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Abstract: High speed video transmission is the key to achieve high quality live or through offline streaming. Block Matching 

Motion Estimation (ME) is adopted in video coding standards to improve the performance in terms of speed and at the same 

time, the power consumption should be minimal. The paper proposes an efficient block-based ME architecture, in which the 

motion vectors are obtained by searching for the best match in the previous frame. A resizable smart snake order is utilized for 

scanning the frames of different block sizes which improves the data reuse efficiency. The architecture is based on applying 

the global search ability of Particle Swarm Optimization (PSO) that reduces the number of logic elements.  The parallel 

execution involved in the processing of sub-regions in the search window enables the architecture to achieve high speed. The 

proposed work coded in Verilog hardware description language, and implemented with Altera cyclone II FPGA, operates at a 

maximum frequency of 265.01MHz. It is observed that the total thermal power dissipation is 74.27 mw, making it suitably 

efficient for low power implementation of ME.  
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1. Introduction 

The H.264 advanced video codec is an ITU standard, 

for encoding and decoding videos with a target coding 

efficiency twice that of H.263, and with quality 

comparable to that of the H.262. It addresses ongoing 

applications ranging from high definition digital video 

disc or BluRay for living room entertainment with 

large screens, to digital video broadcasting for 

handheld terminals with small screens [4]. The 

compression efficiency is not the result of a single 

feature, but rather a combination of a number of 

encoding tools. Figure 1 depicts the block diagram of 

the H.264 encoder [25]. The encoder contains three 

steps: Prediction, transformation/quantization and 

entropy encoding.  Macro block mode decision and 

Motion Estimation (ME) are the most computationally 

expensive processes. Mode decision is a process in 

which for each block-size, the bit-rate and distortion 

are calculated, by encoding and decoding the video. 
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Figure 1.  H.264 Encoder. 

ME is an inter-coding technique. Inter coding refers 

to a mechanism of finding the co-relation between two 

frames, which are not far away from each other (one 

called the reference frame and the other called the 

current frame), and then encoding the information 

which is a function of this co-relation instead of the 

frame itself. In the H.264 encoder system, ME is part 

of the prediction step. It contains mainly two parts: 

The Integer Motion Estimation (IME) and the 

fractional ME. According to the runtime profile of the 

H.264 Joint Model (JM) encoder, the IME consumes 

close to 60% of the total encoder time, and up to 90% 

when the fractional ME is included. Therefore, 

efficient ME algorithms and hardware architectures for 

IME are needed. This paper is about the IME 

algorithm. 

In the IME, the current frame is divided into non-

overlapping NxN Macroblocks (MB). In the reference 

frame, for each MB a search window is defined around 

a point. Each point in the search window corresponds 

to a candidate MB to predict the current MB. A 

distortion measure is defined to measure the similarity 

between the candidate MB and the current MB. A 

search is performed for the best matched candidate MB 

with maximum similarity within the search window. 

The displacement of the best matched MB from the 

current MB is the Motion Vector (MV) [6, 13, 27].  

There are many mismatch measures such as the Sum of 

Absolute Difference (SAD), the Sum of Squared 

Difference (SSD) and the Sum of Absolute 

Transformed Difference (SATD). Our method uses the 

SSD as the performance evaluation criterion. 
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The block matching approach is the most widely 

used ME module, and it is also adopted in all the 

existing video coding standards due to its simplicity 

and good performance. Among all the Block Matching 

Algorithms (BMAs), the Full Search Block Matching 

Algorithms (FSBMA) is the most popular [7]. An 

important coding tool of H.264 is the variable block 

size matching algorithm for ME. Variable Block Size 

Motion Estimation (VBSME) provides more accurate 

predictions, when compared to the traditional Fixed 

Block Size Motion Estimation (FBSME). In the 

FBSME, if an MB consists of two objects with 

different motion directions, the coding performance is 

poor [10]. 

On the other hand, in the VBSME, the MB can be 

divided into smaller blocks, in order to fit the different 

motion directions [3]. And hence, the coding 

performance is improved.  In the H.264/AVC, an MB 

can be divided into seven kinds of blocks of 4x4, 4x8, 

8x4, 8x8, 8x16, 16x8, and 16x16, as shown in 

Figure 2. Though, the VBSME can achieve a higher 

compression ratio, it involves huge computational 

complexity and also increases the difficulty of ME 

hardware implementation. 
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Figure 2. Variable block size. 

Recent researchers apply the probabilistic searching 

method, such as Particle Swarm Optimization (PSO) to 

address ME problems. The PSO algorithm utilizes the 

global optimization characteristics of the swarm 

intelligent, to obtain better global estimation, 

especially for video sequences with violent motion 

[20]. Since the global optimal solution is found only 

after finishing several iterations, the computational 

complexity of the PSO algorithm becomes very high. 

This could be overcome by using hybrid algorithms 

[28]. This paper utilizes the benefits of the PSO in 

block based ME, by applying the resizable snake scan 

concept. 

The rest of this paper is organized as follows: 

Section 2 presents a literature review of existing 

optimization algorithms. Section 3 discusses the 

existing scanning methods. Section 4 gives an 

overview of PSO. In section 5, an efficient ME 

architecture based on PSO is proposed to which the 

resizable smart snake scan is applied. The performance 

of ME architecture is analyzed in terms of the SSD. 

The implemented results using Altera cyclone II 

FPGA, are presented in section 6. In section 7, the 

comparison of the existing and proposed architecture is 

discussed. Finally, a brief conclusion is given in 

section 8. 

2. Review of Optimization Algorithms 

The existing block matching algorithms are the three 

step search proposed by Koga et al. [14], the New 

Three Step Search (NTSS) proposed by Li et al. [15], 

the Four Step Search (4SS)  proposed by Po and Ma 

[21], the Diamond Search (DS) [18] and the Hexagon 

Search (HS) [1]. The drawback is that these algorithms 

are susceptible to being trapped in local optima on the 

error surface. In order to avoid the problem of local 

minima, several approaches are presented in the 

literature to solve the problem of ME.  One such 

approach is the Genetic Algorithm (GA) which has 

been considered for block matching motion estimation 

by Ouaazizi et al. [5]. However, the drawback is that 

the algorithm becomes complex and suffers from a 

high computationality burden. The concept of 

Simulated Annealing (SA) is used by Shi et al. [24] to 

control the searching process and to adaptively choose 

the intensive search region. In addition to the GA and 

SA, PSO is used to solve the problem of ME in the 

literature [2, 8, 9, 16, 19, 20, 22, 23]. 

PSO is a population based stochastic optimization 

technique developed by Kennedy and Eberhart [12]. 

Block matching is an optimization problem, and it is 

necessary to reduce the complexity and to improve its 

performance. The PSO method is used to solve the 

problem, by selecting the initial individuals based on 

random points and this improves the speed of 

convergence. The PSO iterations can also achieve 

faster convergence when the temporal correlation with 

the collocated block in the adjacent frame is exploited.  

The algorithm proposed by Jacob and Pandian[8] using 

the PSO, maintains high estimation accuracy in block-

based motion estimation. The good-point set theory is 

used to choose better points than random selection to 

accelerate the convergence of the algorithm. The PSO, 

based on the good-point set theory, reduces the 

deviation between random numbers and improves the 

estimation accuracy [16]. 

The correlation between local statistical 

characteristics, scene duration and scene change is 

analysed, and based on this analysis, a scene change 

algorithm for the H.264 codec using the PSO is used. It 

reduces the complexity involved in the scene changes 

between frames [22].  In the research work proposed 

by Jalloul [9], a ME scheme based on PSO strategies is 

applied to find the optimal MVs for all the 

macroblocks of a given frame in parallel, which yields 

a tremendous speed up for encoding and decoding 

applications. The number of search points can be 

reduced using a pattern based PSO in ME. The PSO is 

modified to get accurate solutions in addressing ME 
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problems [19]. Our research focuses on applying the 

concept of PSO with the scanning algorithm in ME, to 

achieve better speed and to make it suitable for video 

coding applications. 

3. Existing Scanning Methods 

Full Search (FS) is the simplest, and the most 

computation expensive search algorithm, which 

exhaustively searches all the candidate points in the 

search range. Several fast search algorithms have been 

developed to reduce the computational complexity of 

the FS. They can be roughly classified into lossy and 

lossless algorithms. Existing ME implementations are 

done using the FS, since it has hardware friendly 

features, such as a regular data flow and low control 

overhead [14]. 

There are different methods of scanning. Zigzag 

scanning is used to convert a 2D image matrix into a 1-

D vector at the encoder. The horizontal zigzag scan 

mode is used, in order to reduce the partitions and 

improve the IO utilization of the search window 

memory. Two approaches are applied in [9]. First, the 

reference pixels are rearranged in the search window 

memory. And second, instead of reading the pixels in 

the same row, the design reads one column pixels from 

the rearranged search window and pushes them into 

the reference pixel buffer. The raster scan is effective 

in reusing data horizontally, with a relatively high data 

re-use ratio, but with redundant loading. The scan 

order introduced in [10], for reading and writing the 

reference data, improves the efficiency of memory 

accessing and also obtains high data re-use of the 

search area. 

Data re-usability is improved slightly by another 

scanning order called the snake scan. In both the raster 

and snake scans, the data re-use ratio and search 

window size are fixed. The smart snake scan in [8, 14] 

achieves variable data re-use ratios and minimum 

redundant data loading. Based on the smart snake scan, 

the resizable smart snake scan is used, whose range of 

scanning depends on the variations involved between 

successive frames based on the PSO. 

4. Overview of Particle Swarm 

Optimization 

PSO is an optimization method, based on Swarm 

intelligence. The system is initialized by a set of 

random values, and then looks for the optimal solution 

by updating these candidates. In the PSO, potential 

solutions or particles move in the solution, while 

tracking the optimal particles. In the PSO, each particle 

periodically updates its own velocity and position, as 

given in Equations 1 and 2: 

  Vin(t+1)=W×Vi1(t)+C1×R1(.)×(Pin-Xin)+C2×R2(.)×(Pgn-Xin) 

                Xin(t+1)=Xin(t)+Vin(t+1), 1 ≤ i ≤ N, 1 ≤ n ≤ D 

Where N is the number of particles and D is the 

dimensionality; Vi= (Vi1, Vi2, …, Vin), Vin Є[-Vmax, Vmax] 

is the velocity vector of particle i, which decides the 

particle’s displacement in each iteration. Similarly, Xi= 

(Xi1, Xi2, ..., Xin), XinЄ[-Xmax, Xmax] is the position vector 

of particle i, which is a potential solution in solution 

space. W is the inertial weight which decreases 

linearly; C1 and C2 are both positive constants, called 

the acceleration factors, which are generally set to 2.0; 

R1(.) and R2(.) are two independent random numbers 

distributed uniformly over the range [0, 1]; and Pg, Pi 

are the best solutions developed by the group and itself 

respectively [12]. In the t+1 time iteration, particle i 

uses Pg and Pi as the heuristic information, to update 

its own velocity and position. The first terms in 

Equation 1 represent diversification, while the second 

and third, represent intensification. A balance between 

diversification and intensification is to be achieved, 

based on which the optimization progress is possible. 

5. Proposed Method 

This section proposes the architecture for the efficient 

block-based ME. It utilizes the resizable smart snake 

scan order, and finds the sum of squared difference. 

The best match is obtained by using PSO. Data flow is 

discussed in section 4.4, which explains the processing 

of the current frame and reference frame, in and out of 

the estimator. 

5.1. Concept of PSO 

The PSO is initialized with a group of random particles 

and in every iteration, each particle is updated by the 

two best values, Pi and Pg which indicate the Pbest and 

Gbest respectively, as shown in Equation 1. Here the 

population chosen is N=5 particles. These particles are 

placed in the sub-region of the search window. Each 

particle traverses in the corresponding sub-regions to 

find the minimum Pbest value, using the SSD 

calculation. The particle’s traversing order is in the 

form of a snake scan order. After all the particles are 

searched in the corresponding sub-regions, the 

minimum Pbest value of the five particles are used, for 

finding the Gbest value of the current MB. These 

Gbest values give the motion vector of the current MB. 

The iterations of each particle are limited only by the 

size of the sub-regions, where the particles traverse. 

5.2. Motion Estimation Architecture 

The input from the external memory is stored in the 

registers, as shown in the block diagram, Figure 3. 

From the Register Array (RA), the input is then sent to 

the process control unit. The reference frame is stored 

in RAM. The reconfigurable search RA R0 , R1, R2, R3, 

R4 utilizes the array of registers for the data reusability 

of each particle in its sub-region. The block based 

algorithm is implemented using the PSO. All these are 
(2) 

(1) 
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implemented in the blocks called the pattern analyser 

and Process Element (PE). 
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Figure 3. Block diagram of the ME architecture. 

The image/frame is analyzed pixel by pixel, in the 

pattern analyzer which is present in the process control 

unit. The result is either stored in the registers or given 

to the data selector, which is connected to the process 

element. In this unit, the particles are processed after 

the application of the clock, and the SSD calculation is 

scheduled and then performed. The PE consists of the 

XOR array, adder and accumulator, which performs 

the processing of the current and reference frame. 

Figure 4 shows the partial schematic of PE during 

implementation. 

 

Figure 4. Partial schematic of the PE as implemented. 

The data selector is used to select the block to be 

processed. When one frame is processed, the next 

frame to be processed is stored in the search RA. The 

output of the PSO from the pattern analyzer is sent to 

the control sequence generator, which generates the 

sequences. Then, the output of the process elements is 

sent as MV in the last stage. The processing also takes 

advantage of the resizable smart snake scanning 

concept. The iteration is continued for the rest of the 

reference frames. 

This architecture has 2 benefits: First, the proposed 

work reduces the number of logic elements and is 

suitable to implement the FS.  This is possible as the 

search size (N) is decided using the concept of the 

PSO. The other advantage is that in the programming, 

the parallel execution of the coding is done, for which 

the concept of iteration is use. And it can be effectively 

applied for images/frames which have varying 

backgrounds. 

 

5.3. Resizable Snake Scan 

In the resizable smart snake scan order, the search 

window of size MxN is split into several sub-regions. 

Figure 5 shows the search window for six sub-regions 

with M=N=32, and the snake scan is performed in each 

sub-region. The PSO chooses five particles, and here 

we place the particles in each sub-region. 
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 Figure 5.  Resizable snake scan. 

Based on the positioning of the particle, the particle 

traverses from top to bottom or bottom to top, or left to 

right or right to left, along the width of the sub-regions. 

Let us consider the particle P1 in the first sub-region, 

whose position is (0, 3), as indicated in Figure 6. In 

step I1, the reference pixels of size 16x16 are loaded 

into the PE array, and the SSD is calculated. In step I2, 

the remaining row pixels of width ‘W’ are loaded by 

successive clock cycles, and the corresponding SSD 

values are calculated for the particles. While the 

particles traverse in the row, the reference pixels that 

are re-used, are moved to the RA. 

 

Figure 6. Resizable snake scan in a sub-region. 

After processing the first row, step I3 is used to 

move to the next row. In step I4, the particle traverses 

in the reverse direction. In each step, the reused 

reference data is moved into the RA. For each SSD 

calculation, the values evaluated are compared with the 

Pbest value. If the new SSD value is smaller than the 

Pbest value, the Pbest value is replaced by the SSD 

value; otherwise, the older Pbest value is used for 

comparison. Since the six
th
 sub-region does not have 

any particle, the particle P5 continues the scanning in 

the next sub-region. Thus, the resizable smart scan is 

applied to the all five particles in different positions at 

the same time, which improves the speed of the 

algorithm. 

5.4. Data flow for the ME Architecture 

Let us consider M=2 and N=4. The RA contains (M-1) 

columns. The column indicates the data reusability of 
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the pixels stored in the RA, as shown in Figure 7. In 

step A, the current pixels and the reference pixels are 

propagated into the PE array. 
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Figure 7. Data flow for the ME architecture. 

After calculating the SSD for the first search point 

at (0, 3), the three (N-1) reference pixels are 

propagated into the column of the RA in step B. A new 

column of reference pixels R07, R17, R27, and R37 is 

loaded into the PE array. The SSD of a new search 

point (0, 4) is calculated in step B. In step C, a new 

row of reference pixels R44, R45, R46, and R47 is loaded 

into the PE array and the RA is not changed. In step D, 

only one reference pixel R43 is loaded, and data 

reusability is achieved. In step E, a new row of 

reference pixels is loaded and the iteration continues. 

Table 1 summarizes the frame data flow, in and out of 

the estimator. For each clock cycle, the data is read 

from the memory. The RA shows the reusability of the 

data. For each traversal, a search point is obtained. 

Table 1. Data flow for the ME architecture. 

Cycle Step Read from Memory Data in RA Search Point 

0 initial A1 R03, R13, R23, R33 _  

1 A2 R04, R14, R24, R34 _  

2 A3 R05, R15, R25, R35 _  

3 A4 R06, R16, R26, R36 _ (0, 3) 

4 B R07, R17, R27, R37 R13, R23, R03 (0, 4) 

5 C R44, R45, R46, R47 R13, R23, R03 (1, 4) 

6 D R43 R27, R37, R47 (1, 3) 

7 E R53, R54, R55, R56 R27, R37, R47 (2, 3) 

5.5. Sum of Squared Difference 

The performance is analysed in terms of the SSD, 

which is a widely used simple algorithm for measuring 

the similarity between the image blocks. The 

difference between each pixel in the block is used for 

comparison. These differences are squared to create a 

block similarity, and a summation is performed on the 

obtained output. The SSD is preferred in our work, as 

it magnifies even the small differences, and can be 

used for object recognition, the generation of disparity 

maps for stereo images, and ME for video 

compression. 

SSD = Σi,jϵw (I1(i, j) - I2(x + i, y + j))2 

Where, i, j-> row and column of current frame I1, x, y> 

row and column of reference frame I2, w-> window 

size. 

Initially, the search size is chosen for the minimum 

value 4x4. This could be extended for different block 

sizes depending on the variations between successive 

frames. The partial 4x4 current frame and reference 

frame of a Foreman sequence, applied as inputs to the 

motion estimator, are shown in Table 2. 

Table 2. Current frame and reference frame. 

Current Frame Reference Frame 

127 98 98 97 104 103 97 100 

98 96 101 100 99 97 95 100 

99 98 98 97 98 97 96 96 

98 96 101 100 101 102 102 98 

 

As indicated in Equation 3, the difference is 

estimated and the sum of the squared output is 

obtained as 659. The simulation waveform is shown in 

Figure 8 below. The process is repeated for the next 

four pixels in the reference frame and so on. This 

process continues until the best match is found. Then 

the process stops searching the rest of the pixels in the 

reference frame. 

 

Figure 8. Simulation result of SSD calculation. 

6. Implementation Results 

The performance analysis of the ME architecture is 

being coded in Verilog HDL. The implementation 

results are shown in Tables 3 and 4. The architecture is 

implemented, using EP2C20F256C6 cyclone II Altera 

FPGA. The performance of the architecture is done in 

terms of the number of multipliers, the number of 

adders, the number of registers, the number of logic 

elements and the operating frequency. 

Table 3. Synthesis report of ME architecture. 

FPGA Altera Cyclone II EP2C20F256C6 

Total logic elements 12,152 

Total Combinational functions 12,120 

Total registers 1,165 

Total pins 63 

Maximum Operating frequency(MHz) 265.01 MHz 

Table 4. Power analysis report of ME architecture. 

Total Thermal Power 

Dissipation (mw) 

Core Static Thermal Power 

Dissipation (mw) 

I/O Thermal Power 

Dissipation (mw) 

74.27 47.40 26.87 

From the implementation result, it is clear that 

265.01 MHz of frequency of operation is achieved. 

The total power dissipation of the proposed 

architectures is 74.27 mW, which makes it suitable for 

low power applications. 

(3) 

http://en.wikipedia.org/wiki/Object_recognition_%28computer_vision%29
http://en.wikipedia.org/wiki/Binocular_disparity
http://en.wikipedia.org/wiki/Binocular_disparity
http://en.wikipedia.org/wiki/Computer_stereo_vision
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Video_compression
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7. Comparison of ME Architectures 

The proposed work is compared with the other ME 

architectures, which includes both the traditional 

FBSME and VBSME. The variable block size ME 

architecture in [3] utilizes the modified snake scan 

order and operates at a frequency of 108 MHz, whereas 

the architecture in [11] applies raster scanning for 

processing different blocks and operates at 130 MHz . 

The architecture in [26] uses the snake scan for 

processing variable block size frames at the operating 

frequency of 250 MHz, with a power consumption of 

118mw. The FBSME architecture in [10] operates at 

200 MHz. It is based on the Zig-Zag scan method and 

utilizes 40K logic elements. Zuo et al. [29] proposes an 

architecture in, which uses an efficient sub pixel search 

algorithm that will simplify the process of variable 

block size ME. It is capable of processing frames at an 

operating frequency of 200 MHz, with 530k gate 

count. In [17], the VBSME architecture operates at a 

maximum frequency of 200 MHz with a power 

consumption of 729 mw. It is based on the raster scan 

method. From the graph shown in Figure 9, it is clear 

that the proposed design method based on PSO 

achieves a high speed of 265.01 MHz, when compared 

to other existing methods suitable for real time video 

applications. 

 

Figure 9. Comparison of fixed block size and variable block size 

ME architectures. 

8. Conclusions 

A high speed and efficient ME VLSI architecture is 

proposed in this paper. Based on applying the global 

search ability of the PSO, the number of logic elements 

is reduced. The Resizable smart scan order is used to 

improve the data reuse efficiency. The proposed 

architecture is coded in hardware description language, 

and implemented with Altera cyclone II FPGA. The 

parallel processing of the input coefficients is done to 

achieve a high speed of 265.01MHz, suitable for 

handling high speed, low power multimedia 

applications.  Hybrid PSO techniques can be used to 

further implement parallel processing, so as to reduce 

the computational complexity. 
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