
922 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Data Deduplication for Efficient Cloud Storage and

Retrieval

Rishikesh Misal and Boominathan Perumal

 School of Computer Engineering, Vellore Institute of Technology University, India

Abstract: Cloud services provide flawless service to the client by increasing the geographic availability of the data.

Increasing availability of data induces high amount of redundancy and large amount of space required to store that data. Data

compression techniques can reduce the amount of space required for that data to be store at various sites. Data compression

will ensure that there is no loss of availability and consistency at any site. As there is huge demand for cloud services and

storage due to this the amount of investment also increases. By using data compression we can reduce the amount of

investment required and this will also decrease the amount of physical space and data centers required to store data. Various

security protocols can be incorporated to secure these compressed files at various sites. We provide a reliable technique to

store deduplicates and its management in a secure manner to accomplish high consistency as well as availability.

Keywords: Data deduplication, cloud computing, storage, file system, distributed system.

Received February 23, 2017; accepted June 13, 2017

1. Introduction

Data compression deals with reducing the size of data

with minimal interference with the actual data. Data

compression is a field of information theory which has

made its mark because of its need for high storage

space [19, 24]. Data compression will ensure less usage

of storage spaces but will also enhance performance

[9]. Data compression can be applied to various types

of files and sizes. Section 2 gives a survey on the

literature used to comply this method including

methods of data de-duplication. Section 3 explains the

proposed methodology giving all the information on the

process of data upload to data compression to data

retrieval. Section 4 is about the results and performance

achieved by the method with a pictorial view of the

result and its detailed explanation. Section 5 is on the

conclusion we could draw from our method and a

future work discussion.

Cloud Computing has become more popular due its

ability to provide services on the go (portability) and its

high scalability to the user requirement. To be robust in

its working, cloud services always have a backup [17]

of all the data that is present (user/system data) [15].

But this also creates a problem of running out of

storage space. Data files vary in sizes and many

multimedia files are always large (few Megabytes to

several Gigabytes). This becomes a trouble for the

cloud service provider [15]. Data Deduplication can

reduce the overhead of data storage logistics caused by

these large to very large files. Cloud computing always

focuses on utilizing the most of all the resources, but

this always comes at a cost which is growing very fast

day by day. It is not possible to reduce user demand

and/or reduce the price required to buy more resources.

Data compression will allow files to be uploaded on

the large storage [19] at a reduced size this will ensure

fewer amounts of resources to be bought and

maintained at a given period [16].

Deduplication [17, 21] is removing the redundancy

in the data across files/users/blocks of data. We can

remove all the redundancy and store that chunk of data

only once rather than ‘n’ number of times inside the

data. The original file can anytime be reconstructed by

the adding the redundant data in its original place.

This will ensure that less space is required to store

data and high bandwidth optimization. This will also

increase the availability and consistency of data across

various geographical sites [12].

Files being divided into chunks [4] can lead to

many security issues such as master file owner

determination, wrongful access of chunk of a file etc.

The article by Puzio et al. [20] viz., PerfectDedup:

Secure Data Deduplication has showed a way to

perform data deduplication using a secure method [10,

17, 25, 27]

Data Deduplication can be implement in a

distributed environment [3]. Distributed environment

can also make way for user level data deduplication

with some restrictions [21]. The restrictions may

include the file permissions, file types and critical

application/users for which the files are used [17]. The

article by Luo et al. [14] viz, Boafft: Distributed

Deduplication for Big Data Storage in the Cloud gives

a better way to implement data deduplication for

distributed environment [13, 21, 26].

In deduplication the primary goal is to find

redundant data inside many files as a chunk of

fixed/variable size. This becomes the key element of

the implementation of the idea. The searching of this

Data Deduplication for Efficient Cloud Storage and Retrieval 923

redundant chunk is trivial but time consuming. In order

to save less amount of space and decrease the Capital

Expenditure (CAPEX) and Operational Expenditure

(OPEX) we tend to tradeoff some computational time.

The amount of computational time desired to perform

this task has to be finite as the data present in the world

is too high to even estimate its size. We need to

optimize the way these deduplicate chunks are searched

and stored. This will help us determine the correct size

that is needed to store the file and it becomes easier to

retrieve it. It is also important to reduce the number of

I/O operations required [6] to rebuild the file once it

was reduced to chunks during retrieval. We have used

limited I/O calls to retrieve back the original file with a

tradeoff for a mapping table just like a cache memory

in hardware architecture.

In distributed system environment it is quite

apparent that the data gets replicated in order to have

higher availability and this is applicable only if the data

is allowed to be shared around different users at the

same time. But the extent of replication is a tradeoff

between high availability and consistency [1] as

explained by Kleppmann in [12]. Our method is

specific to a user but it can be extended to different

users in a data sharable scenario. Our proposal for data

deduplication is proven to work on personal desktop

environments instead of cloud storage [9]. In Douceur

et al. [5] have proven that on an average a regular

desktop storage has nearly half of the data duplicated

without a purpose. Here in this case a data

deduplication model will not only help reduce the data

redundancy but also will be able to track files and

increase efficiency.

2. Literature Survey

2.1. Data Deduplication

Data deduplication is the elimination of redundant data

within an environment. Data deduplication or single-

instance storage technique which reduces storage needs

by eliminating redundant data [18, 29]. Only one

unique instance of a file is stored in the data center for

multiple users having the same file [18, 23, 24, 29].

This file is then linked to as many users which had

the file. For example, user A, B, C have the same .mp3

file of 100MB so instead of storing it at three different

sites and occupying 300MB data essentially it is

preferred to have a single copy since all the three files

are the same. Data deduplication checks for such

redundant files and removes all the copies and only

keeps the master copy and provides a link to all the

users’ sites. No user knows whether the .mp3 has been

shared by many users or not. Deduplication is kept

transparent from the users and every user thinks it has

received its own copy [7, 9, 10, 11].

What can be achieved by data deduplication?

 Elimination of redundant data within an existing

environment.

 Bandwidth optimization.

 Disk space storage savings (CAPEX).

 50:1 or 20:1 ratio for storage saving.

Where does redundant data reside?

 Within files.

 Across files.

 Across Applications.

 Across clients.

 Over time (time residing in the data center after

many updates).

2.2. File Level Deduplication

Consider there are three users Bob, Rob and Matt they

all have three identical .mp3 files with them and they

want to store those files on the cloud. Bob, Rob and

Mat name the file 12.mp3, 13.mp3 and 14.mp3

respectively. In file level deduplication since all the

three files are identical it only stores one file named

1X.mp3 and creates link to all the users. Figures 1 and

2 Gives a pictorial representation of the description.

Figure 1. File uploading phase for file level Dedup.

Figure 2. After file level deduplication.

2.3. Block Level Deduplication

In this type of data deduplication file is divided into

blocks of data (number of blocks are predetermined).

These files are logically divided into blocks of data,

as many users may have the same file but after a

certain point of time one might change or modify

924 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

some part of the file but not as a whole. Most part of

the file remains the same as the original one but

changes ever so slightly that it becomes a completely

different file in case of file deduplication. In block level

deduplication it keeps a track of which of those blocks

are being updated/modified and only those modified

blocks are stored in the data center including the blocks

that are common to those files.

Figure 3. File uploading phase for file level Dedup.

Consider that three users Bob, Rob and Mat have the

same file but they modify a bit in one of the blocks of

data as shown in Figure 3, the common block of data is

block number 5 all the other blocks (1, 2, 3, and 4) are

either unique to one user or common to any two of

them but not all. Block level deduplication only stores

these blocks i.e., (1, 2, 3, 4, and 5) in the data center.

Whenever a user wants to retrieve the file it checks

which of these blocks comprises a file for that user and

it constructs the file accordingly and displays it to the

user (Figure 4).

Figure 4. After block level deduplication.

2.4. Byte Level Deduplication

Data in terms of byte stream has a string of bits that

repeat for various slightly similar or dissimilar data

files. This repeating data can be stored as a pattern

inside the data center with a track of the files that

contain this pattern and to store their respective

locations inside the files.

 Byte Stream 1-0110 1110.

 Byte Stream 2-1101 0110.

 Byte Stream 3-10001101.

 Byte Stream 4-01101100.

As shown in the above examples, all of them contain

one pattern 0110 which repeats in every byte stream

(this may be for different/same files). The patter 0110

can be stored once so that it reduces the amount of

redundancy in the data stored at bit level. By making

sure that repeating binary data is never more than once

stored we can achieve the savings as mentioned above.

Deduplication usage conditions:

Before implementing a data deduplication exercise it

is important to understand:

 Pain points of the company.

 SLAs (Service Level Agreement).

 Business objectives.

Environments data deduplication can be applied

 Files systems.

 Low change rate Databases.

 Virtualization.

 SAN/LAN (Storage Area Network/Local Area

Network).

 ROBO (Remote Office / Branch Office).

3. Proposed Methodology

3.1. File Uploading Phase

As discussed in the literature survey File Level Data

deduplication will provide highest amount of data

savings. Although same file determination will take a

longer while and success rate will also be lower. The

second method fixed block size data deduplication

will provide a better success rate and will take lesser

execution time than File level but won’t achieve high

level of data storage savings [18, 22, 29].

The third method of variable block size chunking will

have the highest amount of data storage savings but

would take a longer time than to execute than fixed

size chunking [19]. We’ve used Rabin-Karp algorithm

[11] for variable size chunking. We use file level data

deduplication only for small size files such as audio

file, photos and small size documents which are no

greater than 10-15MB in size. File larger than that are

usually movies, documents or executable files which

are rarely duplicated. Figure 5 represents a detailed

diagram of the proposed architecture.

Figure 5. Architectural diagram.

Data Deduplication for Efficient Cloud Storage and Retrieval 925

1. Check for file deduplication.

2. Check for fixed size block deduplication (within

file).

3. Check duplicated chunks using Rabin-Karp

algorithm (across files).

4. Choose best of the above three algorithms to

separate out duplicated elements.

5. Filter out the unique instances of all duplicated

elements separate.

6. Store these unique instances of duplicated

files/blocks.

Algorithm 1: File Level Data deduplication

 if file.size() <= 15MB:

 for(Files f: List_of_Files):

 if(file == f):

 Map file.name to f

 else:

 break

Algorithm 2: Fixed Sized Chunking

size = 1024*1024 (1MB)

List_of_Files – List of all the files in the directory

File – current file to be uploaded

MessageDigest md;

byte[] chunk = new byte[size];

for (File f : List_of_Files) {

count = 0;

if (f.isFile() && !f.isHidden()) {

 // Read file into a byte array and use SHA-1 hash the

chunk

try {

 fis=new FileInputStream(f.getAbsolutePath());

 while (fis.read(chunk) != -1) {

 // perform the hash on the chunk

 md.update(chunk);

 byte[] mdbytes = md.digest();

String hashvalue = byteToHex(mdbytes);

 // If not exist then save

if(!indexTable.containsKey(hashvalue)) {

indexTable.put(hashvalue, f.getName());

 }

 }// If

 }// while

 }//try

}// for

Rabin-Karp Algorithm for Variable size chunking

Rabin-Karp string searching algorithm [11] calculates a

numerical (shash) value for the pattern p, and for each

m-character substring of text t. Then it compares the

numerical values instead of comparing the actual

symbols. If any match is found, it compares the pattern

with the substring by naive approach. Otherwise it

shifts to next substring of t to compare with p.

Algorithm 3 Rabin-Karp:

Compute hp (for pattern p)

Compute ht (for the first substring of t with m length)

For i = 1 to n - m

If hp = ht

 Match t[i…i+m] with p, if matched return 1

Else

 ht = (d (ht – t([i+1].dm-1) + t[m+i+1]) mod q

3.2. File Retrieval Phase

The user typically will via the Application interface

give a command to retrieve the file. This triggers the

deduplication engine to locate the file and check if it

was divided into chunks. Each user’s data is divided

into different directories with respect to their file type

and extension. For example if the user wants to

retrieve a file names “Test.mp3” with the user ID

“U123”, the lookup would be directory U123 inside

which should contain a directory mp3 and inside

which should contain the master file “Test.mp3” or

should contain chunks of the files with the mapping

information.

Each chunk has a unique hash value (SHA-1 hash)

[7], each of these chunks for each file type are

connected to each other by a linked list. Whenever a

new chunk is formed it is added to the linked list. To

retrieve the file first the dedup lookup table is checked

if the file was deduplicated. This table contains

information of the file name, file extension and control

information (Yes/No) if it was deduplicated or not.

If it was deduplicated, then look into the mapping

information which contains a list of nodes values in

order of their appearance in the master file. These

chunks are located and added in order as stated in the

mapping information to form the master file which is

then read to be downloaded.

4. Performance and Result

The below table represents the basic testing results of

deduplication using Rabin-Karp algorithm [11] across

all files for a single user. We’ve divided the analysis

in terms of file type. The total size for all the files was

19.9GB and after deduplication the size became

17.89GB which saves about 2.01GB of space for my

personal storage. In terms of percentage savings it

sums up to ~11% savings. The compression factor

would become 0.8.

If analyzed carefully, the duplication seems to be

higher for Image, audio and text document files. For

image files the savings is about ~830MB which is

about 4 times less space than required about the same

is seen for audio and text documents. The only file

types which do not show large amounts of duplicated

chunks are video files. Video files have shown the

least amounts of duplicated content in our analysis

which is about 1.7% only as compared to the 75.5%

savings for image file types. The below Figure 6 gives

a graphical representation of the tabular data provided

in Table 1.

Table 1. Results for each files type.

File Type Total Size (GB) Deduplicated Size (GB) % Savings

Image 1.1 0.269 75.5%

Text document 0.5 0.305 39%

Video 17.2 16.9 1.7%

Audio 1.1 0.42 61.8%

19.9 17.89 10.1%

926 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Figure 6. Results graph.

5. Conclusions and Future Work

The results show that we can save at least ~11 % of the

personal data present at the desktop storage.

Deduplication does not perform any complicated math

to compress unlike other compression algorithms. The

method is fast and efficient over a large size of data.

The efficiency of the method will only increase as the

data grows larger in size.

Data deduplication is also secure as it does not

interfere with the underlying security algorithm/

protocol [28]. If can fit right into the security protocol

and adhere to it. It does not violate any permission

protocols as only the personal user data is used to

deduplicated only with itself [23]. Data deduplication

process work overtime and not as the data is uploaded

to the storage device. Since we’ve used the mechanism

of single user and overtime data deduplication method.

This will ensure that data retrieval phase is smooth and

secure.

The future work for this proposal would be to

enhance its capability to perform more faster and

increase it horizons by adding over multiple user data

deduplication with some privacy transparencies. It can

also be extended to a distributed environment with

requirements of high availability allowing the

underlying environment to replicate the deduplicated

chunks in an efficient [8, 10] way.

We intend to use this method in a cloud

environment, as we feel that a desktop environment is a

virtualization of a private storage without the

portability option. As a desktop storage is private and

not shared with anyone the experimental results show a

smaller picture than what we can achieve in a cloud

environment. Implementing it in a cloud storage

environment we would be able to perform data

deduplication across clients as well and not just for one

single user.

The results that we got from desktop data is the least

that we would achieve across any data storage

environment with large storage space. Cloud storage

will only increase our data savings. As the number of

clients and data increases, data savings will increase

with that because as the data increases so does the

redundancy.

References

[1] Biggar H., “Experiencing Data De-Duplication:

Improving Efficiency and Reducing Capacity

Requirements,” The Enterprise Strategy Group,

pp. 902-906, 2012.

[2] Castiglione A., Pizzolante R., De Santis A.,

Carpentieri B., Castiglione A., and Palmieri F.,

“Cloud-Based Adaptive Compression and

Secure Management Services for 3D Healthcare

Data,” Future Generation Computer Systems,

vol. 43-44, pp. 120-134, 2014.

[3] Chu X., Ilyas I., and Koutris P., “Distributed

Data Deduplication,” Proceedings of the VLDB

Endowment, vol. 9, no. 11, pp. 864-875, 2016.

[4] Dolan M., Kochan L., Ram T., Rohr S., Tu K.,

and Miller S., Patent No. US20160292048,

Retrieved from

https://www.google.com/patents/US2016029204

8, Data Deduplication Using Chunk Files,

Google Patent, Last Visited, 2016.

[5] Douceur J., Adya A., Bolosky W., Simon D.,

and Theimer M., “Reclaiming Space from

Duplicate _Les in A Serverless Distributed _Le

System,” in Proceedings of 22nd International

Conference on Distributed Computing Systems,

Vienna, pp. 617-624, 2002.

[6] Demystifying Data Reduplication: Choosing the

Best Solution, FalconStor Software, White Paper

Dynamic Solutions International,

https://www.varinsights.com/doc/demystifying-

data-deduplication-choosing-0002, Last Visited,

2017.

[7] Eastlake D. Jones P., White paper: Description

of SHA-1, http://tools.ietf.org/html/rfc3174, Last

Visited, 2017.

[8] Estes J., Patent No. US20140258245, Retrieved

from

https://www.google.ch/patents/US20140258245,

Efficient Data Deduplication, Last Visited, 2014.

[9] Harnik D., Pinkas B., and Shulman-Peleg A.,

“Side Channels in Cloud Services, the Case of

Deduplication in Cloud Storage,” IEEE Security

and Privacy Magazine, vol. 8, no. 6, pp. 40-47,

2010.

[10] Jiang T., Chen X., Wu Q., Ma J., Susilo W., and

Lou W., “Secure and Efficient Cloud Data

Deduplication with Randomized Tag,” IEEE

Transactions on Information Forensics and

Security, vol. 12, no. 3, pp. 532-543, 2017.

[11] Karp R. and Rabin M., “Efficient Randomized

Pattern-Matching Algorithms,” IBM Journal of

Research and Development, vol. 31, no. 2, pp.

249-260, 1987.

[12] Kleppmann M., A Critique of the CAP Theorem,

http://arxiv.org/abs/1509.05393v2, Last Visited,

2017.

https://www.google.com/patents/US20160292048
https://www.google.com/patents/US20160292048
https://www.varinsights.com/doc/demystifying-data-deduplication-choosing-0002
https://www.varinsights.com/doc/demystifying-data-deduplication-choosing-0002
https://www.google.ch/patents/US20140258245
http://arxiv.org/abs/1509.05393v2

Data Deduplication for Efficient Cloud Storage and Retrieval 927

[13] Leesakul W., Townend P., and Xu J., “Dynamic

Data Deduplication in Cloud Storage,” Service

Oriented System Engineering (SOSE), in

Proceedings of IEEE 8th International Symposium

on Service Oriented System Engineering, Oxford,

2014.

[14] Luo S., Zhang G., Wu C., Khan S., and Li K.,

“Boafft: Distributed Deduplication for Big Data

Storage in the Cloud,” IEEE Transactions on

Cloud Computing, pp. 1-1, 2015.

[15] Meyer D. and Bolosky W., “A Study of Practical

Deduplication,” ACM Transactions on Storage,

vol. 7, no. 4, pp. 14, 2012.

[16] Nelson M. and Gailly J., the Data Compression

Book, M&T Books, 1991.

[17] Ngo D. and Muller M., Patent No. US8930306B1,

Retrieved from

https://www.google.com/patents/US8930306,

Synchronized Data Deduplication, Google Patent,

Last Visited, 2015.

[18] Park D., Fan Z., Nam Y., and Du D., “A

Lookahead Read Cache: Improving Read

Performance for Deduplication Backup

Storage,” Journal of Computer Science and

Technology, vol. 32, no. 1, pp. 26-40, 2017.

[19] Patterson R., Reddy S., Prabhakaran V., Smith G.,

Bairavasundaram L., and Venkitachalam G.,

“System and Methods for Storage Data

Deduplication,” U.S. Patent No. 20,170,031,994,

2017.

[20] Puzio P., Molva R., Önen M., and Loureiro S.,

“PerfectDedup: Secure Data Deduplication,” in

Proceedings of 10th International Workshop on

Data Privacy Management, and Security

Assurance, Vienna, pp. 150-166, 2015.

[21] Qinlu H., Zhanhuai L., and Xiao Z., “Data

Deduplication Techniques,” in Proceedings of

International Conference on Future Information

Technology and Management Engineering,

Changzhou, 2010.

[22] Ram T., Patent No.US20140095439, Retrieved

from

https://www.google.com/patents/US20140095439

Optimizing Data Block Size for Deduplication,

Google Patent, Last Visited, 2014.

[23] Rehman A. and Saba T., “An Intelligent Model

for Visual Scene Analysis and Compression,” The

International Arab Journal of Information

Technology, vol. 10, no. 13, pp. 126-136, 2013.

[24] Sayood K., Introduction to Data Compression,

Morgan Kaufmann, 2006.

[25] Shin Y., Koo D., and Hur J., “A Survey of Secure

Data Deduplication Schemes for Cloud Storage

Systems,” ACM Computing Surveys, vol. 49, no.

4, pp. 74, 2017.

[26] Slater A. and Pelly S., Patent

No.US20110184908, Retrieved

fromhttps://www.google.si/patents/US201101849

08, Selective Data Deduplication, Google Patent,

Last Visited, 2011.

[27] Stanek J., Sorniotti A., Androulaki E., and Lukas

K., “A Secure Data Deduplication Scheme for

Cloud Storage,” in Proceedings of International

Conference on Financial Cryptography and

Data Security, Christ Church, pp. 99-118, 2014.

[28] Storer M., Greenan K., Long D., and Miller E.,

“Secure Data Deduplication,” in Proceedings of

the 4th ACM international Workshop on Storage

Security and Survivability, Alexandria, pp. 1-10,

2008.

[29] Xia W., Jiang H., Feng D., Hua Y., “Similarity

and Locality Based Indexing for High

Performance Data Deduplication,” IEEE

Transactions on Computers, vol. 64, no. 4,

pp.1162-1176, 2015.

Rishikesh Misal graduated from

University of Mumbai with a

bachelor’s degree in Computer

Engineer in 2015. He completed his

Master’s in Computer Science and

Engineering from VIT University,

Vellore. He has been working at

General Electric for the past 1 year as a Software

Engineering Specialist. His professional works are

based on building Cloud applications for IoT based

scenarios. His research work interests include

Distributed Systems, Cloud Computing, System

Programming and Compiler Construction.

Boominathan Perumal is an

Associate Professor working in VIT

University, Vellore, India. He

received his B.E in Computer

science and Engineering from

Barathidasan University, Tirchy,

India, M.E in omputer Science

and Engineering from Anna University, India and he

received his Ph.D. from VIT University, Vellore,

India.He has 12 years of teaching experience. He has

good number of publications in reputed conference

proceedings and journals. His research interests

include cloud computing, Network Security, and

Evolutionary optimization, etc.

https://www.google.com/patents/US8930306
https://www.google.com/patents/US20140095439
https://www.google.com/patents/US20140095439
https://www.google.si/patents/US20110184908
https://www.google.si/patents/US20110184908

