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Abstract: In this work, we propose an automated approach able to perform accurate nuclear segmentation in 

immunohistochemical breast tissue images in order to provide quantitative evaluation of estrogen or progesterone receptor 

status that will help pathologists in their diagnosis. The presented method is based on color deconvolution and an enhanced 

morphological processing, which is used to identify positive stained nuclei and to separate all clustered nuclei in the 

microscopic image for a subsequent cancer scoring. Experiments on several breast cancer images of different patients 

admitted into the Tunisian Salah Azaiez cancer center, show the efficiency of the proposed method when compared to the 

manual evaluation of experts. On the whole image database, we recorded more than 97% for both accuracy of detected nuclei 

and cancer scoring over the truths provided by experienced pathologists. 
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1. Introduction 

Manual assessment of Estrogen (ER) and Progesterone 

(PR) receptor status from Immunohistochemical (IHC) 

breast tissue images is a subjective, time consuming 

and error prone process [2, 4, 5, 11]. Automatic image 

analysis methods offer the possibility to get consistent, 

objective and rapid diagnoses of histopathology 

specimens. Recently, with the continuing 

developments in computer technology, high-

throughput tissue slide scanners, these methods have 

gained more and more importance as they are able to 

give accurate quantitative measurements of antigen 

activations and uniform indicators of cancer evolution 

[2, 11]. In IHC images with nuclear activity, stained 

nuclei are classified into three categories according to 

their color and shape features, i.e., Positive cancer 

nuclei (P), Negative cancer nuclei (N) and Benign 

nuclei (B). Positive cancer nuclei are labeled by brown 

color while negative and benign nuclei are marked by 

blue color. Benign nuclei such as lymphocytes, stromal 

cells are identified with their small size and elliptic 

shape shown in Figure 1. 

Figure 1. Example of stained breast tissue images with nuclear 

activity. 

 These non-cancerous nuclei are not needed in the 

cancer diagnosis process since the pathologist’s 

medical treatment are based mainly on the ratio of the 

number of positive nuclei to the total number of cancer 

cell nuclei in the whole image [5, 11]. 

As illustrated in Figure 1, it’s obvious that breast 

cancer tissue images presents many inherent 

characteristics such as staining inhomogeneity, stains 

superposition, uneven background, morphological 

variations of cancer nuclei, the presence of a multitude 

of touching nuclei and spurious cells, that can cause 

many difficulties to the classical nuclear segmentation 

methods. So, these challenging problems motivate 

researchers to design and develop ad-hoc approaches 

for the segmentation and the analysis of IHC tissue 

images. 

In the last few years, many promising tissue 

segmentation methods are proposed in the literature 

which can reliably segment cancer cell nuclei and 

overcome the limitations of manual approach. Most of 

these methods contain two parts. The first one is 

generally related to the substance classification in the 

stained tissue (e.g., nuclei, cytoplasm, stroma, and 

background) which is done using of automatic 

multithresholding [9], supervised and/or unsupervised 

clustering based methods or color deconvolution 

techniques [1, 10, 12]. The second part deals with the 

separation of clustered and touching nuclei in the 

image. This problem can be solved by advanced 

morphological techniques such as improved watershed 

algorithms [3, 8] and ellipse fitting procedures. 

  



916                                                                  The International Arab Journal of Information Technology, Vol. 13, No. 6A, 2016 

In this work, we present a fully automated nuclear 

segmentation method based on stains separation using 

the color deconvolution technique combined with an 

improved morphological procedure for cancer nuclei 

segmentation and quantification. In fact, the 

combination of color separation techniques and 

morpholgical operators already exists in the literature 

and it’s generally applied to solve the problem of 

nuclei quantification in IHC tissue images with 

cytoplasm or membrane activations [1, 2]. However, 

color and morphological features of cell nuclei is 

exploited in our work to segment breast tissue images 

with nuclear activity. Besides, clustered nuclei are 

splited here by our enhanced watershed algorithm 

based on a concave vertex graph, followed by an 

adaptive morphological procedure to remove benign 

nuclei and stromal cells from the segmented nuclei. In 

fact, many state-of-art methods are proposed in this 

field in order to give accurate segmentation results of 

cancer nuclei. The majority of these methods are based 

on marker-controlled watershed [3, 13] or region 

merging watershed [8] which are more sophisticated 

than traditional algorithms in term of splitting 

accuracy. However, shape information of cell nuclei is 

weakly included or completly ingnored in these 

algorithms which leads in some cases to over-

segmented or under-segmented nuclei. In our work, we 

have integrated the shape information of clustered 

nuclei using high concavity points in the nuclei 

contours in order to ref ine the watershed results. This 

technique takes into consideration nuclear 

configurations and color gradient information within 

nuclei that garantee in most cases efficient 

segmentation results. In summury, the main 

contribution of the present work is the proposal of an 

automatic nuclear segmentation scheme which 

combines color deconvolution method and an 

improved morphological technique in order to study its 

ability in evaluating ER or PR status of breast cancer 

specimens. 

The rest of the paper is organized as follows: in 

section 2, we present the segmentation method to 

detect and segment cancer nuclei in IHC stained tissue 

images. Experimental results of the proposed method 

are presented and discussed in section 3. Finally, 

section 4 contains a summary and conclusions. 

 

2. The Proposed Method 

As illustrated in Figure 2, the proposed nuclear 

segmentation method is composed mainly of two steps: 

Color separation and cancer nuclei segmentation. For 

the first step we applied a color deconvolution 

approach [12] in order to extract brown component and 

blue component from the RGB image. However, for 

cancer nuclei segmentation we developed custom-

designed methods based on morphological techniques. 

           
 

Figure 2. Flow chart of the proposed nuclear segmentation method. 

 In this step we start with an adaptive thresholding 

for each stain followed by morphological operations to 

detect properly stained nuclei in the tissue. From the 

brown component only positive cancer nuclei are 

selected whereas, by tresholding of the blue 

component we obtain all cell nuclei regions in the 

image. Then, clustered and touching nuclei are 

separated using an enhanced watershed method which 

takes into consideration the shape changes of nuclei 

and color gradient information within nuclei. This 

technique is applied on the two binary images 

corresponding to the positive cancer nuclei and all 

stained nuclei in the tissue. After that, to get the total 

number of cancer nuclei (i.e., positive and negative 

cancer nuclei), an adaptive morphological criterion is 

designed to remove benign nuclei and spurious cells 

from the segmented image of all nuclei. Finally, the 

percentage of positive staining can be easily computed 

by the ratio of the number of positive cancer nuclei to 

the total number of positive and negative nuclei in the 

whole image. Cancer score is identified subsequently 

using the clinical scoring protocol [7] shown in Table 

1. Details of the proposed method are given below. 

Table 1. The scoring system used for ER/PR positive status 

evaluation. 

Score Proportion of positive nuclear staining (%) 

0 0 – 10 

1+ 11 – 33 

2+ 34 – 66 

3+ 67 – 100 

2.1. Color Deconvolution 

In the first step of the proposed nuclear segmentation 

method, we simply used the color deconvolution 

method developed by Ruifrok and Johnston [12] in 

order to separate brown (3, 3-Diaminobenzidine 

(DAB) staining) and blue (Hematoxylin (H) staining) 
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components of the RGB image. This technique is 

widely applied in the recent IHC image analysis 

approaches since it was shown to achieve better results 

than classical color segmentation methods in presence 

of stains’ colocalization, which is a frequent 

phenomenon in IHC imaging due to the chemical 

reactions of stains and tissue superposition [2, 12]. 

With this method color information carried by the two 

stains can be de-convolved by determining the relative 

contributions of each of the RGB color channels to the 

specific stain. Color deconvolution parameters can 

vary according to the used dyes in histopathology and 

the imaging protocols [1]. So, to use this technique 

appropriately, we followed the suggestions given by 

Ruifrok and Johnston [12] and we determined the 

proper parameters for the protocols of our laboratory. 

First, the monochromatic pixel values (Red, Green, 

Blue) are converted to Optical Density (OD) values 

according to the equation below [12]: 
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Where ODR, G, B are the optical density values for each 

colour component and (IR, G, B)blank are the pixel values 

for the image of the blank field. Then, parameters of 

color deconvolution are obtained for each stain by 

inversing the normalized OD matrix [12].  

 

  
a) RGB original image. b) Background subtraction. 

  

c) Colour deconvolution results 

detecting the contribution of H (blue) 

staining. 

d) Colour deconvolution results detecting 

the contribution of DAB (brown) 

staining. 

Figure 3. Stains separation. 

To achieve the best performance from color 

deconvolution, background subtraction with color 

correction is applied to the IHC images before 

processing. The contrast is first enhanced through 

intensity histogram equalization. Then, stained nuclei 

are highlighted by adding the resulting image to the 

intensity image adjusted by a linear contrast stretching 

shown in Figure 3-b. The new stain vectors are 

determined experimentally in our laboratory by the 

following equations: 

         ( ) 0.4475 + 0.5124 + 0.9837DAB brown R G B     

            ( ) 0.9408 + 0.8124 + 0.3767H blue R G B     

In Figures 3-c and d we show respectively color 

deconvolution results separating the contributions of H 

(blue) and DAB (brown) staining to an original IHC 

image. The main steps of the color deconvolution 

method are summarized as follows: 

 Step 1. Given the RGB microscopic image, enhance 

the image contrast through intensity histogram 

equalization. 

 Step 2. Add the resulting image to the intensity 

image adjusted by a linear contrast stretching to 

highlight to stained nuclei.  

 Step 3. Compute the stain vectors using the color 

deconvolution parameters given by (2) and (3).  

2.2. Cancer Nuclei Segmentation 

2.2.1. Adaptive Thresholding and Morphological 

Operations 

As seen in Figure 3, the obtained nuclei regions from 

the color separation technique are characterized by 

intensity variations due to the noise and stain 

inhomogeneity. So, the possibility to find one 

threshold that can fit the entire image becomes a 

difficult task in our situation. This leads to the 

conclusion that an adaptive local throsholding will be 

more suitable than global thresholding because of its 

ability to minimize the effects of unrepresentative pixel 

values in the image [2]. In our work, an adaptive 

threshold is selected for each pixel based on the 

intensity distribution in its local neighborhood. This is 

done by subtracting each pixel’s intensity by the 

median value of its neighborhood [2]. The 

neighborhood size is chosen here according to the 

average area of the nuclei which is mainly dependent 

on image amplification: We empirically set in our 

implementation a value of 22, 44 and 140 for IHC 

images acquired with a magnifying factor ×20, ×40 

and ×80, respectively. 

 

  
a) RGB original image. b) Binary image of positive cancer nuclei. 

  
c) Binary image of all stained nuclei. d) Separation of clustered positive nuclei. 

  
e) Separation of all clustered nuclei in 

the image. 

f) Removing of benign nuclei and stromal 

particles. 

Figure 4. Main steps of cancer nuclei segmentation. 

To overcome intensity variations inside nuclei and 

irregular nuclear configurations we applied some 

morphological operations to the two binary images. 

The transformed images of positive nuclei staining and 

all stained nuclei are represented respectively in 

(1) 

(2) 

(3) 
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Figures 4-b and c. They are obtained after three 

successive procedures: Dilatation, opening and holes 

filling.  

2.2.2. Clustered and Touching Nuclei Separation 

In order to separate touching or overlapping nuclei, an 

enhanced watershed method is applied in this work to 

the detected nuclei regions for each binary image. In 

the proposed watershed method [11], shape 

information about clustered nuclei is exploited in a 

simple way to refine results of the classical watershed 

algorithm. In fact, to get initial separating curves of 

clustered cell nuclei, we have applied the watershed 

algorithm by immersion [14] on a gradient-weighted 

distance transform. The distance transform combines 

two image transformations: The geometric distance 

transform and the intensity gradients transform. It 

takes into consideration nuclear configurations and 

color gradient information within nuclei [8]: 
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Where D is the Euclidean distance computed over the 

corresponding binary image and   is the gradient 

transform of the IHC image represented in the RGB 

space. min  and max  are the minimum and maximum 

values of the color gradient   needed for 

normalization. 

Watershed algorithm is then applied on the inverse 

of the distance transformation D’ using the following 

equation: 

                      * ' 'S G max D D


   

Here Gσ is a Gaussian smoothing operator used to 

reduce image noise with width σ=1. 

However, as illustrated in Figure 5-a, the obtained 

separation results using the watershed method contain 

some over-segmented cases due to the intensity 

variations inside stained nuclei. This error is managed 

automatically using shape information to locate 

clustered nuclei and to enhance watershed 

segmentation results. In fact, touching and overlapping 

nuclei are first identified by the existence of high 

concavity points in nuclear boundaries shown in Figure 

5-b. In our work, this task is done with a robust corner 

detector technique based on the global and local 

curvature features of the contour [6]. Then, the most 

significant separating edges within clustered nuclei are 

selected by searching the nearest end points of the 

inner edges to the concave vertices shown in Figure 5-

c. We used here a local window (77) centered on the 

concave point to detect the minimal Euclidean distance 

between end points and concave vertices. After that, a 

weighted vertex graph G is constructed from the vertex 

set of selected inner edges E (white curves in Figure 5-

c) and the set of end points V (red vertices in Figure 5-

c). The nodes of the graph are then equal to V E . 

Each node has an associated numerical value, called 

weight, which correspond in our work to the color 

gradient intensity . Finally, to select the optimal 

separating curves of clustered nuclei, we have applied 

Dijkstra algorithm to compute the shortest path 

between the terminal vertices for each edge in the 

graph shown in Figure 5-d. 

  
a) Nuclei separation using watershed 

algorithm. 

b) High concavity point’s 

detection. 

  
c) Construction of the weighted graph through 

concave vertices. 

d) Optimal path selection using 

Dijkstra algorithm. 

Figure 5. Clustered nuclei separation. 

2.2.3. Benign Nuclei Removing 

As illustrated in the flow chart of the automated nuclei 

segmentation method as shown in Figure 2, the second 

binary image obtained from the blue stain contains all 

nuclei (cancerous and non-cancerous nuclei). 

However, only the total number of positive and 

negative cancer nuclei is needed for evaluating the 

ER/PR status. For this reason, benign nuclei and 

stromal particles should be removed from the pre-

segmented image. The key idea to detect B nuclei in 

this work is to design a criterion based on 

morphological features which are used by pathologists 

in their IHC analysis. 

Benign nuclei are identified by the elliptic shape 

and the small size with respect to cancer nuclei. The 

elliptical shape can be modeled by the ratio Er between 

major and minor axes of the ellipse and the size is 

evaluated by the number A of pixels in the nucleus 

region R. The proposed criterion for benign nuclei 

regions RB is expressed as follows: 

    
        

  

, / , ,
,

,

r M

B

m

R x y E R x y E AND A R x y A
R x y

OR A R x y A

 




  
 
  

  

Experts expect that non-cancerous nuclei have an 

elliptic shape described by a ratio greater than a 

decision threshold E and an area lower than AM. 

Benign nuclei may occur also with any form but their 

size is limited by another area bound Am. We note that 

the decision thresholds are selected automatically by 

shape and size analysis. In our procedure, the ratio E is 

fixed at 1.55 and the lower bound and upper bound of 

the B nuclei area are determined by the average area of 

all detected nuclei A , where /1.5MA A  and 

/ 3mA A  shown in Figure 4-f. The different steps of 

(4) 

(5) 

(6) 
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the proposed nuclei segmentation approach are as 

follows: 

 Step 1. Given the staining components (blue and 

brown) by color deconvolution method, apply to 

each intensity image adaptive thresholding using 

median filter with a neighborhood size equal to 22, 

44 or 140 according to the image resolution 20, 

40 or 80, respectively.  

 Step 2. Construct the binary image of cell nuclei by 

applying dilatation and opening and holes filling. 

The two first morphological operations are 

performed using respectively a flat diamond-shaped 

structuring element with size R and 2R+1, where R 

is chosen according to the size of the nuclei and the 

resolution of the image (R=2, 3 and 4) used 

respectively for a magnifying factor of 20, 40 

and 80. 

 Step 3. Apply the watershed algorithm on the 

inverse of the hybrid distance transform using (24) 

and (25). 

 Step 4. Detect the concave vertices on the nuclei 

contours using the corner detection technique (see 

[6, 11] for more details). 

 Step 5. Extract inner edges and find end points for 

each one of them. 

 Step 6: Select the separating edge candidates (E) by 

searching the end points nearest to concave vertices 

(V). 

 Step 7. For each edge candidate in the set E and 

each node of E, associate a weight value equal to 

the color gradient intensity. 

 Step 8. Construct the weighted vertex graph G. 

 Step 9. Find the shortest path between all detected 

end points in the graph using Dijkstra algorithm. 

 Step 10. Add paths to nuclei contours to obtain final 

segmentation results. 

 Step 11. Remove benign nuclei and stromal cells 

from the pre-segmented image of the blue 

component using (6).  

 Step 12. Compute the number of separated nuclei 

for each segmented image. 

 Step 13. Evaluate the percentage of positive cancer 

nuclei which is the fraction of number of brown 

stained nuclei per number of all detected cancer 

nuclei. 

3. Results and Discussion 

To demonstrate the effectiveness of the proposed 

nuclear segmentation method, nuclei quantification 

and cancer scoring results in our image database are 

provided in this section and compared to manual 

evaluation given by two experienced pathologists. The 

studied image database is composed of 84 breast 

cancer tissue images (16001200 pixels) taken with a 

light microscope OLYMPUS BX51 and CCD digital 

camera OLYMPUS DP21, using a magnifying factor 

of 20, 40 and 80. For each IHC image, the 

ER/PR positive status is determined by experts based 

on visual inspection of the staining intensity and a 

direct count of the proportion of positive nuclear 

staining in the malignant tissue.  

The manual assessments and IHC analysis are then 

combined in a panel consensus which is considered as 

a gold standard for the evaluation of the proposed 

method. In this way, our image database is divided into 

three datasets according to the expert’s positivity score 

(1+, 2+ or 3+) (see Table 1 for more details). 

In Figure 6, we show experimental results of the 

proposed nuclear segmentation approach compared to 

two recent state of the art methods. Figures 6-b and c 

represent the splitting results of all detected nuclei 

using a marker-controlled watershed based on adaptive 

H-minima algorithm for markers selection [3] and an 

improved watershed method with multi-marker 

merging procedure [13], respectively. As illustrated in 

Figure 6, both H-minima marker-guided watershed and 

multimarker-controlled watershed approaches provide 

good segmentation results in different overlapping and 

complex nuclear configurations. But we can clearly 

notice erroneous segmentations in some few cases, 

such as under-segmented nuclei (red arrows) and over-

segmented nuclei (white arrows). These problems are 

significantly solved using the proposed separation 

method and more efficient results can be seen Figure 

6-d. 

  

a) The original image. b) H-minima marker-guided watershed 

[3]. 

  

c) Multimarker-controlled watershed 

method [13]. 

d) The proposed method. 

Figure 6. Splitting results of all detected cell nuclei. 

Table 2. Comparative separation results of touching nuclei on 

the complete image database using H-minima marker-controlled 

watershed algorithm [3], multimarker-controlled watershed method 

[13] and the proposed separation method: watershed and weighted 
concave vertex graph. 

 H-minima 

Marker-

Controlled 

Watershed 

Multimarker-

Controlled 

Watershed 

Watershed and 

Weighted 

Concave Vertex 

Graph 

Correctly segmented 

nuclei (%) 
68.72 ± 2.29 90.23 ± 1.57 96.85 ± 0.95 

Over-segmented 

nuclei (%) 
30.55 ± 1.92 0.23 ± 0.13 0.92 ± 0.20 

Under-segmented 

nuclei (%) 
0.73 ± 0.97 9.54 ± 0.92 2.23 ± 0.62 

Total computation 

time (s) 
39.11 ± 0.12 99.45 ± 1.57 47.62 ± 0.54 
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The quantitative results presented in Table 2 show 

that the proposed method is more efficient in touching 

nuclei separation than the other studied approaches. In 

fact, the segmentation results are recognized into three 

groups: Correctly segmented, over-segmented, and 

under-segmented touching nuclei. The proposed 

method performs improvements by 28.13±1.34%, and 

6.62±0.62% with respect to H-minima marker-guided 

watershed and multimarker-controlled watershed 

algorithms in terms of separation accuracy, 

respectively. Moreover, the computation time results 

show that the proposed method is faster than the 

multimarker-controlled watershed [13] which is 

considerably accurate than the H-minima marker-

controlled watershed [3].  

Table 3. Results of the computer-assisted ER/PR evaluation system 
versus expert’s assessment on the complete image database. 

 

Computer-assisted 

ER/PR evaluation 
Expert’s assessment 

Dataset 

(1+) 

Dataset 

(2+) 

Dataset 

(3+) 

Dataset 

(1+) 

Dataset 

(2+) 

Dataset 

(3+) 

True positive 

nuclei 
1402 2742 1520 1436 2756 1524 

False positive 

nuclei 
43 51 12 0 0 0 

True negative 

nuclei 
956 1597 446 987 1632 459 

False negative 

nuclei 
55 62 18 0 0 0 

Sensitivity 

(%) 
96.2 97.7 98.8 100 100 100 

Specificity 

(%) 
95.7 96.9 97.3 100 100 100 

Accuracy (%) 96 97.4 98.5 100 100 100 

Total number 

of images 
31 42 11 32 42 10 

False 

classified 

images 

0 1 1 0 0 0 

Scoring 

accuracy (%) 
97.6 100 

 

In Table 3, we report the statistical analysis in terms 

of sensitivity, specificity and accuracy of positive and 

negative cell nuclei. We provide also the cancer 

scoring results on the complete image database. The 

obtained quantification and scoring results of the 

proposed scheme are compared in Table 3 with manual 

evaluation provided by pathologists. From these 

experiments, we demonstrate the high precision of the 

proposed segmentation method on a large database of 

real-life breast tissue images. Compared to the nuclei 

quantification provided by experts, the proposed 

method is able to detect cancer nuclei with an average 

accuracy of 97.3% in the whole image database. 

Furthermore, in assigning the cancer score of each 

case, the automated image analysis method gives 

97.6% in overall accuracy, ranking correctly 82/84 

cases.  

The efficiency of the method can be clearly notified 

in Figure 7, by comparing the segmentation results of 

our method and the ground truth from the pathologist 

panel. A high agreement can be clearly seen, in Figure 

7, between detected cancer nuclei using the proposed 

method and manually marked nuclei, especially for 

positive staining. However, we note some false benign 

nuclei detected by the automated approach that can 

lead to a weak error (less than 4%) on cancer scoring 

in the whole image. This problem is due particularly to 

the under-segmented nuclei produced by the nuclei 

separation procedure in some case of complex cell 

nuclei configurations. With these results, we conclude 

that the proposed image analysis method can reliably 

be used to assist pathologists in their diagnosis, by 

providing a second opinion for ambiguous cases that 

require further attention. 

 

×20 DAB 

image 

scored 

(1+) 

   

×40 DAB 

image 

scored 

(2+) 

   

×80 DAB 

image 

scored 

(3+) 

  
 

 
a) Automated 

segmentation of 

positive cancer 

nuclei. 

b) Automated 

segmentation of all 

cancer nuclei. 

c) Manual 

segmentation of all 

cancer nuclei 

provided by 

experts. 

Figure 7. Segmentation results of positive nuclear staining. Where 

yellow contours delimit P cancer nuclei and the white ones 

delineate the N cancer nuclei. 

4. Conclusions 

In this paper, we proposed an automated image 

segmentation method for evaluating the ER/PR status 

in breast cancer specimens. The proposed method 

combines a color deconvolution method and an 

improved morphological procedure based on the 

watershed algorithm for cell nuclei segmentation. The 

method is tested on a real-life image database 

containing the three degrees of malignancy (1+,  2+ 

and 3+). Besides, the obtained results are compared 

with the truths given by pathologists, achieving more 

than 97% in overall accuracy of nuclei quantification 

and an agreement of 97.6% in cancer scoring of the 

studied database. In conclusion, the proposed 

segmentation method for automatic assessment of 

ER/PR status in IHC stained breast sections can 

reliably be used as an additional tool to assist 

pathologists in the cancer diagnosis process.  
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