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Abstract: This paper develops Penguin Search Optimisation Algorithm (PeSOA), a new metaheuristic algorithm which is 

inspired by the foraging behaviours of penguins. A population of penguins located in the solution space of the given search 

and optimisation problem is divided into groups and tasked with finding optimal solutions. The penguins of a group perform 

simultaneous dives and work as a team to collaboratively feed on fish the energy content of which corresponds to the fitness of 

candidate solutions. Fish stocks have higher fitness and concentration near areas of solution optima and thus drive the search. 

Penguins can migrate to other places if their original habitat lacks food. We identify two forms of penguin communication both 

intra-group and inter-group which are useful in designing intensification and diversification strategies. An efficient 

intensification strategy allows fast convergence to a local optimum, whereas an effective diversification strategy avoids cyclic 

behaviour around local optima and explores more effectively the space of potential solutions. The proposed PeSOA algorithm 

has been validated on a well-known set of benchmark functions. Comparative performances with six other nature-inspired 

metaheuristics show that the PeSOA performs favourably in these tests. A run-time analysis shows that the performance 

obtained by the PeSOA is very stable at any time of the evolution horizon, making the PeSOA a viable approach for real world 

applications.  
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1. Introduction 

Nature-inspired metaheuristic approaches have been 

applied to solve NP-hard problems such as parameter 

estimation [23], vehicle routing problems [24], the 

traveling salesmen problem [27], dynamic deployment 

of wireless sensor networks [31], and to bioinformatics 

[22]. Notable metaheuristics include Genetic 

Algorithms (GA) [4], Differential Evolution (DE) [25], 

Particle Swarm Optimisation (PSO) [14], Ant Colony 

Optimisation (ACO) [3], Artificial Bee Colony (ABC) 

[15], Firefly Algorithms (FA) [28], Cuckoo Search 

(CS) [29], Bat Algorithms (BA) [30], Simulated 

Annealing (SA) [1], Tabu Search (TS) [10], Scatter 

Search (SS) [16], and The greedy randomised adaptive 

search procedure (also known as GRASP) [5]. These 

metaheuristics can be classified according to different 

search characteristics such as Trajectory-based 

methods, Population-based methods and Memory 

usage. Two major search strategies have been largely 

taken into account in pursuing optimisation. The 

intensification strategy aims to exploit previously-

found promising regions in order to detect local optima. 

The diversification strategy strives to explore uncharted 

regions to identify new trajectories that might lead to 

the global optimum. The two strategies work in 

cooperation to iteratively improve the best solution on 

hand. Nature inspired metaheuristics have 

demonstrated success in a plethora of problems and 

applications. However, there is always space to 

explore new techniques that draw inspiration from 

nature in the hope that more effective and efficient 

heuristics can be devised. The Penguin search 

Optimisation Algorithm (PeSOA) is such a novel 

population- and memory-based metaheuristic 

approach which was first proposed in [8]. PeSOA is 

inspired by the penguin’s hunting behaviour and it 

generally works as follows. The population of 

penguins locates initial positions, each penguin then 

dives and swims under the water for hunting fish 

while consuming its oxygen reserve. Different forms 

of the communication between penguins are 

occasionally performed and the quantities of eaten fish 

increase. The process is repeated until the specified 

amount of fish is obtained or the maximum number of 

iterations is reached. Gheraibia and Moussaoui [8] 

have shown that the PeSOA outruns genetic 

algorithms and particle swarm optimisation in 

obtaining better values for benchmark optimisation 

functions. This paper enhances PeSOA with improved 

intensification and diversification strategies. The main 
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differences between the present work and the original 

PeSOA are as follows.  

In the present work, the penguins are dispatched into 

several groups where each group is allotted to a 

separate region in the food space. During the foraging 

phase, the penguins of each group attempt to hunt a 

maximal number of fish around the allotting region. 

The communication for sharing food information 

happens inter- and intra-group, allowing to improve the 

best solution on hand. We have codified PeSOA in java 

and tested the algorithm with a well-known set of 

benchmark global optimisation functions. The results 

reveal that the proposed approach outperforms a 

prominent set of the-state-of-the-art bio-inspired 

metaheuristics, including GA, DE, PSO, ABC, and BA.  

The rest of this paper is organised as follows. 

Section 2 describes the hunting behaviour of penguins. 

Section 3 articulates the proposed PeSOA algorithm. 

Section 4 presents the experimental results including 

the comparative performances. Finally, we conclude the 

paper by some remarks and future perspectives in 

section 5. 

2. Metaphor: Hunting Behaviour of 

Penguins 

Penguins are sea birds and they are unable to fly 

because of their adaptation to aquatic life [9, 12, 21, 

27]. Their wings are ideal for swimming and can be 

considered as fins. Penguins remain under the water for 

up to twenty minutes so they can go deeper. Penguins 

can dive more than 520m to scan the water for food. 

Although it is more efficient and less tiring to swim 

under the water than slithering on the ice, they must 

regularly surface every couple of minutes for air. They 

are able to breathe while swimming rapidly (7 to 10 

km/h) [26] by slowing down the heart rate and keeping 

their eyes open for scanning food. The retina allows 

penguins to distinguish shapes and colours. Penguins 

feed on krill, small fish, squid, and crustaceans. It takes 

up more energy for them to dive deeper and longer, so 

they have to consume more food this way. 

The optimisation of foraging behaviour was 

modelled in the works of [17, 18]. These two studies 

hypothesised that dietary behaviour may be explained 

by the economic reasoning: it comes to a profitable 

food search activity when the gain of energy is greater 

than the expenditure required to obtain this gain. 

Penguins, behaving along the line of foraging 

predators, must extract information about the time and 

cost to get food and the energy content of prey in order 

to choose the course for making their next dive. The 

air-breathing behaviour of penguins was noticed by 

[11]. The land is a home base for penguins who are 

forced to surface for air after each foraging trip. A trip 

implies immersion in apnea. The duration of a trip is 

limited by the oxygen reserves of penguins, and the 

speed at which they use it [13, 27].  

For saving the energy and the oxygen reserves, 

penguins must feed as a team and synchronise their 

dives to optimise the foraging. Penguins communicate 

with each other with vocalisations. These 

vocalisations are unique to each penguin (like 

fingerprints to humans). Therefore, they allow the 

unique identification and recognition for penguins 

between each other [19].  

3. The PeSOA Algorithm 

To summarise the observations from penguins’ 

foraging behaviour, the following rules are presented. 

 Rule 1: A penguin population comprises of several 

groups. Each group contains a number of penguins 

that varies depending on food availability in the 

corresponding foraging region. 

 Rule 2: Each group of penguins starts foraging in a 

specific depth under the water according to the 

information about the energy gain and the cost to 

obtain it. 

 Rule 3: They feed as a team and follow their local 

guide which has fed on most food in the last dive. 

Penguins scan the water for food until their oxygen 

reserves are depleted. 

 Rule 4: After a number of dives, penguins return on 

surface to share with its local affiliates, via intra-

group communication, the locations and abundance 

of food sources. 

 Rule 5: If the food support is less for the penguins 

of a given group to live on, part of the group (or the 

whole group) migrates to another place via inter-

group communication.  

In Table 1, we relate these rules to principles of 

optimisation heuristics. The sea corresponds to the 

solution space and the goal of the penguin searching is 

to locate the best position under the water showing the 

most abundant shoals of fish. The position of each 

individual penguin is thus a candidate solution to the 

optimisation problem. The energy of the penguin 

obtained by catching prey in terms of the quantity of 

fish around a position is analogous to the fitness of the 

solution. The oxygen reserve of a penguin reflects its 

health condition that serves as an acceleration 

coefficient in an instance of swimming. Finally, the 

two forms of communication represent the 

metaheuristic search strategies to increase the 

likelihood for targeting the global optimum.  

Table 1. Metaphors of penguin hunting behaviours for 

optimisation heuristic principles. 

Penguin hunting behaviours Optimisation heuristic principles 

The sea Solution space 

Most abundant shoals of fish Global optimum 

Penguin position A candidate solution 

Energy content of prey Fitness of a solution 

Oxygen reserve Acceleration coefficient 

Penguin swimming Solution update 

Intra-group communication Intensification search 

Inter-group communication Diversification search 
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The behavioural ecology of penguin foraging is in 

many ways similar to modern metaheuristics. This 

nature intelligence has inspired us for developing the 

PeSOA. The general ideas of the PeSOA work as 

follows. The penguins are divided into groups (not 

necessarily with the same cardinality) and each group 

starts foraging with a specific region. The status of each 

penguin is represented by its position and oxygen 

reserve. After a number of dives, the penguin returns to 

surface and share with its group affiliates the position 

and quantity of the food found.  

The local best of each group continuingly improves 

as more members report the food sources. After an 

entire cycle of the intra-group communication of all the 

penguin groups, the penguins might migrate to other 

group’s habitat according to the probability of nurture 

existence of each group in terms of the quantity of food 

found by all its members. The collaboration of team 

foraging repeats until a maximal number of cycles have 

been performed. With the notations defined in Table 2, 

the searching heuristics performed by the PeSOA are 

articulated as follows.  

Table 2. Notation descriptions. 

Notations Descriptions 

N Number of total penguins 

K Number of groups 

f Objective function of the problem 
i

jO  The oxygen reserve of the jth penguin of the ith group 

)(tx i

j
 

The position of penguin j allocated to the ith group at tth 

instance 

i

LocalBestx  The best solution found by the ith group 

)(tQEF i
 Quantity of eaten fish of the ith group at the tth instance 

)(tPi  Probability of existence of fish of gth group at tth instance 

rand() A random number drawing from (0, 1) 

3.1. Swimming Course Update 

Let G = {G1, G2…GK} be the set of K disjoint groups 

of penguins randomly distributed in the whole solution 

space Ω. Each group Gi contains di penguins where 

each penguin j in Gi is placed at a solution at time 

instance t, the penguin j swims to a new position at time 

t+1 in Ω by the following expression.  

  

 

Equation (1) can be realised by penguin swimming 

behaviour. Penguins primarily rely on their vision while 

hunting. Penguins follow their local leader who has 

found most food in the last dive, and they explore the 

along the path guided by the local leader. The penguin 

swimming is accelerated by the oxygen reserve which 

reflects its health condition determined by previous 

dives. In terms of optimisation terminology, the trial 

solution is updated by moving towards the local best 

solution with a random turbulence. The moving 

distance depends on the acceleration coefficient which 

is a variable adapted by previous gains along the 

pursued trajectory. If the solution keeps ameliorated, 

indicating a promising direction of the trajectory, the 

value of the acceleration coefficient increases and 

promotes a great moving distance. 

3.2. Oxygen Reserve Update  

After each dive, the oxygen reserve of the penguin is 

updated as follows. 

 

 

Where f is the objective function of the underlying 

problem. The oxygen reserve depends on both the gain 

of the food source and the swimming duration the 

penguin endures. If the energy gain is positive, the 

longer the penguin stays under the water, the more 

quantities of food it catches and thus becomes 

healthier. Otherwise, the longer the swimming 

duration, the more oxygen the penguin consumes. 

Hence, the oxygen reserve is updated according to the 

amelioration of the objective function. The oxygen 

reserve increases if the new solution is better than the 

previous one, and the oxygen reserve decreases in the 

other case. The penguin performs repetitive dives until 

the oxygen is depleted, then the penguin will migrate 

to another group due to the undersupply of food in this 

area. 

3.3. Intra-Group Communication  

Penguins feed on food as a team and they manage well 

intra-group communication. Penguins follow the local 

guide who made the most successful trial in the last 

dive (see Equation (1)). For every instance of dive, the 

penguin may find a better food source and becomes 

the new local guide. The team foraging is an 

autocatalytic process which assures the continuous 

amelioration of trial solutions.  

3.4. Food Abundance Update  

The food abundance degree associated to a group 

indicates the energy content of prey captured by all the 

members in that group (see Equation (3)). In the light 

of penguin foraging, the food abundance degree can 

be estimated by the Quantity of Eaten Fish (QEF), 

which is calculated by the following expression.  

 

 

The QEF of a group represents the attractiveness the 

penguin members would stick to that group. A great 

QEF value means the region affords enough food for 

the whole group and even solicits penguins migrating 

from other groups. 

 

 

  

 i i i i i
j j j LocalBest jx ( t 1 ) x ( t ) O ( t ) rand () x x ( t )       (1) 

 (3) 

    i i i i i i
j j j j j jO ( t 1) O ( t ) f x ( t 1 ) f x ( t ) x ( t 1 ) x ( t )         (2) 
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3.5. Group Membership Update 

The penguin may migrate to join another group due to 

the food undersupply in the group it originally belongs. 

The penguin updates its group membership by 

reference to a function relating to the food abundance 

degree of various groups. The penguin joins a group 

with a probability proportional to the corresponding 

group’s QEF, increasing the success likelihood of food 

foraging in the next dive. On the other hand, the region 

explored by a group is abandoned if all the members of 

that group have migrated to other groups. The 

membership function value of joining the group i is a 

probability given as follows.  

  

 

 

Hence, the inter-group communication facilitates a 

form of proportional biased diversification search 

capability, the promising region containing more 

abundant food would be intensively contemplated by 

augmenting the number of group members. In 

terminology of evolutionary computation, the penguin’s 

inter-group communication resembles to the survival of 

the fittest genes that provides the building blocks for 

constructing quality solutions. 

3.6. Pseudo Code of PeSOA 

The pseudo code of the Penguin Search Optimisation 

Algorithm (PeSOA) is shown in Algorithm 1. As will 

be noted, two search strategies (Algorithm 2 and 

Algorithm 3) originally proposed in scatter search [15] 

are used to enhance the performance of PeSOA. In 

summary, the PeSOA starts with K diversified groups 

of penguins. Each penguin searches for food separately 

in its assigning group with the guidance of the local 

best solution. After each cycle of dives, penguins of the 

same group share with each other the information about 

the position and quantity of the food. When the oxygen 

reserve is depleted, the penguin returns to surface and 

share the group information with members from the 

other groups. Then, the penguin is redistributed 

according to the updated group membership function. 

The search process is repeated until the stopping 

criterion is reached. The diversification generation 

strategy (see Algorithm 2) is used to generate K 

diversified groups in the initial penguin population. 

PeSOA starts with a population distributed in K groups, 

and each group is placed in a separate region with a 

minimum distance to any other. The purpose is to start 

the search with a set of diversified initial solutions 

which have contrasting features benefiting in future 

solution improvement. The solution improvement 

strategy (see Algorithm 3) is used to lead the penguin 

swimming to a local optimum after performing a 

complete cycle of dives. This is a common practice in 

modern metaheuristics, such as GRASP or hybrid GAs, 

where a local search component is embedded in the 

evolutionary cycle in order to utilise the key building 

blocks contained in local optima. The penguin 

swimming is guided by the local best solution for the 

group and accelerated by the oxygen reserve. The 

oxygen reserve indicates the health condition of the 

penguin. The penguins with a high reserve of oxygen 

have a good energy-ameliorating path, which then 

promotes the penguins to last longer in the water and 

swim a greater distance towards the same direction. If 

the penguin ameliorates its objective function value in 

this dive, the penguin solution is updated and the local 

best solution is also checked for possible update. If the 

penguin fails to find a better food source in this dive, 

its position is not changed, however, the oxygen 

reserve is still being updated due to the oxygen 

consumption in performing this dive. 

Algorithm 1: Algorithm of PeSOA 

1: Generate K regions in the solution space with Algorithm 1; 

2: Generate penguins 
i

jx  (j = 1, 2, ..., N/K) for each group i 

within the designated region; 

3: while stopping criterion is not reached do 

4: Initialise the oxygen reserve for each penguin; 

5: For each group i do  

6: For each penguin j in this group do 

7:  Improve the penguin position 
i

jx  with Algorithm 2; 

8: End 

9:    Update the food abundance degree for this group by Eq. 

(3); 

10: End 

11: Update the global best solution; 

12: Update membership function values for each group by Eq. 

(4); 

13: Redistribute penguins to groups according to the 

membership function; 

14: Abandon the group if it has no members; 

15: end while 

16: End 

Algorithm 2: Diversification generation strategy 

1: Input: Solution space, K (number of groups); MaxDist 

(minimum inter-group distance). 

2: Output: K region centers in the solution space 

3: choose the center of the first group randomly, denoted by 

C0  

4: i  1; 

5:  while i < K do 

6: choose a center Ci randomly for the next group 

7:  j  0; 

8: while j < i do 

9:  if Distance(Ci, Cj) > MaxDist then  

10:    j  j + 1 

11: else go to step 6  

12: end if 

13: end while 

14: i  i+1; 

15: end while 

16: End 
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Algorithm 3: Solution improvement strategy 

1: Input: i

jx , i

jO , 
i

LocalBestx  

2: Output: new i

jx , 
i

LocalBestx  

3: while i

jO  > 0  do 

4:   Take a dive for i

jx  according to Eq. (1) 

5: if i

jx  improves then 

6:   Update i

jx  

7:   Update 
i

LocalBestx  if i

jx  beats 
i

LocalBestx  

8: end if 

9: Update i

jO  using Eq. (2)   //no matter if i

jx  has been updated 

or not) 

10: end while 

11: End 

3.7. Computational Complexity of PeSOA  

The Algorithm PeSOA is divided into two parts, the 

generation of initial population (step 1 and step 2) and 

the iterative evolutionary search (step 3 to step 15). The 

computational complexity of the first part is O(K2+N). 

The computational complexity of the second part is 

O(Nt) where t is the maximum number of 

evolutionary iterations. The overall complexity of the 

Algorithm PeSOA is thus O(K2+Nt) which is 

comparable to that for most nature-inspired 

metaheuristics. 

4. Experimental Results  

4.1. Parameter Settings 

The application of PeSOA requires appropriate settings 

of the critical parameters such as the number of groups 

and the penguin population size. The parameter values 

are often chosen heuristically due to the fact that the 

determination of the optimal parameter values is itself 

an NP-hard problem. We propose to find the best 

PeSOA parameter values by maximising the ratio 

between the mean gain in objective function 

amelioration and the mean consumed CPU time. We 

test the PeSOA with five benchmark functions (Ackley, 

Sphere, Rastrigin, Rosenbrock, and Griewank 

functions) for a sufficient number of instances for each 

parameter. Figure 1 shows the performance ratio of the 

PeSOA against the number of groups ranging from 2 to 

50. We observe, for all test functions in general, that 

the best performance ratio is obtained when the 

penguins are initially distributed to about five groups. 

Similarly, the PeSOA is tested against the number of 

penguins initially assigned to each group ranging from 

5 to 100 with an increment of five penguins. It is seen 

that the performance ratio of the PeSOA reaches the 

best value when the group size is between 40 to 50 

penguins. 

  

4.2. Test and Validation 

In the literature a set of benchmark functions [20] has 

been intensively used to test and validate 

metaheuristic algorithms. These benchmark functions 

express diverse criteria to verify the characteristics of 

the optimisation algorithms such as robustness, 

sensitivity, and scalability. Table 3 describes the 

information for these benchmark functions, including 

the function name, number of decision variables (D), 

function expression, global optimum, and the variable 

bound. We compare the PeSOA with several the-state-

of-the-art nature-inspired metaheuristics, including 

PSO, ABC, BA, GA, DE, and CS. The values shown 

are the means and the standard deviations over ten 

independent runs of each algorithm. It is seen that the 

PeSOA obtains the best mean objective value for 

twenty functions (F01-F06, F09, F10, F15, F16, F17, 

F18, and F20). For the rest of the benchmark 

functions, the PeSOA also obtains comparable 

objective values to those by other competing 

algorithms. The names of each function is (F 01, 

Hartman 1),(F 02, Hartman 2), (F 03, Kowalik), (F 04, 

Shekel 1),(F 05,Shekel 2),(F 06, Shekel 3),( F 07, 

Branin),(F 08, Ackley),(F 09, Griewank 10),( F 10, 

Griewank 20),(F 11, Griewank 30),( F 12, Quartic 

noise),( F 13, Rastrigin 10),( F 14, Rastrigin 20),( F 

15, Rastrigin 20),( F 16, Rosenbrock 10),(F 17, 

Rosenbrock 20),( F 18, Rosenbrock 30),( F 19, 

Schwefel 2.26),( F 20, Sphere). 

Table 4 reports the mean CPU running time 

consumed by these algorithms for obtaining the 

previously noted objective values. We see that the 

PeSOA consumes the least CPU running time for all 

the test functions. In summary, the PeSOA serves as 

the most effective and efficient algorithm in terms of 

the performance ratio between the mean gain in 

objective function amelioration and the mean 

consumed CPU time. As the nature-inspired 

metaheuristics are stochastic optimisation algorithms, 

each independent run of the same algorithm may 

manifest distinct run-time behaviours compared to 

other runs. It is thus very crucial to analyse the 

variation the best obtained function value as the 

number of used function evaluations increases.  

5. Concluding Remarks and Future Works  

In this paper we have developed a new meta-heuristic 

algorithm for global optimisation. The new approach 

is based on the collaborative foraging strategy applied 

by penguins. The oxygen reserve of the penguin, 

indicating its health condition, is used to control the 

swimming step size and the length of the duration the 

penguin stays under the water. The group local best 

solution is used to guide the penguin members to 

generate new solutions. The penguins will migrate to 

other groups if its original assigning group is unable to 

afford enough food. The proposed PeSOA algorithm 
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is validated on a well-known set of benchmark 

functions broadly used in the literature, and a 

performance comparison is made with several nature-

inspired metaheuristic algorithms such as PSO, ABC, 

DE, GA and BA. Simulation results showed that the 

PeSOA is more robust and efficient compared to other 

competing algorithms because its search strategy does 

not rely only on changing the next position of the best 

solution found, but also on penguin communication 

happening both within and between groups. The 

original PeSOA algorithm has been used to solve 

combinatorial problems such as automotive safety 

integrity levels allocation [7], Capitated vehicle routing 

problem [2] and optimal spaced seed finding [6].  

The PeSOA algorithm can be extended in several 

ways, for example, the introduction of reproduction and 

migration may enhance the search capability. It is 

worth studying the multi-objective version of the 

PeSOA. 

 

Figure 1. The performance of the PeSOA against the number of 

groups.  

 

Table 3. The best function values obtained by competing algorithms. The values shown are the means and the standard deviations over ten 

independent runs of each algorithm.

F PSO ABC BA GA DE PeSOA 

F 01 
-3.6384 (±4.44 e-

003) 
-3.7197 (±5.0073 e-

003) 
-3.6294 (±1.0578 e-002) -3.5591 (±3.7758 e-003) 

-3.7004 (±3.2557 e-
003) 

-3.8597 (±1.1027 e-
004) 

F 02 -3.2108 (±0.1057) -3.2879 (±0.0546) -3.2519 (±0.2349) -3.1908 (±0.10250) -3.2290 (±0.06957) -3.3194 (±0.00108) 

F 03 
-2.7306 e-4 (±0.0002 

e-4) 

-3.0001 e-4 (±0.0006 

e-4) 
-2.9001 e-4 (±0.0009 e-4) 

-2.7480 e-4 (±0.0006 e-

4) 

-2.9979 e-4 

(±0.00013 e-4) 

-3.008 e-4 

(±0.0003 e-4) 

F 04 
-9.6811 (±9.4361 e-

003) 
-9.9073 (±2.7326 e-

003) 
-10.0120 (±4.1197 e-002) -9.8107 (±4.6228 e-003) 

-10.1009 (±4.2106 e-
002) 

-10.1508 (±1.0214 e-
003) 

F 05 
-9.8788 (±3.2643 e-

004) 

-10.2638 (±3.1271 e-

004) 
-10.1911(±2.1975 e-005) -9.8389 (±1.0674 e-004) 

-10.2374 (±0.1164 e-

003) 

-10. 3867 (±3.10247 

e-003) 

F 06 
-10.1915 (±9.3467 e-

004) 

-10.4700 (±8.0468 e-

004) 
-10.4108 (±3.6234 e-003) 

-10.0527 (±4.9346 e-

004) 

-10.3893 (±1.0017 e-

002) 

-10. 5104 (±3.1027 e-

003) 

F 07 
0.3999 (±2.6227 e-

004) 

0.3927 (±8.6794 e-

004) 
0.3967 (±2.03647 e-004) 0.4035 (±8.0637 e-003) 

0.3901 (±1.0037 e-

002) 

0.38794 (±3.27680 e-

002) 

F 08 
1.9734 e-005 

(±2.8745 e-007) 

1.6012 e-005 

(±0.0101 e-005) 

1.7845 e-005 (±2.0012 e-

006) 

2.0324 e-005 (±1.0327 

e-006) 

1.3024 e-005 

(±0.0148 e-005) 

1.0001 e-005 (±1.0067 

e-006) 

F 09 
3.9987 e-007 

(±0.9534 e-008) 
3.8634 e-007 

(±0.9254 e-008) 
3.8374 e-007 (±0.7934 e-

008) 
3.9222 e-007 (±0.1423 

e-008) 
3.8145 e-007 

(±0.5214 e-008) 
3.6874 e-007 (±0.0329 

e-008 

F 10 
6.2547 e-007 

(±0.0213 e-007) 

6.0012 e-007 

(±0.2111 e-007) 

6.0669 e-007 (±0.1992 e-

007) 

6.9117 e-007 (±0.1423 

e-008) 

6.0001 e-007 

(±0.5398 e-008) 

5.9998 e-007 (±0.0014 

e-007) 

F 11 
1.1404e-006 

(±0.0207 e-008) 

1.6349 e-006 

(±0.0507 e-008) 

9.99267 e-007 (±0.0067 e-

008) 

1.3684e-006 (±0.4954 

e-008) 

1.6658 e-006 

(±0.6279 e-008) 

9.7238 e-007 (±0.0103 

e-008) 

F 12 
1.4755 (±0.98542 e-

02) 

1.29215 (±0.7649 e-

03) 
1.14291 (±0.3167 e-02) 1.1458 (±0.6145 e-02) 

1. 3765 (± 0.8654 e-

02) 

1.00859 (±0.00215 e-

02) 

F 13 
3.6230 e-08 (±0.5214 

e-09) 

3.4010 e-08 (±0.0987 

e-09) 
3.6005 e-08 (±0.2301 e-10) 

3.8254 e-08 (±0.2124 e-

08) 

3.9103 e-08 (±0.1038 

e-07) 

3.0678 e-08 (±0.0038 

e-09) 

F 14 
6.2017 e-08 (±0.1120 

e-08) 

6.3980 e-08 (±0.2303 

e-08) 
6.2097 e-08 (±0.4921 e-9) 

6.5325 e-08 (±0.4009 e-

09) 

6.1410 e-08 (±0.4947 

e-08) 

5.0101 e-08 (±0.1934 

e-08) 

F 15 
6.3254 e-08 (±0.6291 

e-10) 

6.0034 e-08 (±0.9004 

e-10) 
6.2015 e-08 (±0.8074 e-10) 

6.8354 e-08 (±0.2094 e-

10) 

6.9574 e-08 (±0.3005 

e-10) 

5.9887 e-08 (±0.1027 

e-09) 

F 16 
9.4352 e-10 (±4.6349 

e-12) 

9.854 e-10 (±2.3276 

e-11) 
9.0136 e-10 (±0.0362 e-10) 

9.3492 e-10 (±0.2934 e-

10) 

8.9653 e-10 (±0.5731 

e-12) 

6.16587 e-10 (±2.0374 

e-9) 

F 17 
1.0321 e-9 (±0.2024 

e-10) 

1.1124 e-9 (±0.0094 

e-9) 
1.2000 e-9 (±0.0164 e-9) 

1.1162 e-9 (±0.6216 e-

10) 

1.2110 e-9 (±0.3140 

e-11) 

1.0064 e-9 (±0.0491 e-

10) 

F 18 
1.3254 e-09 (±1.1637 

e-12) 

2.0014 e-09 (±0.9175 

e-10) 
1.0153 e-09 (±2.014 e-11) 

1.8632 e-09 (±1.1124 e-

10) 

0.9843 e-09 (±1.0310 

e-11) 

0.9012 e-09 (±0.0248 

e-9) 

F 19 
- 9.8994 e+3 

(±8.0349 e-02) 
- 9.8497 e+3 

(±3.4328 e-02) 
- 9.8346 e+3 (±3.0028 e-02) 

- 9.9934 e+3 (±1.9919 
e-03) 

- 9.6527 e+3 
(±0.3015 e-02) 

- 9.6254 e+3 (±1.3756 
e-02) 

F 20 
5.9648 e-006 

(±7.0364 e-008) 

5.8555 e-006 

(±0.6249 e-007) 

5.5364 e-006 (±9.3248 e-

007) 

5.8774 e-005 (±2.0317 

e-007) 

5.8749 e-006 

(±0.1367 e-007) 

5.4237 e-006 (±2.1038 

e-009) 
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Table 4. The CPU running time consumed by competing algorithms. The values shown are the means and the standard deviations over ten 

independent runs of each algorithm. 

F PSO ABC BA GA DE PeSOA 

F 01 1. 0937(± 0.0060) 0.9375(± 0.0092) 1.0006 (± 0.0035) 1. 0937(± 0.0060) 0.9976 (± 0.0111) 0. 8134(± 0.0013) 

F 02 1. 2531(± 0.0108) 1. 1120(± 0.0063) 1.2193 (± 0.0062) 1. 3012(± 0.0094) 1.1865 (± 0.0039) 1. 0014(± 0.0301) 

F 03 2. 5092(± 0.1002) 2. 1834(± 0.1108) 2.3321 (± 0.0974) 2. 5248(± 0.0324) 2.2016 (± 0.0010) 1.9937 (± 0.0827) 

F 04 1. 2843(± 0.0162) 0.9734(± 0.0019) 1.0999 (± 0.0085) 1. 3012(± 0.0098) 0.9874 (± 0.0022) 0.9329 (± 0.0567) 

F 05 1. 2019(± 0.0083) 1.1376 (± 0.0087) 1.1248 (± 0.0082) 1. 1987(± 0.0036) 1.0875 (± 0.0019) 0.8934 (± 0.0627) 

F 06 1. 2354(± 0.0079) 1. 1018(± 0.0052) 1.1364 (± 0.0029) 1. 2402(± 0.0018) 1.0985 (± 0.0130) 0.9978 (± 0.0136) 

F 07 0.5362 (± 0.0031) 0. 4501(± 0.0082) 0.4737 (± 0.0022) 0.5408 (± 0.0013) 0.4700 (± 0.0008) 0.4237 (± 0.0238) 

F 08 0. 9514(± 0.0034) 0.7924 (± 0.0068) 0.8350 (± 0.0133) 0. 9724(± 0.0021) 0.8013 (± 0.0003) 0.8054 (± 0.0346) 

F 09 0. 8625(± 0.0001) 0.7962 (± 0.0068) 0.8070 (± 0.0046) 0. 88137± 0.0019) 0.7924 (± 0.0108) 0. 6854(± 0.0349) 

F 10 0. 8894(± 0.0002) 0.8994 (± 0.0021) 0.8545 (± 0.0033) 0. 9000(± 0.0009) 0.8421 (± 0.0821) 0. 7998(± 0.0800) 

F 11 0. 9012(± 0.0014) 0.8635 (± 0.0106) 0.8832 (± 0.0002) 0. 9235(± 0.0150) 0.8436 (± 0.0301) 0. 8001(± 0.0131) 

F 12 1. 3628(± 0.0324) 1.1083 (± 0.0090) 1.2651 (± 0.0131) 1. 4132(± 0.0134) 1.2107 (± 0.0318) 0.9241 (± 0.0043) 

F 13 0. 6192(± 0.0061) 0. 5000(± 0.0008) 0.5579 (± 0.0049) 0. 6301(± 0.0107) 0.5132 (± 0.0087) 0. 4135(± 0.0010) 

F 14 0. 6882(± 0.0009) 0. 5865(± 0.0090) 0.6237 (± 0.0101) 0. 6709(± 0.0034) 0.5939 (± 0.0010) 0. 4821(± 0.0087) 

F 15 0. 7014 (± 0.0100) 0. 6210(± 0.0032) 0.5920 (± 0.0092) 0. 7011(± 0.0091) 0.6008 (± 0.0031) 0. 5010(± 0.0010) 

F 16 0. 7014(± 0.0083) 0. 4987(± 0.0005) 0.5521 (± 0.0063) 0. 7301(± 0.0030) 0.5214 (± 0.0103) 0.4937 (± 0.0013) 

F 17 0. 7541(± 0.0109) 0. 5214(± 0.0010) 0.5771 (± 0.0139) 0. 7634(± 0.0009) 0.5635 (± 0.0019) 0.5118 (± 0.0108) 

F 18 0. 7924(± 0.0012) 0. 5674(± 0.0010) 0.5991 (± 0.0192) 0. 7994(± 0.0012) 0.6014 (± 0.0019) 0.5384 (± 0.0089) 

F 19 1. 3287(± 0.0529) 1. 2104(± 0.0107) 1.2768 (± 0.0044) 1. 3762(± 0.0130) 1.2001 (± 0.0009) 1.0034 (± 0.0010) 

F 20 0. 6294(± 0.0017) 0.6002 (± 0.0013) 0.6113 (± 0.0054) 0. 6602(± 0.0009) 0.5997 (± 0.0097) 0.4662 (± 0.0092) 
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