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Abstract: Databases are considered as one of the most compromised assets according to 2014-2016 Verizon Data Breach 

Reports. The reason is that databases are at the heart of Information Systems (IS) and store confidential business or private 

records. Ensuring the integrity of sensitive records is highly required and even vital in critical systems (e-health, clouds, e-

government, big data, e-commerce, etc.,). The access control is a key mechanism for ensuring the integrity and preserving the 

privacy in large scale and critical infrastructures. Nonetheless, excessive, unused and abused access privileges are identified 

as most critical threats in the top ten database security threats according to 2013-2015 Imperva Application Defense Center 

reports. To address this issue, we focus in this paper on the analysis of the integrity of access control policies within relational 

databases. We propose a rigorous and complete solution to help security architects verifying the correspondence between the 

security planning and its concrete implementation. We define a formal framework for detecting non-compliance anomalies in 

concrete Role Based Access Control (RBAC) policies. We rely on an example to illustrate the relevance of our contribution.  
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1. Introduction 

Securing a critical Information Systems (IS) requires 

basically setting up a trusted and reliable access control 

policy. Nonetheless, setting up a trustworthiness 

environment of access control and monitoring its 

compliance have emerged as complicated tasks. 

However, mastering these tasks is crucial to ensure a 

higher protection of IS.  

As part of this thematic, we focus on the analysis of 

the integrity of concrete RBAC [21] policies within 

relational Data Base Management Systems (DBMS). 

The DBMS context allows a complete study of this 

problematic for two main reasons. First, a DBMS 

represents the heart of the IS. It acts as a firewall to 

control accesses to data, but unlike firewalls, the policy 

is managed in the same place and way as the data it 

protects and, as a consequence, it is highly exposed to 

corruption attempts. Second, it is commonly agreed 

that the policy is subject to different updates. So, it 

may face several deficiencies during its life-cycle: 

1. It can record non-compliant changes regarding its 

original specification. 

2. It may contain incoherent rules.  

3. It is highly exposed to inner threats. 

We propose a complete formal solution for the analysis 

of the reliability of low-level access control policies.  

The remainder of this paper is structured as follows. 

In section 2, we discuss related works. In section 3, we 

focus on the problem of non-compliance of access 

control policies. In section 4, we technically define our 

formal verification, validation and analysis framework.  

 
In section 5, we rely on an example to illustrate the 

relevance of our proposal. Finally, in section 6 we 

conclude the paper and introduce ongoing works. 

2. Related Works 

Numerous research works had treated the verification 

of the specifications of access control policies. In [4], 

the authors proposed to specify the policy via the an 

extension of Unified Modeling Langage Secure (UML) 

[18] and to verify the obtained models by using the 

MOdeling, Measuring and VAlidating UML Class 

Diagrams tool Secure (MOVA) tool. This tool helps to 

evaluate the security model through Object Constraint 

Language (OCL) requests. To formally verify the 

specified policy, Idani et al. [9] proposed to encode the 

models specified with Secure UML in the Z language 

and to analyze the policy via the Jaza tool that allows 

animating the specifications. In [17], authors chose to 

specify access control policies via Secure UML and to 

transform the specifications to the B notation by using 

the B4M secure tool. The verification of the formalized 

policies is based on the animator Pro B tool. Koch et 

al. [15] chose to organize the set of roles in a graph 

which captures different variants of RBAC models. 

This formalism for structuring roles can take advantage 

from well-established results in graph transformation 

systems [20] and the issues addressed in [3, 19]. 

Ahmed and Arputharaj [2] proposed to map XACML 

policies and rules into relational rules, stored in tables 

within relational databases, to control access of XML 

document. 



Advanced Analysis of the Integrity of Access Control Policies: the Specific ...                                                                          809 

Several other works focused on the validation of 

access control policies. Researchers opted for 

representing roles in different concepts allowing the 

analysis, validation or optimization of the policy. 

Contributions deal with the following aspects: 

1. Validating the implemented policy regarding the 

defined security constraints [7] by using a finite 

model checker. 

2. Detecting redundancy and inconsistency anomalies 

[8] based on graphs of roles. 

In [6], the author chose to model the policy as a graph 

of roles and proposed two methods to use this graph: 

the first one is based on algorithms of the theory of 

graphs to follow the paths of the graph to find illicit 

transfer of privileges; the second one consists in 

storing the graph in a Lightweight Directory Access 

Protocol (LDAP) directory and developing a new 

LDAP schema to represent the graph of roles. In [22], 

the authors proposed a logical framework for enforcing 

the integrity of access control policies in the context of 

relational databases. They focused primarily on how to 

enforce and check constraints in concrete policies. 

Existing research works deal with the verification of 

a specified RBAC policy to check its exactitude; or the 

validation of an implemented policy to make sure the 

correctness of its implementation regarding the defined 

security constraints. Checking the compliance between 

high and low levels of a policy (the policy planning 

and its implementation) according to our knowledge is 

not treated as much as necessary and needs more 

attention. 

3. Synthesis of the Non-Compliance 

Problem  

In most DBMSs, application roles are implicitly 

activated or settled during a user session often without 

restrictions. A malicious authorized user can take 

benefits to expand his scope of actions. A particular 

crucial problem is related to malicious administrators. 

If administrative roles are not used wisely, a malicious 

administrator can corrupt the policy and create security 

breaches such as the following scenarios [11]: 

1. Users and Privileges Alteration: a malicious 

administrator may corrupt the policy via creating, 

removing or renaming users (resp. roles), assigning 

new privileges bypassing the original specification 

to avoid an audit or a system investigation. 

2. Transmission of Access Rights: granting the 

privilege “create any role” or granting roles with 

the privilege “with admin option” allows the 

guarantees to delegate those roles and therefore 

generating a new access flow invisible from outside 

the database.  

3. Alteration of the Access Flow: a malicious user who 

disposes of sufficient privileges to do so may 

corrupt the authorized access flow via altering the 

set of predefined privileges and may falsify the 

global behavior of the access control process. 
4. Problems related to Roles Management: managing 

the hierarchy of application roles is not easy due to: 

no restrictions to control roles empowerment; and 

roles visibility has not been treated by security 

modeling languages. Hence, management tasks may 

generate conflicting roles difficult to identify. 

5. Combining Different Mechanisms: the coexistence 

of access control mechanisms may prompt 

malicious administrators to assign rights in different 

models. This may generate security holes difficult to 

identify. For instance, direct assignment of actions 

to users is correct in the Discretionary Access 

Control (DAC) model [16], but is an offense in the 

RBAC model.  
6. Violation of Implicit Negative Authorizations: most 

DBMS authorization models are based on the closed 

world policy: without authorization, the access is 

denied. Nevertheless, this approach doesn’t prevent 

a user from receiving the authorization some times 

in the future. So, it is difficult to verify if a specified 

negative authorization is still enforced. 

4. Compliance Analysis of RBAC-Policies 

Protecting a database from insider threats requires 

basically building profiles of normal accesses and 

identifying anomalous accesses with respect to those 

profiles [5]. Our reasoning to address this problematic 

offers a global vision of the process of developing 

trusted policies [10, 12]. It allows verifying and 

validating that a concrete policy instantiates well a 

valid specification model. Our approach consists of the 

following basic phases. Phase 1 concerns the 

specification of the policy based on SecureUML as a 

modeling language. Phase 2 concerns the encoding of 

the specified models in the B notation [1] based on an 

adjusted and adopted version of B4Msecure tool. Phase 

3 defines reverse engineering techniques to extract the 

implemented policy from the DBMS. Phase 4 concerns 

the formalization of the extracted policy in the target 

notation. Phase 5 consists to formally verify and 

validate the conformity of the concrete policy 

regarding its specification.  

4.1. Verification, Validation and Analysis 

Framework 

We note ACP=(USERS, ROLES, PERMISSIONS, 

AUR, ARR, APR) the formal representation of the 

specified policy with USERS is the set of users, 

ROLES is the set of roles, OBJECTS is the set of 

resources, ACTIONS is the set of access modes and: 

 PERMISSIONS: is the set of permissions (actions 

on objects): PERMISSIONS ⊆ ACTIONS ×
OBJECTS. 
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(3) 

 AUR, describes in (1) the users-roles assignments: 

(1) AUR: USERS  ROLES i.e., AUR ⊆
USERS × ROLES   

 ARR, describes in (2) the roles-roles assignments:  

(2) ARR: ROLES  ROLES i.e., ARR ⊆
ROLES × ROLES    

 APR, defines in (3) permissions-roles assignments: 

(3) APR: PERMISSIONS  ROLES i.e. APR ⊆
PERMISSIONS × ROLES    

We note also ACP_IMP = (USERS_IMP, ROLES_IMP, 

PERMISSIONS_IMP, AUR_IMP, ARR_IMP, APR_IMP) the 

formal representation of the concrete policy. 

4.1.1. Verification of Access Control Policies  

To formally verify the exactitude of the concrete 

policy, we check that the generated B machines are 

coherent, well structured, syntactically and 

semantically correct. By using the Atelier B tool, we 

perform a number of demonstrations to verify the 

establishment of the invariants on the initialization and 

during operations calls. This tool allows checking 

types, generating and demonstrating proof obligations, 

etc. To verify the specified policy, we proceed in the 

same manner and in addition we use the Pro B tool 

which is an animator of specifications and a model 

checker to check the correctness of the specifications.  

4.1.2. Conformity Validation of Concrete Policies 

1. Definitions:  

 Definition 1 [Power of a role]: we define the power 

of a role in terms of authorizations allocated to it.  

 Definition 2 [Power of a user]: we define the power 

of a user either in terms of authorizations or in terms 

of roles allocated to it.  

 Definition 3 [Permissions Of Role]: we note 

Permissions Of Role(r) the function defined in (1), 

that returns for each role 𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 (resp. 𝑟 ∈

𝑅𝑂𝐿𝐸𝑆) the set of permissions assigned to it. 

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟) =

{
 
 

 
 

{𝑝𝑖} ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆_𝐼𝑀𝑃 | 

𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 ∧ (𝑟, 𝑝𝑖) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃 .
 

{𝑝𝑖} ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆 | 

𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆 ∧ (𝑟, 𝑝𝑖) ∈ 𝐴𝑃𝑅 .

 

 Definition 4 [RolesOfUser]: we note 

RolesOfUser(u) the function defined in (2) that 

returns for each user 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 (resp.𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆) 

the set of roles assigned to it. 

𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢) =

{
 
 

 
 

{𝑟𝑖} ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 

𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 ∧ (𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 .
 

{𝑟𝑖} ∈ 𝑅𝑂𝐿𝐸𝑆 | 

𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆 ∧ (𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅.

 

 Definition 5 [Permissions Of User]: we note 

Permissions Of User(u) the function defined in (3) 

that returns for each user 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃(resp. 𝑢 ∈

𝑈𝑆𝐸𝑅𝑆) the set of permissions indirectly assigned 

(via roles) to that user.  

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢) = ⋃ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖)ri ∈ 𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢) 
. 

2. Anomalies Detection. 

 Detecting Hidden Users: hidden users are new users 

(not initially defined) injected in the concrete 

policy. This is perceptible when 

𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 –𝑈𝑆𝐸𝑅𝑆  . We compute the set of 

Hidden Users in (4) as the difference between the 

sets of implemented and specified users. 

𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 = 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 –𝑈𝑆𝐸𝑅𝑆. 

 Detecting Hidden Roles: hidden roles are new roles 

(not initially planned) introduced in the concrete 

policy. This is observable when 

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 –𝑅𝑂𝐿𝐸𝑆  . We compute the set of 

Hidden Roles in (5) as the difference between the 

sets of implemented and specified roles. 

𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 = 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 –𝑅𝑂𝐿𝐸𝑆.  

 Detecting Hidden Access Flow: hidden access flow 

belongs to Hidden Assignments of Roles to Roles 

(HARR), Roles to Users (HAUR) and Permissions 

to Roles (HAPR). 

 HAUR: logically, this anomaly is detectable 

when 𝐴𝑈𝑅_𝐼𝑀𝑃 –𝐴𝑈𝑅  . We compute HAUR 

in (6) as the difference between the two sets of 

implemented and specified assignments of users 

to roles.  
𝐻𝐴𝑈𝑅 = 𝐴𝑈𝑅_𝐼𝑀𝑃 –𝐴𝑈𝑅.   

 HARR: logically, this situation is obvious when 

𝐴𝑅𝑅_𝐼𝑀𝑃 –𝐴𝑅𝑅  . We compute in (7) the set 

of HARR as the difference between the sets of 

implemented and specified roles to roles 

assignments.  

𝐻𝐴𝑅𝑅 = 𝐴𝑅𝑅_𝐼𝑀𝑃 –𝐴𝑅𝑅. 

 HAPR: this case is visible when 

𝐴𝑃𝑅_𝐼𝑀𝑃 –𝐴𝑃𝑅  . We compute in (8) the set 

of HAPR as the difference between the two sets 

of implemented and specified permissions to 

roles assignments.  

𝐻𝐴𝑃𝑅 = 𝐴𝑃𝑅_𝐼𝑀𝑃 –𝐴𝑃𝑅. 

We compute the hidden access flow (HiddenACFlow) 

in (9) as the union of the sets of hidden assignments. 

Generally, the union operator requires the same typing 

for all the sets to be combined. Since types checking 

are already done in the verification phase, we consider 

Hidden AC Flow as the union of enumerated sets. 

 𝐻𝑖𝑑𝑑𝑒𝑛𝐴𝐶𝐹𝑙𝑜𝑤 = 𝐻𝐴𝑈𝑅 ∪ 𝐻𝐴𝑅𝑅 ∪ 𝐻𝐴𝑃𝑅.   

 Detecting Missed Users: missed users are initially 

specified users but not defined in the concrete 

policy. This is identified 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 

(2) 
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when 𝑈𝑆𝐸𝑅𝑆 –𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃   . In (10), we 

calculate the set of Missed Users as the difference 

between the sets of specified and implemented 

users. 
𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = 𝑈𝑆𝐸𝑅𝑆 − 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 . 

 Detecting Missed Roles: missed roles are initially 

planned roles but not implemented or removed. This 

is observable when 𝑅𝑂𝐿𝐸𝑆 –  𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃   . We 

compute the set of Missed Roles in (11) as the 

difference between the sets of specified and 

implemented roles. 

𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = 𝑅𝑂𝐿𝐸𝑆 − 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 . 

 Detecting Missed Access Flow: missed access flow 

concerns Missed Assignments of Roles to Roles 

(MARR), Roles to Users (MAUR) and Permissions 

to Roles (MAPR).  

 MAUR: logically, this case is detectable when 

𝐴𝑈𝑅–𝐴𝑈𝑅_𝐼𝑀𝑃   . In (12), we compute 

MAUR as the difference between the two sets of 

specified and implemented assignments of users 

to roles.  
𝑀𝐴𝑈𝑅 = 𝐴𝑈𝑅–𝐴𝑈𝑅_𝐼𝑀𝑃  

 MARR: logically, this situation is observable 

when 𝐴𝑅𝑅–𝐴𝑅𝑅_𝐼𝑀𝑃   . We compute MARR 

in (13) as the difference between the two sets of 

specified and implemented assignments of roles 

to roles.  

𝑀𝐴𝑅𝑅 = 𝐴𝑅𝑅–𝐴𝑅𝑅_𝐼𝑀𝑃  

 MAPR: logically, this case is perceptible when 

𝐴𝑃𝑅–𝐴𝑃𝑅_𝐼𝑀𝑃   . We compute MAPR in (14) 

as the difference between the two sets of 

specified and implemented assignments of 

permissions to roles.  

𝑀𝐴𝑃𝑅 = 𝐴𝑃𝑅–𝐴𝑃𝑅_𝐼𝑀𝑃  

Similarly, we consider the missed access flow as the 

union of enumerated sets and we compute it in (15) as 

the union of the sets of missed assignments. 

 𝑀𝑖𝑠𝑠𝑒𝑑𝐴𝐶𝐹𝑙𝑜𝑤 = 𝑀𝐴𝑈𝑅 ∪𝑀𝐴𝑅𝑅 ∪𝑀𝐴𝑃𝑅   

 Detecting Renamed Users: it belongs to users whose 

names have been changed but still dispose of the 

same privileges. We detect this when ∃ 𝑢𝑖 ∈

𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠, 𝑢𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 | ∀ 𝑟, ((𝑢𝑖 , 𝑟) ∈ 𝐴𝑈𝑅 ∧

 (𝑢𝑗 , 𝑟) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃)) ∨ ((𝑢𝑖 , 𝑟) ∉ 𝐴𝑈𝑅 ∧ (𝑢𝑗 , 𝑟) ∉ 𝐴𝑈𝑅_𝐼𝑀𝑃)), 

and we compute it in (16) as the set of couples of 

hidden and missed users sharing the same 

permissions and roles.  

𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = {(𝑢𝑖 , 𝑢𝑗) | 𝑢𝑖 ∈ 𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ∧ 𝑢𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 ∧

(𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑖) = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑗)) ∧

 (𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑖) = 𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑗))} 

 Detecting Renamed Roles: it regroups roles whose 

names have been changed but still dispose of the 

same privileges. We identify this when: ∃ 𝑟𝑖 ∈
𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠, 𝑟𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠| ∀ 𝑝 = (𝑜, 𝑎),

((𝑟𝑖, 𝑜, 𝑎) ∈ 𝐴𝑃𝑅 ∧ (𝑟𝑗, 𝑜, 𝑎) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃))  ∨

((𝑟𝑖, 𝑜, 𝑎) ∉ 𝐴𝑃𝑅 ∧ (𝑟𝑗, 𝑜, 𝑎) ∉ 𝐴𝑃𝑅_𝐼𝑀𝑃)), and we 

compute it in (17) as the set of couples of hidden 

and missed roles sharing the same permissions.  

𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) | 𝑟𝑖 ∈ 𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ∧  𝑟𝑗 ∈

𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 ∧  𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) =
 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗)} 

 Detecting Elementary Redundancy: the elementary 

redundancy is caused by transitivity and regroups 

redundant (by transitivity) access rules. This is  

visible when ∃𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 , 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 | (𝑢, 𝑟𝑖) ∈

𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑢, 𝑟𝑗) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟𝑖 , 𝑟𝑗) ∈ 𝐴𝑅𝑅_𝐼𝑀𝑃, and we 

compute it as the set of triplets expressed in (18).  

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = {(𝑢, 𝑟𝑖 , 𝑟𝑗)|(𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅 𝐼𝑀𝑃
∧

 (𝑢, 𝑟𝑗)  𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟𝑖  , 𝑟𝑗) ∈ 𝐴𝑅𝑅_𝐼𝑀𝑃} 

 Detecting Redundancy Associated to DAC Model: 

this redundancy is caused by the simultaneous use 

of RBAC and DAC models. Thus, by using RBAC, 

we assign permissions to users via roles, while by 

using DAC we directly assign the same permissions 

to the same users.  

We define in (19) the relation APU_IMP that illustrates 

the direct assignment of permissions to users. 

APU_IMP: PERMISSIONS_IMP  USERS_IMP i.e. APU_IMP ⊆
PERMISSIONS_IMP × ROLES_IMP  

APU_IMP defines triplets (𝑢, 𝑜, 𝑎) that represent a direct 

assignment of the permission (action a on object o) to 

the user 𝑢. Logically, this redundancy is perceptible 

when ∃ 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃, 𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃, 𝑝 =
(𝑜, 𝑎)| (u, r ) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃  ∧  (r, o, a) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃 ∧
(u, o, a) ∈ 𝐴𝑃𝑈_𝐼𝑀𝑃, and we compute it in (20) as the 

set of the defined quadruplets.  

 𝐷𝐴𝐶𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = {(𝑢, 𝑟 , 𝑜, 𝑎)| (𝑢, 𝑟 ) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟, 𝑜, 𝑎) ∈
𝐴𝑃𝑅_𝐼𝑀𝑃  ∧  (𝑢, 𝑜, 𝑎) ∈ 𝐴𝑃𝑈_𝐼𝑀𝑃 }   

The validation process uses the defined validation 

properties and formulas to check the conformity of a 

concrete policy regarding its specification [12].  

4.1.3. Formal Analysis 

Correctness and completeness proofs.  

To prove the correctness of our reasoning, we 

consider the following cases of conformity analysis. 

 

  Figure 1. Analysis of the conformity of users (resp. Roles). 

(11) 

(12) 

(13) 

(16) 

(17) 

(19) 

(14) 

(15) 

(18) 

(20) 

(10) 
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(1) u ⊢ conformity         𝐢𝐟𝐟      u ∈ (USERS ∩ USERS_IMP). 

(2) u ⊢ ¬conformity         𝐢𝐟𝐟       u ∉ (USERS ∩ USERS_IMP). 

(3) (USERS,  USERS_IMP) ⊨ conformity        𝐢𝐟𝐟     𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 =

∅ ∧  𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 = ∅ ∧  𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = ∅. 

(4) (USERS,  USERS_IMP) ⊨
¬conformity         𝐢𝐟𝐟     𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ≠ ∅ ∨ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 ≠
∅ ∨  𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ≠ ∅. 

Figure 2. Inference system: users analysis. 

(1) r ⊢ conformity         𝐢𝐟𝐟      r ∈ (ROLES ∩ ROLES_IMP). 

(2) r ⊢ ¬conformity         𝐢𝐟𝐟       r ∉ (ROLES ∩ ROLES_IMP). 

(3) (ROLES,  ROLES_IMP) ⊨ conformity        𝐢𝐟𝐟     𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 =

∅ ∧ 𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 = ∅ ∧ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = ∅.  

(4) (ROLES,  ROLES_IMP) ⊨
¬conformity         𝐢𝐟𝐟     𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ≠ ∅ ∨  𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 ≠
∅ ∨ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ≠ ∅.  

Figure 3. Inference system: roles analysis. 

 Users and Roles Compliance: Figure 1 shows 

possible cases for the compliance analysis of the 

sets of users (resp. Roles). The inference systems 

(figures 2 and 3) allow reasoning on the conformity 

issues relative to the sets of Users (resp. Roles). 

For all users (∀𝑢), we have three possible cases: 

1. u ∈ USERS ∧ u ∉ USERS_IMP, 

2. u ∉ USERS ∧ 𝑢 ∈ USERS_IMP,  

3. u ∈ USERS ∧ 𝑢 ∈ USERS_IMP ≡  u ∈ (USERS ∩
USERS_IMP).  

 Conformity proof: we have conformity between the 

sets of users if ∀𝑢, 𝑢 ⊢ conformity. 

If ∀𝑢, 𝑢 ⊢ conformity then by applying the first rule 

we have ∀𝑢, u ∈ (USERS ∩ USERS_IMP) which means 

USERS = USERS_IMP = USERS ∩ USERS_IMP. So, 

MissedUsers = ∅, HiddenUsers = ∅ and 

RenamedUsers = ∅. Hence, the third rule gives 

(USERS,  USERS_IMP) ⊨ conformity. 

 Non-Conformity proof: we have non-conformity 

between the sets of users if ∃ u, u ⊢ ¬conformity. 

If ∃ 𝑢, 𝑢 ⊢ ¬conformity then by applying the second 

rule we have ∃𝑢, u ∉ (USERS ∩ USERS_IMP) which 

means that ∃𝑢, 𝑢 ∈ {USERS ∖ USERS_IMP}  ∨
𝑢 ∈ {USERS_IMP ∖ USERS }. So, 𝑢 ∈ Missed Users ∨
𝑢 ∈ HiddenUsers ∨ 𝑢 ∈ Renamed Users. By 

consequence we have MissedUsers ≠ ∅ or 

HiddenUsers ≠ ∅ or RenamedUsers ≠ ∅. According 

to the forth rule, we have (USERS, USERS_IMP) ⊨
¬conformity. Therefore, our reasoning is correct. 

Idem, for the set of Roles, we easily prove the 

correctness of our reasoning.  

 Assignments Compliance: Figure 4 presents 

possible cases for compliance analysis of the 

assignments relations. The inference system in 

Figure 5 allows reasoning on the conformity issues 

relative to users-roles assignments (AUR and 

AUR_IMP), while it may be generalized and adapted 

to all assignment relations. 

 

Figure 4. Analysis of the conformity of assignments. 

(1) (u, r) ⊢ conformity         𝐢𝐟𝐟     (u, r) ∈ (AUR ∩ AUR_IMP). 

(2) (u, r) ⊢ ¬conformity         𝐢𝐟𝐟      (u, r) ∉ (AUR ∩ AUR_IMP). 

(3) (AUR,  AUR_IMP) ⊨ conformity        𝐢𝐟𝐟     𝑀𝐴𝑈𝑅 =  ∅ ∧  𝐻𝐴𝑈𝑅 =

∅.  

(4) (AUR,  AUR_IMP) ⊨ ¬conformity         𝐢𝐟𝐟     𝑀𝐴𝑈𝑅 ≠  ∅ ∨
 𝐻𝐴𝑈𝑅 ≠ ∅.  

Figure 5. Inference system: users-roles assignments analysis. 

For all assignment relations of roles to users 

(∀ (u, 𝑟)), we have three possible cases: 

1. (𝑢, 𝑟) ∈ AUR ∧ (𝑢, 𝑟) ∉ AUR_IMP,  

2. (𝑢, 𝑟) ∉ AUR ∧ (𝑢, 𝑟) ∈ AUR_IMP,  

3. (𝑢, 𝑟) ∈ AUR ∧ (𝑢, 𝑟) ∈ AUR_IMP ≡
 (𝑢, 𝑟) ∈ (AUR ∩ AUR_IMP).  

 Conformity Proof: we have conformity between the 

sets of assignments if ∀(u, r), (u, r) ⊢ conformity. 

If ∀(u, 𝑟), (𝑢, 𝑟) ⊢ conformity then by applying the 

first rule we have ∀(u, 𝑟), (𝑢, 𝑟) ∈ (AUR ∩ AUR_IMP) 
which means that AUR = AUR_IMP = AUR ∩ AUR_IMP 

and consequently MAUR = ∅ and HAUR = ∅. Hence, 

according to the third rule, we have 

(AUR,  AUR_IMP) ⊨ conformity. 

 Non-Conformity Proof: we have non-conformity 

between the sets of assignments if 

∃(u, r), (u, r) ⊢ ¬conformity. 

If ∃(u, 𝑟), (𝑢, 𝑟) ⊢ ¬conformity then by applying the 

second rule we have ∃(u, 𝑟), (𝑢, 𝑟) ∉ (AUR ∩
AUR_IMP) which means that ∃(u, 𝑟), (𝑢, 𝑟) ∈ {AUR ∖
AUR_IMP}  ∨  (𝑢, 𝑟) ∈ {AUR_IMP ∖ AUR }. This implies 

that (𝑢, 𝑟)∈ MAUR ∨ (𝑢, 𝑟)∈ HAUR and by 

consequence we have MAUR ≠ ∅ or  HAUR ≠ ∅. 
Thus, according to the forth rule, we have 

(AUR,  AUR_IMP) ⊨ ¬conformity. Therefore, our 

reasoning is correct. 
 

As for the completeness, we note that intuitively a 

policy based on the RBAC1 model is a collection of 

finite sets and relations among them. The difference 

between the initial and final states of that policy is 

evaluated as the difference between the initial and the 

final sets/relations. Since the difference between sets is 

not commutative, the set of defined operators in this 
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contribution is considered complete with respect to the 

RBAC1 model. 

Analysis of the Expansion of Powers.  

It is essential for the security architect and 

administrator to have a dashboard for monitoring and 

detecting changes in users and roles powers. We refer 

to functions (Permissions Of User(u), Roles Of User(u) 

and Permissions Of Roles(r)) to evaluate users and 

roles power. An important aspect is to have a special 

view on hidden components and hidden access rules 

injected in the policy. We introduce the following 

definitions to compute the hidden power of users and 

roles.  

 Definition 6 [Hidden Power of a role]: we define in 

(21) the hidden power of a role in terms of hidden 

authorizations allocated to it.  

     𝐻𝑖𝑑𝑑𝑒𝑛𝑃𝑜𝑤𝑒𝑟(𝑟) = {p ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆_𝐼𝑀𝑃| (𝑟, 𝑝 ) ∈ 𝐻𝐴𝑃𝑅}   

 Definition 7 [Hidden Power of a user]: we define in 

(22) the hidden power of a user either in terms of 

hidden roles or hidden authorizations assigned to it.  

HiddenPower(u)=

{
 
 

 
 

{r}∈ ROLES_IMP| (u, r) ∈HAUR.
 
 

{p}∈PERMISSIONS_IMP| ∃r∈ROLES_IMP
∧ (r, p) ∈HAPR ∧ (u, r) ∈HAUR. 

  

Roles Analysis. 

We define the following properties to detect and 

analyze abnormalities in the set of roles. 

 Property 1 [Redundant Roles]: two roles 𝑟𝑖, 𝑟𝑗 ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 (resp. 𝑟𝑖, 𝑟𝑗 ∈ 𝑅𝑂𝐿𝐸𝑆) are redundant if 

and only if 

Permissions Of Role(ri)=Permissions Of Role(rj). 

We compute in (23) the set of redundant roles. The 

security architect should remove the redundancy and 

adjust assignment relations linked to redundant roles. 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑅𝑜𝑙𝑒𝑠 =
{(𝑟𝑖 , 𝑟𝑗) 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖)  =

 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) } 

 Property 2 [Disjoint Roles]: two roles ri, rj ∈

ROLES_IMP (resp. ri, rj ∈ ROLES) are disjoint if and 

only if PermissionsOfRole(ri) ∩

PermissionsOfRole(rj) = ∅. 

We compute in (24) the set of disjoint roles. This gives 

an overview on the defined hierarchy of roles. 

𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃|  𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) ∩

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) = ∅} 

 Property 3 [Intersecting Roles]: two roles ri, rj ∈

ROLES_IMP (resp. ri, rj ∈ ROLE) are intersecting if 

and only if 

Permissions Of Role(ri)∩Permissions Of Role(rj) ≠ ∅

. 

We compute in (25) the set of intersecting roles. The 

security architect should verify the intersecting roles to 

control redundant assignments and to detect illegal 

assignments or delegation of privileges. 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) ∩

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) ≠ ∅} 

 Property 4 [Absorbing Roles]: for all roles ri, rj ∈

ROLES_IMP (resp.ri, rj ∈ ROLES), we consider that 

ri is absorbent for rj if and only if 

Permissions Of Role(rj) ⊂ Permissions Of Role(ri). 

We compute in (26) the set of absorbing roles. The 

security architect should verify the absorbing roles to 

control the power of the concerned users. 

𝐴𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) ⊂

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖)} 

5. Illustrative Example 

We consider the Medical Information System used in 

[17] as an example. Its functional part defines three 

components: patients, doctors and medical records. 

Each medical record belongs to one patient. Medical 

records are managed only by doctors responsible for 

the corresponding patients. The specified security part 

defines five users: two nurses Ali and Bob, two doctors 

Dora and Davis, and Paula as a secretary. Doctors and 

nurses are part of medical staff.  

Let suppose for the next that the specification is 

valid and after a period of time from the 

implementation, the policy has evolved to a new state 

where significant changes are introduced. At this step, 

the security architect proceeds to extract and formalize 

the concrete policy via applying our reverse 

engineering and model transformation approach [14]. 

When checking the equivalence between high and 

low levels policies, our process detects the anomalies 

(missed users; hidden users, roles and access flow; 

redundancy) presented in Figure 6. Based on possible 

interpretations that emphasize for legal changes, the 

security architect updates the specification and/or the 

implementation to reach the equivalence. 

 

Figure 6. Example of non-compliance cases. 

(21) 

(22) 

(23) 

(24) 

(25) 

(23) 

(26) 
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6. Conclusions and Future Work 

We address in this paper the formal analysis of the 

integrity of concrete access control policies within 

relational databases. We mainly focus on the 

monitoring of the conformity of low level instances of 

RBAC policies. We define a formal framework that 

incorporates formal verification, validation and 

analysis techniques to address the issue. Ongoing 

works focus on the definition of a formal framework 

for evaluating the risk associated to the detected 

anomalies. 

References 

[1] Abrial J., The B-Book: Assigning Programs to 

Meanings, Press Syndicate of the University of 

Cambridge, 1996.  

[2] Ahmed A. and Arputharaj K., “XML Access 

Control: Mapping XACML Policies to Relational 

Database Tables,” The International Arab 

Journal of Information Technology, vol. 11, no. 

6, pp. 532-539, 2014. 

[3] Baldwin R., “Naming and Grouping Privileges to 

Simplify Security Management in Large 

Databases,” in Proceedings of IEEE Computer 

Society Symposium on Research in Security and 

Privacy, Oakland, pp. 116-132, 1990.  

[4] Basin D., Clavel M., Doser J., and Egea M., 

“Automated Analysis of Security-Design 

Models,” Information and Software Technology, 

vol. 51, no. 5, 815-831, 2009. 

[5] Bertino E., Ghinita G., and Kamra A., Access 

Control for Databases: Concepts and Systems, 

Foundations and Trends, 2011.  

[6] Ghadi A., Modèle hiérarchique de contrôle 

d'accès d'UNIX basé sur un graphe de roles, PhD 

Theses, 2010. 

[7] Hansen F. and Oleshchuk V., “Conformance 

Checking of RBAC Policy and Its 

Implementation,” in Proceedings of Information 

Security Practice and Experience Conference, 
Singapore, pp. 144-155, 2005. 

[8] Huang C., Sun J., Wang X., and Si Y., “Security 

Policy Management for Systems Employing Role 

Based Access Control Model,” Information 

Technology Journal, vol. 8, pp. 726-734, 2009. 

[9] Idani A., Ledru Y., Richier J., Labiadh M., 

Qamar N., Gervais F., Laleau R., Milhau J., and 

Frappier M., “Principles of the coupling between 

UML and formal notations,” PhD Thesis, 2011. 

[10] Jaïdi F. and Ayachi F., “An Approach to 

Formally Validate and Verify the Compliance of 

Low Level Access Control Policies,” in 

Proceedings of 13th International Symposium on 

Pervasive Systems, Algorithms, and Networks, 
Chengdu, pp. 1550-1557, 2014. 

[11] Jaïdi F. and Ayachi F., “The Problem of Integrity 

in RBAC-Based Policies within Relational 

Databases: Synthesis and Problem Study,” in 

Proceedings of the ACM IMCOM 9th 

International Conference on Ubiquitous 

Information Management and Communication, 

Bali, pp. 1-8, 2015.  

[12] Jaïdi F. and Ayachi F., “To Summarize the 

Problem of Non-Conformity in Concrete RBAC-

Based Policies: Synthesis, System Proposal and 

Future Directives,” NNGT International Journal 

of Information Security, vol. 2, pp. 1-12, 2015.  

[13] Jaïdi F. and Ayachi F., International Conference 

on Computational Intelligence in Security for 

Information Systems, Springer International 

Publishing Switzerland, 2015.  

[14] Jaïdi F. and Ayachi F., “A Reverse Engineering 

and Model Transformation Approach for RBAC-

Administered Databases,” in Proceedings of 13th 

International Conference on High Performance 

Computing and Simulation, Amsterdam, pp. 115-

122, 2015. 

[15] Koch M., Mancini L., and Parisi-Presicce F., “A 

Graph-Based Formalism for RBAC,” ACM 

Transactions on Information and System 

Security, vol. 5, no. 3, pp. 332-335, 2002. 

[16] Lampson B., “Protection,” ACM SIGOPS 

Operating Systems Review, vol. 8, no. 1, pp. 18-

24, 1974. 

[17] Ledru Y., Idani A., Milhau J., Qamar N., Laleau 

R., Richier J., and Labiadh M., “Taking into 

Account Functional Models in the Validation of 

IS Security Policies,” in Proceedings of 

Advanced Information Systems Engineering 

Workshops, London, pp. 592-606, 2011. 

[18] Lodderstedt T., Basin D., and Doser J., 

“SecureUML: A UML-based Modeling 

Language for Model-Driven Security,” in 

Proceedings of 5th International Conference on 

the Unified Modeling Language, San Francisco, 

pp. 426-441, 2002. 

[19] Nyanchama M. and Osborn S., “The Role Graph 

Model and Conflict of Interest,” ACM 

Transactions on Information and System 

Security, vol. 1, no. 2, pp. 3-33, 1999. 

[20] Rozenberg G., Handbook of Graph Grammars 

and Computing by Graph Transformations, 

World Scientific, 1997. 

[21] Sandhu R., Coynek E., Feinsteink H., and 

Youmank C., “Role-Based Access Control 

Models',” IEEE Computer, vol. 29, no. 2, pp. 38-

47, 1996.  

[22] Thion R. and Coulondre S., “A Relational 

Database Integrity Framework for Access 

Control Policies',” Journal of Intelligent 

Information Systems, vol. 38, no.1, pp. 131-159, 

2012. 



Advanced Analysis of the Integrity of Access Control Policies: the Specific ...                                                                          815 

Faouzi Jaidi received the 

engineering degree in computer 

science with Distinction from EABA 

in 2005. He received his Master’s 

degree in computer science with 

Distinction from the Faculty of 

Science, Mathematics, Physics and 

Natural of Tunis in 2010. He received a PhD degree in 

ICT with Distinction from the Higher School of 

Communication of Tunis (Sup’Com), in 2016. Faouzi 

JAIDI is currently an Assistant Professor at ESPRIT 

School of Engineering, Tunis, Tunisia. His 

professional experience from 2005 till now concerns 

mainly information systems and software security, 

networks administration and security, formal methods, 

databases, etc. Actually, he is a member of the Digital 

Security Research Lab (DSRL) at Sup’Com and a 

member of MINOS research group at ESPRIT. He is 

also a member of the Tunisian Society for Digital 

Security. 

Faten Ayachi received in 1987 the 

Diploma degree in computer 

management with Distinction from 

the Higher Institute of Management 

of Tunis (Tunisia). In 1988, she 

received a Master’s degree and in 

1992 a PhD degree with Distinction 

from UNSA, University of Nice Sophia Antipolis 

(France). Faten is currently an Assistant Professor at 

the Sup’Com Engineering School of 

Telecommunications in Tunisia. She is a member of 

the Digital Security Research Lab (DSRL) and 

member of the Tunisian Society for Digital Security. 

Her main research areas are Information System 

Security and databases. 

Adel Bouhoula received in 1990 the 

Diploma degree in computer 

engineering with Distinction from the 

University of Tunis (Tunisia). In 

1991, he received a Master’s degree, 

in 1994 a PhD degree with 

Distinction and in 1998 the 

Habilitation degree all in computer 

science from Henri Poincare University in Nancy 

(France). Adel BOUHOULA is currently a Professor at 

the Sup’Com Engineering School of 

Telecommunications in Tunisia and a Visiting 

Professor at Tsukuba University in Japan. He is the 

Founder and Head of the Digital Security Research 

Lab, the Founder and President of the Tunisian Society 

for Digital Security. 

 


