
956 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Hybrid User Acceptance Test Procedure to

Improve the Software Quality

Natarajan Sowri Raja Pillai

Department of Information Technology

Raak College of Engineering and Technology,

India

sowrirajacse@gmail.com

Ranganathan Rani Hemamalini

Department of Electrical and Electronics Engineering

St. Peters Institute of Higher Education and Research,

India

ranihema@yahoo.com

Abstract: Fast-growing software needs result in the rise of quality software in technical and time challenges in software

development and the impact the cost and scarcity of resources addressed by the companies. Thus, this research focuses on

optimal implementation of the User Acceptance Testing (UAT) and the process generation integration. The Software

Development Life Cycle (SDLC) was adapted to develop software and introduce the UAT process right from the initial phase

of the software development. Additionally, it is devised to maximise time reduction by implementing the client testing in all the

three processes. A High Capability to Detect (HCD) procedure has been incorporated in the problem formulation that has

optimally identified sensitive bugs. A Modified Reuse of Code (MRC) is proposed for a feasible time-saving solution. The

proposed UAT will provide an optimal solution in the software testing phases implemented earlier than black-box testing. The

proposed UAT has significantly better production time, development cost, and software quality in comparison to other

traditional UATs. The study's findings were corroborated by the output data from the UAT cases. The UAT ensures the quality

of the product in the early phase of the development and implementation of the projects. This will minimise the risk during and

post-implementation of bugs and achieve the target audience’s needs.

Keywords: Black box testing, high capability to detect, modified reuse of code, user acceptance test.

Received April 18, 2021; accepted October 21, 2021

https://doi.org/10.34028/iajit/19/6/14

1. Introduction

Software Testing is made up of several stages or

phases. Software testing and its precursor, software

development, is made up of multiple phases. All the

phases mentioned above make up the two main basic

lifecycles, namely Software Development Life Cycle

and Software Testing Life Cycle. The stages involved

in the Software Development Life Cycle (SDLC) are

Business Analysis, Requirement Gathering,

Requirement Analysis, Design, Development, Testing,

Implementation, and Maintenance. The testing process

in SDLC is done using the stages of the Software

Testing Life Cycle (STLC). Unit testing, functional

verification testing, system integration testing, system

verification testing, and User/Client Acceptance

Testing are the steps of the STLC (CAT).

Testing is a vital part of the software development

process. The quality of the software testing is used to

determine the quality of the software. Due to the

crucial nature of testing, a lot of human effort and

resources are being spent on planning and executing

testing. The classic waterfall SDLC model is being

considered throughout the length of this work since

this model is widely accepted among major software

companies which develop software. Irrespective of the

SDLC model being followed, there is an emphasis on

testing. Since the quality of the software plays a

majorrole, keen care is being taken by all the

companies to test for the quality. The last and end part

in providing quality of developed software is the

company's system verification testing. However, the

customer or client or user is the actual person to use

the software after implementation. On this

consideration, CAT is being carried out at every firm.

At this juncture, software quality is a requirement of

the client or customer [5]. However, the client or the

customer has not been involved throughout the

software development and testing processes. The only

phase where the customer gets involved is at the client

or customer acceptance testing. The software passes

numerous phases in the development life cycle and the

testing life cycle.

Hence, one has to be very ardent on quality at the

beginning than at the end. A quality product is a

product that ensures quality right from its base. So, to

ensure quality from its base, one has to test it from the

base. This is a primary requirement for any user,

developer, or other person involved in developing the

software. The reason for this research is the query if

the quality is being required from the base by the client

or customer, why is the testing being carried out by the

customer or client at the end of the testing. This kind of

testing at the end leads to enormous usage of human

resources, huge costs, and a lot more on time. The

actual proposal of the research is to ensure user or

https://doi.org/10.34028/iajit/19/6/14

Hybrid User Acceptance Test Procedure to Improve ... 957

client acceptance test right from the beginning of the

development life cycle. The testing personnel must

include clients and experts from the customer group.

Any kind of formal test intervention from the client or

customer improves the quality of the software product

or project. Every development and testing phase can be

included with a client or customer acceptance testing to

resources, cost, and time.

This research work is organized in this paper as

follows: section 1 describe about the need for software

testing, followed by levels of software testing and

motivation of this research. The detailed literature

survey is covered in section 2. The problem

specification of this research work is described in

section 3. The adopted research methodology,

comparative studies and results are discussed in section

4. Finally, the section 5 explain the outcome of this

research work is given as conclusion.

1.1. Software Testing

The quality of the software depends on the role of the

software development life cycle in the software

development process. To meet the customer

requirements, software quality is the top-level priority

[28]. Regarding the software engineering area,

Verification and Validation (V&V) methods are

utilised to guarantee the quality of software items. The

reason for V&V is to help the improvement of quality

software frameworks. Software testing is a critical

V&V movement that looks at the conduct of a software

framework on a limited arrangement of experiments

against the normal conduct [29].

Progressively mind start and basic software

frameworks have made software testing a very vital

movement. Software testing is directed through the

software advancement and upkeep life cycle and ought

to be upheld by a distinct and controlled testing

process [27]. The activities of the testing process in

software development are defect tracking, test logs,

results evaluation, test execution, developing the test

environment and test planning [30].

1.2. Levels of Software Testing

The levels of software testing are categorised into four

levels. These levels are as follows [5],

 Unit Testing

 Integration Testing

 System Testing

 User Acceptance Testing

1.2.1. Unit Testing

The isolated modules are the portion of the software

code that will be tested with the functionality of the

requirements given by the clients. The developer itself

will do this unit testing. All the developers will test

their module as unit testing in the same project.

1.2.2. Integration Testing

After completing the unit testing, this type of testing

will involve more than one or any number of small

modules. This ensures the error-free software, data

flow and flow of control after combining all the

modules in a project. Integration tests will be done by

the testers only.

1.2.3. System Testing

This type of test involves different two types of testing,

functional and non-functional testing. This Test will

ensure that overall software testing is against the

requirement given by the client. The testing team will

do this type of testing.

1.2.4. User Acceptance Testing

Customer requirements will be validated with this type

of testing. The user acceptance test will ensure the

customer's acceptance of what they want to do with the

software. UAT test consists of two levels of testing,

Alpha testing and Beta testing.

1.3. Motivation of the Research

This research work will motivate the software

developers in different ways, as shown below,

 Finding the defects in the code will be increased to

get more quality of the software.

 Applying for this framework, considering the cost

of the software development will be reduced.

 The quality of the software will be increased.

2. Literature Review

Latorre [16] presented an approach for acceptance

testing of the User Interface-equipped Internet of

Things systems. The author’s approach to user

acceptance testing is new for cloud-based applications.

Mutation Testing was used, and the effectiveness of

using this type of testing is enhanced. Test suites that

are used at this Internet of Things (IOT) based system

are adopted. Since the newly adopted suites are

unfamiliar to prior users, they need hands-on

experience to conduct the acceptance testing. As said

before, the acceptance testing conducted is a new type,

but the exact users could not perform the acceptance

test.

Nuzha and Meenal [24] stated a new acceptance

testing form. The acceptance criteria form has a Given-

When-Then template. The criteria are divided into

steps. The interdependencies are determined and

numbered. The output of one step becomes an input for

another step. A dependency tree of the entire steps of

the testing is formed. The tree thus formed has a

weighted tree wherever there is a decision that occurs.

Hence the coverage of the Test is being generated.

Through this template, the coverage of the tests is

958 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

found, and therefore there is a vision being obtained of

the quality of the software. All these above works on

positive test cases and not likely on negative test cases.

Henard et al. [9] presented a combination of

interaction and diversity-based techniques instead of

the traditional white and black box techniques. The

authors found the difference in quality between the

older techniques and the new combinational testing

technique. They discovered an overlap between the

regression tests in the white box and the black box. By

conducting white box regression tests at the initial

level, it would be best for the quality of the software

instead of releasing multiple versions of the same.

Since the developers conducted the white-box tests, not

many bugs would be found during the white box

regression test.

Kochhar et al. [15] Unit Test-Driven Development

(UTDD) and Acceptance Test-Driven Development

(ATDD) are two product development approaches that

have been used to create software. The costs involved

in the development of the software by using these test-

driven development techniques were economical. Even

though the cost achieved for development was

economical, there was a requirement for extensive help

from the customer. There was a particular boost in the

quality of the software while these techniques were

used. As an additional requirement, this kind of

development process requires more cooperative clients.

The authors developed a knowledge-based advisory

system that fulfilled the role of a “virtual quality

editor”. The system provided assessment results and

suggestions based on the prerequisites provided [6].

Using programming language standards, the authors

developed a code review technique for achieving

maximum software quality. The program suggests

whether the code quality can be improved and helps

junior developers and students to achieve a good

coding attitude [1].

Minhas et al. [22] presented an improved attempt by

implementing the Business-Driven Acceptance Test

methodology for software quality tests. Selective test

cases and sceptical scenarios are being used to test the

software. The uncertainty of the ad-hoc testing leads to

the poor quality of the software. This particular

methodology gained confidence at companies. Thus,

users of the business gained technical knowledge of the

software’s functioning. According to the authors,

white-box, black-box, and grey-box testing are the

three most general and widely used software testing

methods for identifying defects [5]. Yu and Pang [31]

show that the improved uniform design strategy with

all valid and invalid levels could be used to generate

fewer test data than that of other selected strategies,

and the test effects are appropriate to that of other

strategies. Khan and Khan [13] have conducted a study

on Smells in software test code: A survey of

knowledge in industry and academia. He conducted a

multivocal literature mapping (Classification) for

scientific literature and practitioners. One hundred

sixty-six sources were conducted. Test smells on

surveying industry and academia. Liskin et al. [19]

addressed the need for structured and reliable software

testing. Their model (ExET) was used to set off

important factors efficient and effective testing large-

scale systems. They concluded that it is novel,

actionable, and useful in practice.

In this paper, the authors have described and

compared the two most important and commonly used

software testing techniques for detecting errors: Black

box testing and white box testing [29]. Nomura et al.

[23] discussed the different aspects and types of testing

as the Site Reliability Engineering (SRE) and Testing

run alongside either by static testing and reviews or

running the system/SW to confirm the compliance of

requirements. In this paper, the authors have tested

techniques and tools and described them as well as

some typical latest research has also been summarised

[11]. Arnicane [2] focused on the theoretical bounds of

the size of test suites or the complexity of domain

testing methods and included a subsumption hierarchy

that attempted to relate various coverage criteria

associated with the identified domain testing methods.

Coutinho et al. [4] analysed bibliographic of 1099

papers related to Agile Requirements Engineering with

Software Testing (REST). They chose 14 of these for a

more detailed study based on the systematic mapping

principles. With test case design as a Software Testing

methodology, test cases are an important artefact.

Authors proposed an exponential software reliability

model for fault detection with time variance [26]. They

formulated multi-objective software reliability model

for testing. According to a weighted cost function and

testing effort metrics, they contrasted a multi-objective

model with modules. Mei et al. [21] aimed to explore

the regression testing for large-scale embedded

software development. In their study qualitative part

two large-scale companies taken for analysis with five

software testing teams. They conclude that firms

should reassess their regression testing strategy.

3. Problem Specification

The traditional user acceptance testing is usually

conducted once the development is completed. At this

stage, the user would be provided with all the existing

bugs. Some checking conducted by the developer

beforehand can only reveal flaws in the code. Any test

carried out by the tester will only expose bugs in the

defined technical specifications of a particular

functionality [18]. Both the developers and the testers

find bugs and communicate between themselves.

Hence, the bugs get closed without the knowledge of

the actual user. The end-user or client gets to know

only during the completion of the software

development [28]. This leads to much extra time, cost,

and resources that would have to be utilised, and

Hybrid User Acceptance Test Procedure to Improve ... 959

repetitive work occurs for the developer and tester. The

entire team which gets involved in the developmental

process undergoes all these issues [27]. When the

whole team deals with the same problems, the

software's consistency suffers. During the growth and

testing process, retesting and regression testing are

performed on instances not required [17]. The user

would have a different requirement, but the developer

and tester would be wasting time without the

intervention of the actual user. A solution to this

process is required. The occurrence in the development

must be indicated as well as tested with the actual user

or customer.

To overcome the above problem, the research

conducted to reduce the process that occurs in the

execution of test phases, find the bugs at the initial

phase of testing, investigate, and update the client

daily, which will reduce the time involved in the

development of the software. Further, this work

reduces the resources for the development and testing

process, follows a framework for testing, and improves

the overall quality of the software.

4. Research Methodology

The software testing life cycle involves a list of

processes, but the processes undergo repetition.

Repeating work cannot be intended for the workforce

or afforded by the management. Also, an increase in

time for completing work gives the developing

companies a bad reputation from the client's

perspective. Since the status updates show that the

same glitches or defects keep cropping up, repetitive

software development and testing cycles can be

stopped [3]. So, a process cycle is followed at the unit

testing level. The need for human capital participation

in software testing exists at two key stages. System

integration and system maintenance testing are the two

steps of the development process [8]. The

implementation process includes two steps: system

integration and system maintenance monitoring. Until

both system deployment and system evaluation testing,

functional verification testing is performed [27].

At the beginning of the production process, this is a

waste of time. The real user of the app is the consumer.

The customer or client is the one who is in charge of

providing software specifications, and the software is

built based on those requirements. The findings of unit

testing are rarely if ever, shared with the developer or

customer [25]. The customer or client should be given

a report. The customer or client is informed about the

importance of paying attention to the specific

requirement. CAT is often used [18]. As soon as a

necessary vulnerability is discovered, the flaw or error

is given domain clearance. A domain clearance is

permission from domain or industry experts that must

be received. The business/domain experts make the

requirements change with proper approval and version

control [8]. At the same time, the developers can work

on other unit developments. Every testing phase

involves a user acceptance test. This particular change

in customer acceptance testing results in a requirement

change during the implementation process. As a result,

software production and testing became less

complicated [8]. The cost, time saved, and human

resources saved are boundless. A framework is

designed and applied in order to obtain the above

variables with high quality in the applications

developed.

4.1. UAT on Every Phase

The user's position in the software's UAT and the

correlation of that specific user to be discovered. Any

step of the production process includes face-to-face

testing and self-managed testing [12]. The UAT has a

time limit and a closely regulated atmosphere for

testing. For maximum efficiency, the participants in

the process must communicate face-to-face or through

video conferencing. In this manner, the test scenarios

are thoroughly studied, and the findings are

automatically concluded [20]. As a result, the aim is to

log any contact at any stage. Self-managed research

aims to save time. Not everybody is expected to take

the exam. Off-hours testing is done, but the UAT is

done without fail at any point [14].

Figure 1. Two phases of UAT.

Figure 1 illustrates a divided two-phased UAT.

Further, it can be stated that the design, control,

management, and optimisation of these new processes

and technologies, and their integration into the existing

development process, pose significant technological

challenges to ensure their reliability and safety, to

improve and maximise their efficiency and cost

competitiveness to provide quality software to

residential, commercial, industrial, and transportation

needs.

4.2. The Flow of End User Test Planning

 Teams from various departments are involved in the

planning of the overall testing plan.

 Then lead to specific Alpha, Beta, and UAT.

The overall design of the testing plan is depicted in

Figure 2 and shows the various steps involved in the

software testing process and the user acceptance at

various levels. The User Acceptance Testing step

provided in Figure 2 can be explained in 2 phases that

have been provided in Figure 1.

960 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Figure 2. Design of test planning.

4.3. Modeling of UAT Framework

The objectives for optimum operation during UAT,

users, assess the software to grasp mandatory

responsibilities in real-world setups about conditions.

UAT framework adopted in this paper is given in

Figure 3. UAT group checks the inspected report one

by one, includes significant remarks, and shares them

repeatedly.

Figure 3. UAT framework.

Software Workflow with delay Problem

 The software that is considered is an IVR-based project.

 The computational flow for testing is described as

follows.

 Step-1: Requirement document is converted to Test cases.

 Step-2: Implementation of unit testing with the generated

test case from the requirement specification.

 Step-3: Completing the Alpha and Beta testing followed

by the proposed UAT framework.

 Step-4: Determine the major factors to consider .

Reuse of Test cases-Reduces Re-writing time

Defects Detection-Domain Expert and Module segregation

Test Costs -Number of Resources involved

Test Cycle Time-Test time for KLOC (Thousands of lines of

Code)

Where Dt = the defects found at early stages over time

 Step-5: Comparison of the results hence obtained.

Table 1 shows the input data utilised in this study for

various testing scenarios.

Table 1. Input Data used in this research.

UAT Traditional

Framework

(Defects Found)

Cost Agile on

Traditional UAT

(Defects Found)

Cost Proposed UAT

with Agile

Practices

(Defects Found)

Cost

14 14 17 13 19 11

12 18 18 17 15 10

11 16 14 15 18 12

13 15 15 14 17 13

10 17 16 16 16 9

60 80 80 75 85 55

4.4. Test cases

 Step 1: Define Test Document: In the baseline

version, the person updated the document, and the

number of interactions is defined along with the

occurrence dates.

Figure 4 shows the sample of Test case document

initiation. This sample document contains the

information about the Project ID, Document Revision

histories such as Revision version, Date, a summary of

changes, and Author. This document also contains

Reference Documents such as work products, version

No, and Date. This will help to reduce the tester time

to complete the testing work and gets approval from

the users when and where required.

Figure 4. Test case document initiation.

 Step 2: Implementation: this research study

concentrates on user acceptance testing, which is

very useful in the software testing life cycle model.

The proposed framework on the User Acceptance

Test is to ensure meeting the client’s requirement at

every stage of software development. The proposed

framework will also support software testing

automation tools. The main features of UAT will

reuse the existing code wherever possible to

increase the quality of software. Figure 5 shows the

standard fields of the sample test case template,

which will give details about the Project name, Test

Case ID, Test Design by, Test Priority, Module

Name, Test Title, Test designed to date, Test

executed by, Test execution date and give the details

Hybrid User Acceptance Test Procedure to Improve ... 961

of various step to be followed to complete the Test.

The various steps show the Test Steps, Test Data,

the expected Results, Actual results obtained, and

status of the Test, whether Pass or Fail. Table 2

presents the comparison of existing framework with

the proposed UAT.

Figure 5. Standard fields of sample test case template.

Table 2. Comparison of existing framework with Proposed UAT.

Methods Defects Found Cost Software Quality

UAT Traditional Framework 60 80 70

Agile on Traditional UAT 80 75 80

Proposed UAT with Agile

Practices
85 55 93

The UAT consists of different test plans, which are

done at different levels of SDLC. This testing is

included in all phases of the Software Testing Life

Cycle to improve the software quality and complete the

work on time with the optimised cost of the project.

Each test plan is a sequence of the input process

model, functional testing of the particular model, and

corresponding output of the concerned process model.

The test cases planned during the project plan to

accompany all the testing plans to complete the project

smoothly and within the planned duration. The test

plans are automated in every phase of work and reduce

the time required for unit-level testing. This is carried

at every process level to achieve higher efficiency of

the software product.

The new framework of UAT in the software testing

model will increase the confidence of clients’ software

that meets their requirements at every stage. This will

be tested along with the client approval of every stage

and reduce enormous time on user-level functional

testing of the software. This ensures that developed

software is stable and robust in work. UAT is done

through the Black Box testing techniques to test the

users' point of view, and evaluation is done at every

stage of software development. The client satisfaction

is increased, and their confidence levels are also

increased in terms of their requirements are met with

their expectations. The development team and clients

have more communication to improve the quality of

the software. Thus the requirement definitions are

improved through acceptance tests and are approved

by the clients.

 Step 3: Comparison of Results and Discussion: the

data for the testing procedure is applied in a web-

based application. The user acceptance testing is

conducted, and the results are compared. The

findings show that considerations such as

production time are short, capital costs are limited,

and software quality has increased. The obtained

results from the agile type of testing are vague and

do not show any procedural change that occurred at

the end of the completion of the software

development [7]. The reports that got traversed

between the users and the development-testing team

did not have any order. The collected data are

evaluated and compared to current processes. The

following segment tabulates and explains the

comparison data.

The results are compared with the existing methods

like UAT Traditional Framework and Agile Traditional

UAT and Proposed UAT with Agile Practice in Figure

6. The obtained results are depicted in Figure 6 and

compared. The results show that the UAT with the

Agile practice offered the increased or high software

quality is found, and similarly, reduced the cost with

more defects are found in this method and got rectified.

So, the proposed hybrid method improved software

quality, found more defects and reduce total project

cost.

 Limitations: most existing acceptance testing

solutions need a Graphical User Interface (GUI)

prior to the creation of tests. Furthermore, simple

changes in the user interface might cause GUI-based

tests to fail. Many parts of GUI-based tools are

immature. Selenium tests may also fail if the driver

of the component being tested changes. In the event

of a modification request, much upkeep is

necessary. It's possible that automating a non-stable

feature may result in much maintenance.

Figure 6. Comparisons of preexisting traditional frameworks.

This project data are collected from in-house project

962 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

developers and programmed using Excel software. The

experiment was conducted with the software for UAT

traditional framework, Agile on Traditional UAT and

our proposed Hybrid model which is the combination

of traditional and Agile process.

5. Conclusions

This research discusses and contrasts the various

software testing methods used in the software

development industry [3]. The usefulness of the

techniques varies depending on the type of programme

and database associated with it. There are different

types of testing, with a white box and black box testing

being the most often used. Even the approaches vary

concerning the application. The characteristics are

depicted in the results that are taken from one of the

web-based application development processes.

This research work consists of the comparisons of

the existing frameworks with the proposed

frameworks. Compared with the traditional UAT frame

and the agile framework with the proposed hybrid

UAT framework. Proposed hybrid UAT framework

combination of traditional UAT with the Agile

framework. In this work, the number of defects found

is more than the others, and the cost of the work to be

completed is very low with others. However, the

quality of the software increases, as shown in the graph

and table.

The Acceptance Test Priority specification and

review have been completed [10]. The research results

and review of the daily research data was compared to

the testing technique used previously. The consistency

of the tested papers and the requirement adjustment

that happened is investigated. It has been discovered

that the production time, development cost, and

software quality are all significantly better than the

waterfall model testing. The study's findings were

corroborated by the output data from the User

Acceptance Test cases.

 Scope of Future Study: this research result

demonstrates the software's and the production

team's improved results. In the future, the

framework's output will be examined for other

interventional testing and automated using

automated testing methods. Further research was

needed to look at ways to minimise the amount of

time and money spent on production.

References

[1] Abdallah M. and Alrifaee M., “A Heuristic Tool

for Measuring Software Quality Using Program

Language Standards,” The International Arab

Journal of Information Technology, vol. 19, no.

3, pp. 314-322, 2022.

[2] Arnicane V., “Complexity of Equivalence Class

and Boundary Value Testing Methods,” Scientific

Paper, vol. 751, pp. 80-101, 2009.

[3] Causevic A., Sundmark D., and Punnekkat S.,

“Factors Limiting Industrial Adoption of Test

Driven Development: A Systematic Review,” in

Proceeding of 4th IEEE International Conference

on Software Testing, Verification and Validation,

Berlin, pp. 337-346, 2011.

[4] Coutinho J., Andrade W., and Machado P.,

“Requirements Engineering and Software Testing

in Agile Methodologies,” in Proceedings of the

XXXIII Brazilian Symposium on Software

Engineering, Salvador, pp. 322-331, 2019.

[5] Crispin L., “Driving Software Quality: How

Test-Driven Development Impacts Software

Quality,” IEEE Software, vol. 23, no. 6, pp. 70-

71, 2006.

[6] Eldrandaly K., “A Knowledge-Based Advisory

System for Software Quality Assurance,” The

International Arab Journal of Information

Technology, vol. 5, no. 3, pp. 304-310, 2008.

[7] Garousi V. and Küçük B., “Smells in Software

Test Code : A Survey of Knowledge in Industry

and Academia,” Journal of systems and Software,

vol. 138, pp. 52-81, 2018.

[8] Haugset B. and Stalhane T., “Automated

Acceptance Testing as an Agile Requirements

Engineering Practice,” in Proceeding of 45th

Hawaii International Conference on System

Sciences, Maui, pp. 5289-5298, 2012.

[9] Henard C., Papadakis M., Perrouin G., Klein J.,

Heymans P., and Le Traon Y., “Bypassing the

Combinatorial Explosion: Using Similarity to

Generate and Prioritize T-Wise Test

Configurations for Software Product Lines,”

IEEE Transactions on Software Engineering, vol.

40, no. 7, pp. 650-670, 2014.

[10] Ieamsaard C. and Limpiyakorn Y., “On

Integrating User Acceptance Tests Generation to

Requirements Management,” in Proceeding of

International Conference on Information

Communication and Management IPCSIT, pp.

248-252, 2011.

[11] Janzen D. and Saiedian H., “Does Test-Driven

Development Really Improve Software Design

Quality?,” IEEE Software, vol. 25, no. 2, pp. 77-

84, 2008.

[12] Kaur R., Kaur P., and Bahl K., “Acceptance

Testing of Webapplication Using Jmeter,”

International Journal of Innovative Science,

Engineering and Technology, vol. 3, no. 4, pp.

353-355, 2016.

[13] Khan M. and Khan F., “A Comparative Study of

White Box, Black Box and Grey Box Testing

Techniques,” International Journal of Advanced

Computer Science and Applications, vol. 3, no. 6,

pp. 12-19, 2012.

[14] Kim H., Ahmad A., Hwang J., Baqa H., Le Gall

F., Ortega M., and Song J., “IoT-TaaS: Towards

Hybrid User Acceptance Test Procedure to Improve ... 963

a Prospective IoT Testing Framework,” IEEE

Access, vol. 6, pp. 15480-15493, 2018.

[15] Kochhar P., Thung F., and Lo D., “Code

Coverage and Test Suite Effectiveness: Empirical

Study With Real Bugs in Large Systems,” in

Proceeding of IEEE 22nd International

Conference on Software Analysis, Evolution, and

Reengineering, Montreal, pp. 560-564, 2015.

[16] Latorre R., “A Successful Application of A Test-

Driven Development Strategy in the Industrial

Environment,” Empirical Software Engineering,

vol. 19, no. 3, pp. 753-773, 2014.

[17] Leotta M., Clerissi D., Ricca F., and Tonella P.,

“Capture-Replay Vs. Programmable Web

Testing: an Empirical Assessment During Test

Case Evolution,” in Proceeding of 20th Working

Conference on Reverse Engineering, Koblenz,

pp. 272-281, 2013.

[18] Li Z., Harman M., and Hierons R., “Search

Algorithms for Regression Test Case

Prioritization,” IEEE Transactions on Software

Engineering, vol. 33, no. 4, pp. 225-237, 2007.

[19] Liskin O., Herrmann C., Knauss E., Kurpick T.,

Rumpe B., and Schneider K., “Supporting

Acceptance Testing in Distributed Software

Projects with Integrated Feedback Systems:

Experiences and Requirements,” in Proceeding

of IEEE 7th International Conference on Global

Software Engineering, Porto Alegre, pp. 84-93,

2012.

[20] Mårtensson T., Ståhl D., Martini A., and Bosch

J., “Efficient and Effective Exploratory Testing

of Large-Scale Software,” The Journal of

Systems and Software, vol. 174, pp. 110890,

2021.

[21] Mei H., Hao D., Zhang L., Zhang L., Zhou J.,

and Rothermel G., “A Static Approach to

Prioritizing JUnit Test Cases,” IEEE

Transactions on Software Engineering, vol. 38,

no. 6, pp. 1258-1275, 2012.

[22] Minhas N., Petersen K., Börstler J., and Wnuk

K., “Regression Testing for Large-Scale

Embedded Software Development-Exploring The

State of Practice,” Information and Software

Technology, vol. 120, pp. 106254, 2020.

[23] Nomura N., Kikushima Y., and Aoyama M.,

“Business-Driven Acceptance Testing

Methodology and its Practice for E-Government

Software Systems,” in Proceeding of 20th Asia-

Pacific Software Engineering Conference,

Bangkok, pp. 99-104, 2013.

[24] Nuzha A. and Meenal H., “Framework to

Software Testing and Types,” International

Journal of Research, vol. 05, no. 21, pp. 458-

465, 2018.

[25] Pandit P. and Tahiliani S., “AgileUAT: A

Framework for User Acceptance Testing based

on User Stories and Acceptance Criteria,”

International Journal of Computer Applications,

vol. 120, no. 10, pp. 16-21, 2015.

[26] Rafique Y. and Misic V., “The Effects of Test-

Driven Development on External Quality and

Productivity: A Meta-Analysis,” IEEE

Transactions on Software Engineering, vol. 39,

no. 6, pp. 835-856, 2013.

[27] Rani P. and Mahapatra G., “Entropy Based

Enhanced Particle Swarm Optimization on Multi-

Objective Software Reliability Modelling for

Optimal Testing Resources Allocation,” Software

Testing, Verification and Reliability, vol. 31, no.

6, 2021.

[28] Shala B., Wacht B., Trick U., Lehmann A., Shala

B., Ghita B., and Shiaeles S., “Framework for

Automated Functional Testing of P2P-Based

M2M Applications,” in Proceeding of 9th

International Conference on Ubiquitous and

Future Networks, Milan, pp. 916-921, 2017.

[29] Uusitalo E., Komssi M., Kauppinen M., and

Davis A., “Linking Requirements and Testing in

Practice,” in Proceeding of 16th IEEE

International Requirements Engineering

Conference, Barcelona, pp. 265-270, 2008.

[30] Verma A., Khatana A., and Chaudhary S., “A

Comparative Study of Black Box Testing and

White Box Testing,” International Journal of

Computer Sciences and Engineering, vol. 5, no.

12, pp. 301-304, 2017.

[31] Yu B. and Pang Z., “Generating Test Data Based

on Improved Uniform Design Strategy,” Physics

Procedia, vol. 25, pp. 1245-1252, 2012.

964 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Natarajan Sowri Raja Pillai is born

in Puducherry, India and born on

2.07.1981. He is currently working

as Head of the Department

Information Technology and

Placement Officer at Raak College

of Engineering and Technology,

Puducherry. He has completed his B.E. Electrical and

Electonics Engineering in 2004 from Arunai

Engineering College and completed M.Tech.

Information Technology from St.Peters University. He

completed his Ph.D. from St. Peter’s Institute of

Higher Education and Research, Chennai on Software

Engineering in 2021. He is also completed MBA

Systems from Annamalai University. He has been

serving different institutions for the past 14 years at

various levels and involved in software testing,

teaching, student counseling, Training and Placements

for the past 8 years. His specialisation is Software

engineering, Data mining, Software Testing and

upscaling technologies. He has published more 10

papers in the national and international journals. Dr.

Sowri Raja Pillai is senior grade member in the

Software Engineering field and has received several

appreciations from Institute and society as well.

Ranganathan Rani Hemamalini is

born in Kumbakonam, Tamilnadu,

India and born on 15.01.1969. She is

currently working as Professor and

Head in the Department of Electrical

and Electronics Engineering at St.

Peter’s Institute of Higher Education

and Research, Chennai. She has completed B.E.

Electrical and Electronics Engineering in 1990 from

Alagappa Chettiar Government College of Engineering

and Technology, Karaikudi and Completed M.Tech

and Ph.D. in National Institute of Technology,

Tiruchirappalli in Controls, and Instrumentation

Engineering. She has been serving in the field of

teaching for the past 30 years at various levels. She

received BOYSCAST FELLOWSHIP award from

DST and received Air India BOLT (Broad Outlook

Learned Teacher) award from Air India. Under her

guidance 10 candidates completed Ph.D. and guiding

13 Ph.D. students. She carried one DST project, Two

AICTE and one MoEFCC sponsored project related to

control engineering with total cost of Rs. 100 lakhs.

She has Organised more than 30 Seminars/Conference/

workshop/FDP for engineering faculties which are

sponsored by AICTE, DST, CSIR, BRNS, ICMR and

DRDO. She has published more than 80 papers in the

national/international journal and conferences. She is

member of the Institute of Engineers (India), ISA,

ISTE and IEEE.

