

of ACM symposium on Applied computing, Dijon,

pp. 1804-1809, 2006.

Ontology-Based Transformation and Verification of UML Class Model 767

[30] Maraee A. and Balaban M., “Efficient

Recognition of Finite Satisfiability in UML Class

Diagrams: Strengthening by Propagation of

Disjoint Constraints,” in Proceedings of

International Conference on Model-Based

Systems Engineering, Haifa, pp.1-8, 2009.

[31] Maraee A., Makarenkov V., and Balaban M.,

“Efficient Recognition and Detection of Finite

Satisfiability Problems in UML Class Diagram,”

in Proceedings of International Workshop on

Model Co-Evolution and Consistency

Management, (MoDELS’08), France, 2008.

[32] Mukhopadhyay S,

https://dzone.com/articles/designing-software-

system, Last Visited, 2018.

[33] OMG. “OMG Unified Modeling Language TM

(OMG UML)” Superstructure v.2.3. 2010.

[34] Pandey R., “Object Constraint Language (OCL):

Past, Present and Future,” ACM SIGSOFT

Software Engineering Notes, vol. 36, no. 1, pp. 1-

4, 2011

[35] Parreiras F. and Staab S., “Using Ontologies with

UML Class-Based Modeling: The TwoUse

Approach,” Data and Knowledge Engineering,

vol. 69, no. 11, pp.1194-1207, 2010.

[36] “Patterns, Anti-Patterns and Inference Rules

Catalog for UML Class Diagrams,”

https://www.cs.bgu.ac.il/~cd-

patterns/?page_id=392, Last Visited, 2018.

[37] Przigoda N., Gomes Filho J., Niemann P., Wille

R., and Drechsler R., “Frame Conditions in

Symbolic Representations of UML/OCL

Models,” in Proceedings of International

Conference on Formal Methods and Models for

System Design, Kanpur, pp. 65-70, 2016.

[38] Ruijters E., Schivo S., Stoelinga M., and Rensink

A., “Uniform Analysis of Fault Trees Through

Model Transformations,” in Proceedings of

Annual Reliability and Maintainability

Symposium, Orlando, pp. 1-7, 2017.

[39] Rumbaugh J., Jacobson I., and Booch G., Unified

Modeling Language Reference Manual, The

Pearson Higher Education, 2004.

[40] Seiter J. and Drechsler R., “Development of

Consistent Formal Models,” in Proceedings of

Formal Modeling and Verification of

CyberPhysical Systems, Bremen, pp. 302-304,

2015.

[41] Shaikh A. and Wiil U., “Efficient Verification-

Driven Slicing of UML/OCL Class Diagrams,”

Journal of Advanced Computer Science and

Applications, vol. 7, no. 5, pp. 530-547, 2016.

[42] Shaikh A. and Wiil U., “Feedback Technique for

Unsatisfiable UML/OCL Class Diagrams,”

Software Practice and Experience, vol. 44, no.

11, pp. 1379-1393, 2014.

[43] Shaikh A., Wiil U., and Memon N., “Evaluation

of Tools and Slicing Techniques for Efficient

Verification of UML/OCL Class Diagrams,”

Advances in Software Engineering, vol. 2011, pp.

1-18, 2011.

[44] Sirin E., Parsia B., Grau B., Kalyanpur A., and

Katz Y., “Pellet: A Practical OWL-DL

Reasoner,” Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 5, no. 2,

pp.51-53, 2007.

[45] Straeten R., Inconsistency Management in

Model-Driven Engineering An Approach using

Description Logics, PhD, Thesis, Vrije

Univesiteit Brussel, 2015.

[46] Sun W., Combemale B., and France R.,

“Towards the Use of Slicing Techniques for an

Efficient Invariant Checking,” in Proceedings of

14th International Conference on Modularity,

Fort Collins, pp. 23-24, 2015.

[47] Thoughts about OCL - The Object Constraint.

2016. [Online]. Available:

http://www.shiftedup.com/2016/02/05/thoughts-

about-ocl-the-object-constraint-language. Last

Visited, 2016.

[48] Truong J. and Souquieres N., “An Approach for

the Verification of UML Models Using B,” in

Proceedings of International Conference and

Workshop on the Engineering of Computer Based

Systems, Brno, pp. 195-202, 2004.

[49] Truong N. and Souquieres J., “Verification of

UML Model Elements Using B,” Journal of

Information Science and Engineering, vol. 22,

no. 2, pp. 357-373, 2006.

[50] UML Constraint. http://www.uml-

diagrams.org/constraint.html, Last Visited, 2016.

[51] Xu W., Dilo A., Zlatanova S., and Oosterom P.,

“Modelling Emergency Response Processes:

Comparative Study on OWL and UML,” in

Proceedings of Information Systems for Crisis

and Response Management. Proceedings of the

Third Joint ISCRAM-CHINA and Gi4DM,

Harbin, pp. 493-504, 2008.

768 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

 Abdul Hafeez is Assistant Professor

at department of Computer Science,

SMI University, Karachi. he is

associated with SMIU since last 6

years. he was engaged as HoD of

Computer Science Department with

Institute of Business and

Technology, Karachi. He received MS degree in

Software Engineering degree from the Hamdard

University and PhD degree in Computer Science with

specialization in Software Engineering from the

Hamdard University. His current research interests

include Software Engineering, Model Verification and

Ontology-Based Software.

Syed Abbas Musavi received the

B.E. degree in electronics

engineering and the Ph.D. and M.E.

degrees in telecommunication

engineering under HEC Scholarship

from the Mehran University of

Engineering and Technology,

Pakistan. He is currently serving as the Dean of the

Faculty of Engineering Science and Technology with

Indus University, Karachi. He is on review board of

two impact factor international journals. He is a

member of numerous national and international

societies, including the IEEEP Karachi Local Council,

the IEEE Computer Society, the IEEE Signal

Processing Society, the IEEE Devices and Circuits

Society, and the IEEE Communications Society. He

was a General Chair at the IEEE ICIEECT 2017.

Aqeel-Ur-Rehman received the

B.S. degree in electronic engineering

from the Sir Syed University of

Engineering and Technology,

Karachi, Pakistan, in 1998, the M.S.

degree in information technology

from Hamdrad University, Karachi,

in 2001, and the Ph.D. degree in computer science with

specialization in ubiquitous computing from the

National University of Computer and Emerging

Sciences, Karachi, in 2012. He is a Professor, the

Deputy Director (Admin)-HIET, and the Chairman of

the Department of Computing, Faculty of Engineering

Sciences and Technology, Hamdard Institute of

Engineering and Technology, Hamdard University,

Karachi. His current research interests include sensor

networks, ubiquitous computing, computer networks,

and smart agriculture.

