
808 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

Advanced Analysis of the Integrity of Access

Control Policies: the Specific Case of Databases

 Faouzi Jaidi, Faten Ayachi, and Adel Bouhoula
Digital Security Research Lab, Higher School of Communication of Tunis, University of Carthage, Tunisia

Abstract: Databases are considered as one of the most compromised assets according to 2014-2016 Verizon Data Breach

Reports. The reason is that databases are at the heart of Information Systems (IS) and store confidential business or private

records. Ensuring the integrity of sensitive records is highly required and even vital in critical systems (e-health, clouds, e-

government, big data, e-commerce, etc.,). The access control is a key mechanism for ensuring the integrity and preserving the

privacy in large scale and critical infrastructures. Nonetheless, excessive, unused and abused access privileges are identified

as most critical threats in the top ten database security threats according to 2013-2015 Imperva Application Defense Center

reports. To address this issue, we focus in this paper on the analysis of the integrity of access control policies within relational

databases. We propose a rigorous and complete solution to help security architects verifying the correspondence between the

security planning and its concrete implementation. We define a formal framework for detecting non-compliance anomalies in

concrete Role Based Access Control (RBAC) policies. We rely on an example to illustrate the relevance of our contribution.

Keywords: Access Control, Databases Security, Formal Validation, Integrity Analysis, Conformity Verification.

Received November 11, 2016; accepted July 7, 2019

https://doi.org/10.34028/iajit/17/5/14

1. Introduction

Securing a critical Information Systems (IS) requires

basically setting up a trusted and reliable access control

policy. Nonetheless, setting up a trustworthiness

environment of access control and monitoring its

compliance have emerged as complicated tasks.

However, mastering these tasks is crucial to ensure a

higher protection of IS.

As part of this thematic, we focus on the analysis of

the integrity of concrete RBAC [21] policies within

relational Data Base Management Systems (DBMS).

The DBMS context allows a complete study of this

problematic for two main reasons. First, a DBMS

represents the heart of the IS. It acts as a firewall to

control accesses to data, but unlike firewalls, the policy

is managed in the same place and way as the data it

protects and, as a consequence, it is highly exposed to

corruption attempts. Second, it is commonly agreed

that the policy is subject to different updates. So, it

may face several deficiencies during its life-cycle:

1. It can record non-compliant changes regarding its

original specification.

2. It may contain incoherent rules.

3. It is highly exposed to inner threats.

We propose a complete formal solution for the analysis

of the reliability of low-level access control policies.

The remainder of this paper is structured as follows.

In section 2, we discuss related works. In section 3, we

focus on the problem of non-compliance of access

control policies. In section 4, we technically define our

formal verification, validation and analysis framework.

In section 5, we rely on an example to illustrate the

relevance of our proposal. Finally, in section 6 we

conclude the paper and introduce ongoing works.

2. Related Works

Numerous research works had treated the verification

of the specifications of access control policies. In [4],

the authors proposed to specify the policy via the an

extension of Unified Modeling Langage Secure (UML)

[18] and to verify the obtained models by using the

MOdeling, Measuring and VAlidating UML Class

Diagrams tool Secure (MOVA) tool. This tool helps to

evaluate the security model through Object Constraint

Language (OCL) requests. To formally verify the

specified policy, Idani et al. [9] proposed to encode the

models specified with Secure UML in the Z language

and to analyze the policy via the Jaza tool that allows

animating the specifications. In [17], authors chose to

specify access control policies via Secure UML and to

transform the specifications to the B notation by using

the B4M secure tool. The verification of the formalized

policies is based on the animator Pro B tool. Koch et

al. [15] chose to organize the set of roles in a graph

which captures different variants of RBAC models.

This formalism for structuring roles can take advantage

from well-established results in graph transformation

systems [20] and the issues addressed in [3, 19].

Ahmed and Arputharaj [2] proposed to map XACML

policies and rules into relational rules, stored in tables

within relational databases, to control access of XML

document.

Advanced Analysis of the Integrity of Access Control Policies: the Specific ... 809

Several other works focused on the validation of

access control policies. Researchers opted for

representing roles in different concepts allowing the

analysis, validation or optimization of the policy.

Contributions deal with the following aspects:

1. Validating the implemented policy regarding the

defined security constraints [7] by using a finite

model checker.

2. Detecting redundancy and inconsistency anomalies

[8] based on graphs of roles.

In [6], the author chose to model the policy as a graph

of roles and proposed two methods to use this graph:

the first one is based on algorithms of the theory of

graphs to follow the paths of the graph to find illicit

transfer of privileges; the second one consists in

storing the graph in a Lightweight Directory Access

Protocol (LDAP) directory and developing a new

LDAP schema to represent the graph of roles. In [22],

the authors proposed a logical framework for enforcing

the integrity of access control policies in the context of

relational databases. They focused primarily on how to

enforce and check constraints in concrete policies.

Existing research works deal with the verification of

a specified RBAC policy to check its exactitude; or the

validation of an implemented policy to make sure the

correctness of its implementation regarding the defined

security constraints. Checking the compliance between

high and low levels of a policy (the policy planning

and its implementation) according to our knowledge is

not treated as much as necessary and needs more

attention.

3. Synthesis of the Non-Compliance

Problem

In most DBMSs, application roles are implicitly

activated or settled during a user session often without

restrictions. A malicious authorized user can take

benefits to expand his scope of actions. A particular

crucial problem is related to malicious administrators.

If administrative roles are not used wisely, a malicious

administrator can corrupt the policy and create security

breaches such as the following scenarios [11]:

1. Users and Privileges Alteration: a malicious

administrator may corrupt the policy via creating,

removing or renaming users (resp. roles), assigning

new privileges bypassing the original specification

to avoid an audit or a system investigation.

2. Transmission of Access Rights: granting the

privilege “create any role” or granting roles with

the privilege “with admin option” allows the

guarantees to delegate those roles and therefore

generating a new access flow invisible from outside

the database.

3. Alteration of the Access Flow: a malicious user who

disposes of sufficient privileges to do so may

corrupt the authorized access flow via altering the

set of predefined privileges and may falsify the

global behavior of the access control process.
4. Problems related to Roles Management: managing

the hierarchy of application roles is not easy due to:

no restrictions to control roles empowerment; and

roles visibility has not been treated by security

modeling languages. Hence, management tasks may

generate conflicting roles difficult to identify.

5. Combining Different Mechanisms: the coexistence

of access control mechanisms may prompt

malicious administrators to assign rights in different

models. This may generate security holes difficult to

identify. For instance, direct assignment of actions

to users is correct in the Discretionary Access

Control (DAC) model [16], but is an offense in the

RBAC model.
6. Violation of Implicit Negative Authorizations: most

DBMS authorization models are based on the closed

world policy: without authorization, the access is

denied. Nevertheless, this approach doesn’t prevent

a user from receiving the authorization some times

in the future. So, it is difficult to verify if a specified

negative authorization is still enforced.

4. Compliance Analysis of RBAC-Policies

Protecting a database from insider threats requires

basically building profiles of normal accesses and

identifying anomalous accesses with respect to those

profiles [5]. Our reasoning to address this problematic

offers a global vision of the process of developing

trusted policies [10, 12]. It allows verifying and

validating that a concrete policy instantiates well a

valid specification model. Our approach consists of the

following basic phases. Phase 1 concerns the

specification of the policy based on SecureUML as a

modeling language. Phase 2 concerns the encoding of

the specified models in the B notation [1] based on an

adjusted and adopted version of B4Msecure tool. Phase

3 defines reverse engineering techniques to extract the

implemented policy from the DBMS. Phase 4 concerns

the formalization of the extracted policy in the target

notation. Phase 5 consists to formally verify and

validate the conformity of the concrete policy

regarding its specification.

4.1. Verification, Validation and Analysis

Framework

We note ACP=(USERS, ROLES, PERMISSIONS,

AUR, ARR, APR) the formal representation of the

specified policy with USERS is the set of users,

ROLES is the set of roles, OBJECTS is the set of

resources, ACTIONS is the set of access modes and:

 PERMISSIONS: is the set of permissions (actions

on objects): PERMISSIONS ⊆ ACTIONS ×
OBJECTS.

810 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

(3)

 AUR, describes in (1) the users-roles assignments:

(1) AUR: USERS ROLES i.e., AUR ⊆
USERS × ROLES

 ARR, describes in (2) the roles-roles assignments:

(2) ARR: ROLES ROLES i.e., ARR ⊆
ROLES × ROLES

 APR, defines in (3) permissions-roles assignments:

(3) APR: PERMISSIONS ROLES i.e. APR ⊆
PERMISSIONS × ROLES

We note also ACP_IMP = (USERS_IMP, ROLES_IMP,

PERMISSIONS_IMP, AUR_IMP, ARR_IMP, APR_IMP) the

formal representation of the concrete policy.

4.1.1. Verification of Access Control Policies

To formally verify the exactitude of the concrete

policy, we check that the generated B machines are

coherent, well structured, syntactically and

semantically correct. By using the Atelier B tool, we

perform a number of demonstrations to verify the

establishment of the invariants on the initialization and

during operations calls. This tool allows checking

types, generating and demonstrating proof obligations,

etc. To verify the specified policy, we proceed in the

same manner and in addition we use the Pro B tool

which is an animator of specifications and a model

checker to check the correctness of the specifications.

4.1.2. Conformity Validation of Concrete Policies

1. Definitions:

 Definition 1 [Power of a role]: we define the power

of a role in terms of authorizations allocated to it.

 Definition 2 [Power of a user]: we define the power

of a user either in terms of authorizations or in terms

of roles allocated to it.

 Definition 3 [Permissions Of Role]: we note

Permissions Of Role(r) the function defined in (1),

that returns for each role 𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 (resp. 𝑟 ∈

𝑅𝑂𝐿𝐸𝑆) the set of permissions assigned to it.

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟) =

{

{𝑝𝑖} ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆_𝐼𝑀𝑃 |

𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 ∧ (𝑟, 𝑝𝑖) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃 .

{𝑝𝑖} ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆 |

𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆 ∧ (𝑟, 𝑝𝑖) ∈ 𝐴𝑃𝑅 .

 Definition 4 [RolesOfUser]: we note

RolesOfUser(u) the function defined in (2) that

returns for each user 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 (resp.𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆)

the set of roles assigned to it.

𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢) =

{

{𝑟𝑖} ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃|

𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 ∧ (𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 .

{𝑟𝑖} ∈ 𝑅𝑂𝐿𝐸𝑆 |

𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆 ∧ (𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅.

 Definition 5 [Permissions Of User]: we note

Permissions Of User(u) the function defined in (3)

that returns for each user 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃(resp. 𝑢 ∈

𝑈𝑆𝐸𝑅𝑆) the set of permissions indirectly assigned

(via roles) to that user.

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢) = ⋃ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖)ri ∈ 𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢)
.

2. Anomalies Detection.

 Detecting Hidden Users: hidden users are new users

(not initially defined) injected in the concrete

policy. This is perceptible when

𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 –𝑈𝑆𝐸𝑅𝑆 . We compute the set of

Hidden Users in (4) as the difference between the

sets of implemented and specified users.

𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 = 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 –𝑈𝑆𝐸𝑅𝑆.

 Detecting Hidden Roles: hidden roles are new roles

(not initially planned) introduced in the concrete

policy. This is observable when

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 –𝑅𝑂𝐿𝐸𝑆 . We compute the set of

Hidden Roles in (5) as the difference between the

sets of implemented and specified roles.

𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 = 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 –𝑅𝑂𝐿𝐸𝑆.

 Detecting Hidden Access Flow: hidden access flow

belongs to Hidden Assignments of Roles to Roles

(HARR), Roles to Users (HAUR) and Permissions

to Roles (HAPR).

 HAUR: logically, this anomaly is detectable

when 𝐴𝑈𝑅_𝐼𝑀𝑃 –𝐴𝑈𝑅 . We compute HAUR

in (6) as the difference between the two sets of

implemented and specified assignments of users

to roles.
𝐻𝐴𝑈𝑅 = 𝐴𝑈𝑅_𝐼𝑀𝑃 –𝐴𝑈𝑅.

 HARR: logically, this situation is obvious when

𝐴𝑅𝑅_𝐼𝑀𝑃 –𝐴𝑅𝑅 . We compute in (7) the set

of HARR as the difference between the sets of

implemented and specified roles to roles

assignments.

𝐻𝐴𝑅𝑅 = 𝐴𝑅𝑅_𝐼𝑀𝑃 –𝐴𝑅𝑅.

 HAPR: this case is visible when

𝐴𝑃𝑅_𝐼𝑀𝑃 –𝐴𝑃𝑅 . We compute in (8) the set

of HAPR as the difference between the two sets

of implemented and specified permissions to

roles assignments.

𝐻𝐴𝑃𝑅 = 𝐴𝑃𝑅_𝐼𝑀𝑃 –𝐴𝑃𝑅.

We compute the hidden access flow (HiddenACFlow)

in (9) as the union of the sets of hidden assignments.

Generally, the union operator requires the same typing

for all the sets to be combined. Since types checking

are already done in the verification phase, we consider

Hidden AC Flow as the union of enumerated sets.

 𝐻𝑖𝑑𝑑𝑒𝑛𝐴𝐶𝐹𝑙𝑜𝑤 = 𝐻𝐴𝑈𝑅 ∪ 𝐻𝐴𝑅𝑅 ∪ 𝐻𝐴𝑃𝑅.

 Detecting Missed Users: missed users are initially

specified users but not defined in the concrete

policy. This is identified

(4)

(5)

(6)

(7)

(8)

(9)

(1)

(2)

Advanced Analysis of the Integrity of Access Control Policies: the Specific ... 811

when 𝑈𝑆𝐸𝑅𝑆 –𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 . In (10), we

calculate the set of Missed Users as the difference

between the sets of specified and implemented

users.
𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = 𝑈𝑆𝐸𝑅𝑆 − 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 .

 Detecting Missed Roles: missed roles are initially

planned roles but not implemented or removed. This

is observable when 𝑅𝑂𝐿𝐸𝑆 – 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 . We

compute the set of Missed Roles in (11) as the

difference between the sets of specified and

implemented roles.

𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = 𝑅𝑂𝐿𝐸𝑆 − 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 .

 Detecting Missed Access Flow: missed access flow

concerns Missed Assignments of Roles to Roles

(MARR), Roles to Users (MAUR) and Permissions

to Roles (MAPR).

 MAUR: logically, this case is detectable when

𝐴𝑈𝑅–𝐴𝑈𝑅_𝐼𝑀𝑃 . In (12), we compute

MAUR as the difference between the two sets of

specified and implemented assignments of users

to roles.
𝑀𝐴𝑈𝑅 = 𝐴𝑈𝑅–𝐴𝑈𝑅_𝐼𝑀𝑃

 MARR: logically, this situation is observable

when 𝐴𝑅𝑅–𝐴𝑅𝑅_𝐼𝑀𝑃 . We compute MARR

in (13) as the difference between the two sets of

specified and implemented assignments of roles

to roles.

𝑀𝐴𝑅𝑅 = 𝐴𝑅𝑅–𝐴𝑅𝑅_𝐼𝑀𝑃

 MAPR: logically, this case is perceptible when

𝐴𝑃𝑅–𝐴𝑃𝑅_𝐼𝑀𝑃 . We compute MAPR in (14)

as the difference between the two sets of

specified and implemented assignments of

permissions to roles.

𝑀𝐴𝑃𝑅 = 𝐴𝑃𝑅–𝐴𝑃𝑅_𝐼𝑀𝑃

Similarly, we consider the missed access flow as the

union of enumerated sets and we compute it in (15) as

the union of the sets of missed assignments.

 𝑀𝑖𝑠𝑠𝑒𝑑𝐴𝐶𝐹𝑙𝑜𝑤 = 𝑀𝐴𝑈𝑅 ∪𝑀𝐴𝑅𝑅 ∪𝑀𝐴𝑃𝑅

 Detecting Renamed Users: it belongs to users whose

names have been changed but still dispose of the

same privileges. We detect this when ∃ 𝑢𝑖 ∈

𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠, 𝑢𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 | ∀ 𝑟, ((𝑢𝑖 , 𝑟) ∈ 𝐴𝑈𝑅 ∧

 (𝑢𝑗 , 𝑟) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃)) ∨ ((𝑢𝑖 , 𝑟) ∉ 𝐴𝑈𝑅 ∧ (𝑢𝑗 , 𝑟) ∉ 𝐴𝑈𝑅_𝐼𝑀𝑃)),

and we compute it in (16) as the set of couples of

hidden and missed users sharing the same

permissions and roles.

𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = {(𝑢𝑖 , 𝑢𝑗) | 𝑢𝑖 ∈ 𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ∧ 𝑢𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 ∧

(𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑖) = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑗)) ∧

 (𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑖) = 𝑅𝑜𝑙𝑒𝑠𝑂𝑓𝑈𝑠𝑒𝑟(𝑢𝑗))}

 Detecting Renamed Roles: it regroups roles whose

names have been changed but still dispose of the

same privileges. We identify this when: ∃ 𝑟𝑖 ∈
𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠, 𝑟𝑗 ∈ 𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠| ∀ 𝑝 = (𝑜, 𝑎),

((𝑟𝑖, 𝑜, 𝑎) ∈ 𝐴𝑃𝑅 ∧ (𝑟𝑗, 𝑜, 𝑎) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃)) ∨

((𝑟𝑖, 𝑜, 𝑎) ∉ 𝐴𝑃𝑅 ∧ (𝑟𝑗, 𝑜, 𝑎) ∉ 𝐴𝑃𝑅_𝐼𝑀𝑃)), and we

compute it in (17) as the set of couples of hidden

and missed roles sharing the same permissions.

𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) | 𝑟𝑖 ∈ 𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ∧ 𝑟𝑗 ∈

𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 ∧ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) =
 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗)}

 Detecting Elementary Redundancy: the elementary

redundancy is caused by transitivity and regroups

redundant (by transitivity) access rules. This is

visible when ∃𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃 , 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 | (𝑢, 𝑟𝑖) ∈

𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑢, 𝑟𝑗) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟𝑖 , 𝑟𝑗) ∈ 𝐴𝑅𝑅_𝐼𝑀𝑃, and we

compute it as the set of triplets expressed in (18).

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = {(𝑢, 𝑟𝑖 , 𝑟𝑗)|(𝑢, 𝑟𝑖) ∈ 𝐴𝑈𝑅 𝐼𝑀𝑃
∧

 (𝑢, 𝑟𝑗) 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟𝑖 , 𝑟𝑗) ∈ 𝐴𝑅𝑅_𝐼𝑀𝑃}

 Detecting Redundancy Associated to DAC Model:

this redundancy is caused by the simultaneous use

of RBAC and DAC models. Thus, by using RBAC,

we assign permissions to users via roles, while by

using DAC we directly assign the same permissions

to the same users.

We define in (19) the relation APU_IMP that illustrates

the direct assignment of permissions to users.

APU_IMP: PERMISSIONS_IMP USERS_IMP i.e. APU_IMP ⊆
PERMISSIONS_IMP × ROLES_IMP

APU_IMP defines triplets (𝑢, 𝑜, 𝑎) that represent a direct

assignment of the permission (action a on object o) to

the user 𝑢. Logically, this redundancy is perceptible

when ∃ 𝑢 ∈ 𝑈𝑆𝐸𝑅𝑆_𝐼𝑀𝑃, 𝑟 ∈ 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃, 𝑝 =
(𝑜, 𝑎)| (u, r) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (r, o, a) ∈ 𝐴𝑃𝑅_𝐼𝑀𝑃 ∧
(u, o, a) ∈ 𝐴𝑃𝑈_𝐼𝑀𝑃, and we compute it in (20) as the

set of the defined quadruplets.

 𝐷𝐴𝐶𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = {(𝑢, 𝑟 , 𝑜, 𝑎)| (𝑢, 𝑟) ∈ 𝐴𝑈𝑅_𝐼𝑀𝑃 ∧ (𝑟, 𝑜, 𝑎) ∈
𝐴𝑃𝑅_𝐼𝑀𝑃 ∧ (𝑢, 𝑜, 𝑎) ∈ 𝐴𝑃𝑈_𝐼𝑀𝑃 }

The validation process uses the defined validation

properties and formulas to check the conformity of a

concrete policy regarding its specification [12].

4.1.3. Formal Analysis

Correctness and completeness proofs.

To prove the correctness of our reasoning, we

consider the following cases of conformity analysis.

 Figure 1. Analysis of the conformity of users (resp. Roles).

(11)

(12)

(13)

(16)

(17)

(19)

(14)

(15)

(18)

(20)

(10)

812 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

(1) u ⊢ conformity 𝐢𝐟𝐟 u ∈ (USERS ∩ USERS_IMP).

(2) u ⊢ ¬conformity 𝐢𝐟𝐟 u ∉ (USERS ∩ USERS_IMP).

(3) (USERS, USERS_IMP) ⊨ conformity 𝐢𝐟𝐟 𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 =

∅ ∧ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 = ∅ ∧ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 = ∅.

(4) (USERS, USERS_IMP) ⊨
¬conformity 𝐢𝐟𝐟 𝑀𝑖𝑠𝑠𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ≠ ∅ ∨ 𝐻𝑖𝑑𝑑𝑒𝑛𝑈𝑠𝑒𝑟𝑠 ≠
∅ ∨ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑈𝑠𝑒𝑟𝑠 ≠ ∅.

Figure 2. Inference system: users analysis.

(1) r ⊢ conformity 𝐢𝐟𝐟 r ∈ (ROLES ∩ ROLES_IMP).

(2) r ⊢ ¬conformity 𝐢𝐟𝐟 r ∉ (ROLES ∩ ROLES_IMP).

(3) (ROLES, ROLES_IMP) ⊨ conformity 𝐢𝐟𝐟 𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 =

∅ ∧ 𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 = ∅ ∧ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 = ∅.

(4) (ROLES, ROLES_IMP) ⊨
¬conformity 𝐢𝐟𝐟 𝑀𝑖𝑠𝑠𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ≠ ∅ ∨ 𝐻𝑖𝑑𝑑𝑒𝑛𝑅𝑜𝑙𝑒𝑠 ≠
∅ ∨ 𝑅𝑒𝑛𝑎𝑚𝑒𝑑𝑅𝑜𝑙𝑒𝑠 ≠ ∅.

Figure 3. Inference system: roles analysis.

 Users and Roles Compliance: Figure 1 shows

possible cases for the compliance analysis of the

sets of users (resp. Roles). The inference systems

(figures 2 and 3) allow reasoning on the conformity

issues relative to the sets of Users (resp. Roles).

For all users (∀𝑢), we have three possible cases:

1. u ∈ USERS ∧ u ∉ USERS_IMP,

2. u ∉ USERS ∧ 𝑢 ∈ USERS_IMP,

3. u ∈ USERS ∧ 𝑢 ∈ USERS_IMP ≡ u ∈ (USERS ∩
USERS_IMP).

 Conformity proof: we have conformity between the

sets of users if ∀𝑢, 𝑢 ⊢ conformity.

If ∀𝑢, 𝑢 ⊢ conformity then by applying the first rule

we have ∀𝑢, u ∈ (USERS ∩ USERS_IMP) which means

USERS = USERS_IMP = USERS ∩ USERS_IMP. So,

MissedUsers = ∅, HiddenUsers = ∅ and

RenamedUsers = ∅. Hence, the third rule gives

(USERS, USERS_IMP) ⊨ conformity.

 Non-Conformity proof: we have non-conformity

between the sets of users if ∃ u, u ⊢ ¬conformity.

If ∃ 𝑢, 𝑢 ⊢ ¬conformity then by applying the second

rule we have ∃𝑢, u ∉ (USERS ∩ USERS_IMP) which

means that ∃𝑢, 𝑢 ∈ {USERS ∖ USERS_IMP} ∨
𝑢 ∈ {USERS_IMP ∖ USERS }. So, 𝑢 ∈ Missed Users ∨
𝑢 ∈ HiddenUsers ∨ 𝑢 ∈ Renamed Users. By

consequence we have MissedUsers ≠ ∅ or

HiddenUsers ≠ ∅ or RenamedUsers ≠ ∅. According

to the forth rule, we have (USERS, USERS_IMP) ⊨
¬conformity. Therefore, our reasoning is correct.

Idem, for the set of Roles, we easily prove the

correctness of our reasoning.

 Assignments Compliance: Figure 4 presents

possible cases for compliance analysis of the

assignments relations. The inference system in

Figure 5 allows reasoning on the conformity issues

relative to users-roles assignments (AUR and

AUR_IMP), while it may be generalized and adapted

to all assignment relations.

Figure 4. Analysis of the conformity of assignments.

(1) (u, r) ⊢ conformity 𝐢𝐟𝐟 (u, r) ∈ (AUR ∩ AUR_IMP).

(2) (u, r) ⊢ ¬conformity 𝐢𝐟𝐟 (u, r) ∉ (AUR ∩ AUR_IMP).

(3) (AUR, AUR_IMP) ⊨ conformity 𝐢𝐟𝐟 𝑀𝐴𝑈𝑅 = ∅ ∧ 𝐻𝐴𝑈𝑅 =

∅.

(4) (AUR, AUR_IMP) ⊨ ¬conformity 𝐢𝐟𝐟 𝑀𝐴𝑈𝑅 ≠ ∅ ∨
 𝐻𝐴𝑈𝑅 ≠ ∅.

Figure 5. Inference system: users-roles assignments analysis.

For all assignment relations of roles to users

(∀ (u, 𝑟)), we have three possible cases:

1. (𝑢, 𝑟) ∈ AUR ∧ (𝑢, 𝑟) ∉ AUR_IMP,

2. (𝑢, 𝑟) ∉ AUR ∧ (𝑢, 𝑟) ∈ AUR_IMP,

3. (𝑢, 𝑟) ∈ AUR ∧ (𝑢, 𝑟) ∈ AUR_IMP ≡
 (𝑢, 𝑟) ∈ (AUR ∩ AUR_IMP).

 Conformity Proof: we have conformity between the

sets of assignments if ∀(u, r), (u, r) ⊢ conformity.

If ∀(u, 𝑟), (𝑢, 𝑟) ⊢ conformity then by applying the

first rule we have ∀(u, 𝑟), (𝑢, 𝑟) ∈ (AUR ∩ AUR_IMP)
which means that AUR = AUR_IMP = AUR ∩ AUR_IMP

and consequently MAUR = ∅ and HAUR = ∅. Hence,

according to the third rule, we have

(AUR, AUR_IMP) ⊨ conformity.

 Non-Conformity Proof: we have non-conformity

between the sets of assignments if

∃(u, r), (u, r) ⊢ ¬conformity.

If ∃(u, 𝑟), (𝑢, 𝑟) ⊢ ¬conformity then by applying the

second rule we have ∃(u, 𝑟), (𝑢, 𝑟) ∉ (AUR ∩
AUR_IMP) which means that ∃(u, 𝑟), (𝑢, 𝑟) ∈ {AUR ∖
AUR_IMP} ∨ (𝑢, 𝑟) ∈ {AUR_IMP ∖ AUR }. This implies

that (𝑢, 𝑟)∈ MAUR ∨ (𝑢, 𝑟)∈ HAUR and by

consequence we have MAUR ≠ ∅ or HAUR ≠ ∅.
Thus, according to the forth rule, we have

(AUR, AUR_IMP) ⊨ ¬conformity. Therefore, our

reasoning is correct.

As for the completeness, we note that intuitively a

policy based on the RBAC1 model is a collection of

finite sets and relations among them. The difference

between the initial and final states of that policy is

evaluated as the difference between the initial and the

final sets/relations. Since the difference between sets is

not commutative, the set of defined operators in this

Advanced Analysis of the Integrity of Access Control Policies: the Specific ... 813

contribution is considered complete with respect to the

RBAC1 model.

Analysis of the Expansion of Powers.

It is essential for the security architect and

administrator to have a dashboard for monitoring and

detecting changes in users and roles powers. We refer

to functions (Permissions Of User(u), Roles Of User(u)

and Permissions Of Roles(r)) to evaluate users and

roles power. An important aspect is to have a special

view on hidden components and hidden access rules

injected in the policy. We introduce the following

definitions to compute the hidden power of users and

roles.

 Definition 6 [Hidden Power of a role]: we define in

(21) the hidden power of a role in terms of hidden

authorizations allocated to it.

 𝐻𝑖𝑑𝑑𝑒𝑛𝑃𝑜𝑤𝑒𝑟(𝑟) = {p ∈ 𝑃𝐸𝑅𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑆_𝐼𝑀𝑃| (𝑟, 𝑝) ∈ 𝐻𝐴𝑃𝑅}

 Definition 7 [Hidden Power of a user]: we define in

(22) the hidden power of a user either in terms of

hidden roles or hidden authorizations assigned to it.

HiddenPower(u)=

{

{r}∈ ROLES_IMP| (u, r) ∈HAUR.

{p}∈PERMISSIONS_IMP| ∃r∈ROLES_IMP
∧ (r, p) ∈HAPR ∧ (u, r) ∈HAUR.

Roles Analysis.

We define the following properties to detect and

analyze abnormalities in the set of roles.

 Property 1 [Redundant Roles]: two roles 𝑟𝑖, 𝑟𝑗 ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 (resp. 𝑟𝑖, 𝑟𝑗 ∈ 𝑅𝑂𝐿𝐸𝑆) are redundant if

and only if

Permissions Of Role(ri)=Permissions Of Role(rj).

We compute in (23) the set of redundant roles. The

security architect should remove the redundancy and

adjust assignment relations linked to redundant roles.

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡𝑅𝑜𝑙𝑒𝑠 =
{(𝑟𝑖 , 𝑟𝑗) 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃 | 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) =

 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) }

 Property 2 [Disjoint Roles]: two roles ri, rj ∈

ROLES_IMP (resp. ri, rj ∈ ROLES) are disjoint if and

only if PermissionsOfRole(ri) ∩

PermissionsOfRole(rj) = ∅.

We compute in (24) the set of disjoint roles. This gives

an overview on the defined hierarchy of roles.

𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

 𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) ∩

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) = ∅}

 Property 3 [Intersecting Roles]: two roles ri, rj ∈

ROLES_IMP (resp. ri, rj ∈ ROLE) are intersecting if

and only if

Permissions Of Role(ri)∩Permissions Of Role(rj) ≠ ∅

.

We compute in (25) the set of intersecting roles. The

security architect should verify the intersecting roles to

control redundant assignments and to detect illegal

assignments or delegation of privileges.

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖) ∩

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) ≠ ∅}

 Property 4 [Absorbing Roles]: for all roles ri, rj ∈

ROLES_IMP (resp.ri, rj ∈ ROLES), we consider that

ri is absorbent for rj if and only if

Permissions Of Role(rj) ⊂ Permissions Of Role(ri).

We compute in (26) the set of absorbing roles. The

security architect should verify the absorbing roles to

control the power of the concerned users.

𝐴𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔𝑅𝑜𝑙𝑒𝑠 = {(𝑟𝑖 , 𝑟𝑗) ∈

𝑅𝑂𝐿𝐸𝑆_𝐼𝑀𝑃| 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑗) ⊂

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑂𝑓𝑅𝑜𝑙𝑒(𝑟𝑖)}

5. Illustrative Example

We consider the Medical Information System used in

[17] as an example. Its functional part defines three

components: patients, doctors and medical records.

Each medical record belongs to one patient. Medical

records are managed only by doctors responsible for

the corresponding patients. The specified security part

defines five users: two nurses Ali and Bob, two doctors

Dora and Davis, and Paula as a secretary. Doctors and

nurses are part of medical staff.

Let suppose for the next that the specification is

valid and after a period of time from the

implementation, the policy has evolved to a new state

where significant changes are introduced. At this step,

the security architect proceeds to extract and formalize

the concrete policy via applying our reverse

engineering and model transformation approach [14].

When checking the equivalence between high and

low levels policies, our process detects the anomalies

(missed users; hidden users, roles and access flow;

redundancy) presented in Figure 6. Based on possible

interpretations that emphasize for legal changes, the

security architect updates the specification and/or the

implementation to reach the equivalence.

Figure 6. Example of non-compliance cases.

(21)

(22)

(23)

(24)

(25)

(23)

(26)

814 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

6. Conclusions and Future Work

We address in this paper the formal analysis of the

integrity of concrete access control policies within

relational databases. We mainly focus on the

monitoring of the conformity of low level instances of

RBAC policies. We define a formal framework that

incorporates formal verification, validation and

analysis techniques to address the issue. Ongoing

works focus on the definition of a formal framework

for evaluating the risk associated to the detected

anomalies.

References

[1] Abrial J., The B-Book: Assigning Programs to

Meanings, Press Syndicate of the University of

Cambridge, 1996.

[2] Ahmed A. and Arputharaj K., “XML Access

Control: Mapping XACML Policies to Relational

Database Tables,” The International Arab

Journal of Information Technology, vol. 11, no.

6, pp. 532-539, 2014.

[3] Baldwin R., “Naming and Grouping Privileges to

Simplify Security Management in Large

Databases,” in Proceedings of IEEE Computer

Society Symposium on Research in Security and

Privacy, Oakland, pp. 116-132, 1990.

[4] Basin D., Clavel M., Doser J., and Egea M.,

“Automated Analysis of Security-Design

Models,” Information and Software Technology,

vol. 51, no. 5, 815-831, 2009.

[5] Bertino E., Ghinita G., and Kamra A., Access

Control for Databases: Concepts and Systems,

Foundations and Trends, 2011.

[6] Ghadi A., Modèle hiérarchique de contrôle

d'accès d'UNIX basé sur un graphe de roles, PhD

Theses, 2010.

[7] Hansen F. and Oleshchuk V., “Conformance

Checking of RBAC Policy and Its

Implementation,” in Proceedings of Information

Security Practice and Experience Conference,
Singapore, pp. 144-155, 2005.

[8] Huang C., Sun J., Wang X., and Si Y., “Security

Policy Management for Systems Employing Role

Based Access Control Model,” Information

Technology Journal, vol. 8, pp. 726-734, 2009.

[9] Idani A., Ledru Y., Richier J., Labiadh M.,

Qamar N., Gervais F., Laleau R., Milhau J., and

Frappier M., “Principles of the coupling between

UML and formal notations,” PhD Thesis, 2011.

[10] Jaïdi F. and Ayachi F., “An Approach to

Formally Validate and Verify the Compliance of

Low Level Access Control Policies,” in

Proceedings of 13th International Symposium on

Pervasive Systems, Algorithms, and Networks,
Chengdu, pp. 1550-1557, 2014.

[11] Jaïdi F. and Ayachi F., “The Problem of Integrity

in RBAC-Based Policies within Relational

Databases: Synthesis and Problem Study,” in

Proceedings of the ACM IMCOM 9th

International Conference on Ubiquitous

Information Management and Communication,

Bali, pp. 1-8, 2015.

[12] Jaïdi F. and Ayachi F., “To Summarize the

Problem of Non-Conformity in Concrete RBAC-

Based Policies: Synthesis, System Proposal and

Future Directives,” NNGT International Journal

of Information Security, vol. 2, pp. 1-12, 2015.

[13] Jaïdi F. and Ayachi F., International Conference

on Computational Intelligence in Security for

Information Systems, Springer International

Publishing Switzerland, 2015.

[14] Jaïdi F. and Ayachi F., “A Reverse Engineering

and Model Transformation Approach for RBAC-

Administered Databases,” in Proceedings of 13th

International Conference on High Performance

Computing and Simulation, Amsterdam, pp. 115-

122, 2015.

[15] Koch M., Mancini L., and Parisi-Presicce F., “A

Graph-Based Formalism for RBAC,” ACM

Transactions on Information and System

Security, vol. 5, no. 3, pp. 332-335, 2002.

[16] Lampson B., “Protection,” ACM SIGOPS

Operating Systems Review, vol. 8, no. 1, pp. 18-

24, 1974.

[17] Ledru Y., Idani A., Milhau J., Qamar N., Laleau

R., Richier J., and Labiadh M., “Taking into

Account Functional Models in the Validation of

IS Security Policies,” in Proceedings of

Advanced Information Systems Engineering

Workshops, London, pp. 592-606, 2011.

[18] Lodderstedt T., Basin D., and Doser J.,

“SecureUML: A UML-based Modeling

Language for Model-Driven Security,” in

Proceedings of 5th International Conference on

the Unified Modeling Language, San Francisco,

pp. 426-441, 2002.

[19] Nyanchama M. and Osborn S., “The Role Graph

Model and Conflict of Interest,” ACM

Transactions on Information and System

Security, vol. 1, no. 2, pp. 3-33, 1999.

[20] Rozenberg G., Handbook of Graph Grammars

and Computing by Graph Transformations,

World Scientific, 1997.

[21] Sandhu R., Coynek E., Feinsteink H., and

Youmank C., “Role-Based Access Control

Models',” IEEE Computer, vol. 29, no. 2, pp. 38-

47, 1996.

[22] Thion R. and Coulondre S., “A Relational

Database Integrity Framework for Access

Control Policies',” Journal of Intelligent

Information Systems, vol. 38, no.1, pp. 131-159,

2012.

Advanced Analysis of the Integrity of Access Control Policies: the Specific ... 815

Faouzi Jaidi received the

engineering degree in computer

science with Distinction from EABA

in 2005. He received his Master’s

degree in computer science with

Distinction from the Faculty of

Science, Mathematics, Physics and

Natural of Tunis in 2010. He received a PhD degree in

ICT with Distinction from the Higher School of

Communication of Tunis (Sup’Com), in 2016. Faouzi

JAIDI is currently an Assistant Professor at ESPRIT

School of Engineering, Tunis, Tunisia. His

professional experience from 2005 till now concerns

mainly information systems and software security,

networks administration and security, formal methods,

databases, etc. Actually, he is a member of the Digital

Security Research Lab (DSRL) at Sup’Com and a

member of MINOS research group at ESPRIT. He is

also a member of the Tunisian Society for Digital

Security.

Faten Ayachi received in 1987 the

Diploma degree in computer

management with Distinction from

the Higher Institute of Management

of Tunis (Tunisia). In 1988, she

received a Master’s degree and in

1992 a PhD degree with Distinction

from UNSA, University of Nice Sophia Antipolis

(France). Faten is currently an Assistant Professor at

the Sup’Com Engineering School of

Telecommunications in Tunisia. She is a member of

the Digital Security Research Lab (DSRL) and

member of the Tunisian Society for Digital Security.

Her main research areas are Information System

Security and databases.

Adel Bouhoula received in 1990 the

Diploma degree in computer

engineering with Distinction from the

University of Tunis (Tunisia). In

1991, he received a Master’s degree,

in 1994 a PhD degree with

Distinction and in 1998 the

Habilitation degree all in computer

science from Henri Poincare University in Nancy

(France). Adel BOUHOULA is currently a Professor at

the Sup’Com Engineering School of

Telecommunications in Tunisia and a Visiting

Professor at Tsukuba University in Japan. He is the

Founder and Head of the Digital Security Research

Lab, the Founder and President of the Tunisian Society

for Digital Security.

