
812 The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022

Separable High Capacity Reversible Data Hiding

Algorithm for Encrypted Images

Iyad Jafar

Computer Engineering Department,

The University of Jordan,

Jordan

iyad.jafar@ju.edu.jo

Khalid Darabkh

Computer Engineering Department,

The University of Jordan,

Jordan

k.darabkeh@ju.edu.jo

Fahed Jubair

Computer Engineering Department,

The University of Jordan,

Jordan

f.jubair@ju.edu.jo

Abstract: This paper presents a separable Reversible Data Hiding Algorithm for Encrypted Images (RDHEI) that consists of

three phases. The encryption phase in the algorithm circularly shifts the columns in the image by a random amount, blocks the

image into equal and regular blocks and maps them to irregular blocks generated based on Hilbert filling curve, and finally

complements a random subset of the blocks. The embedding phase is essentially an adapted version of the modification of the

prediction errors algorithm that is applied to each block in the encrypted image independently. In the decryption phase, and

since the algorithm is separable, the user can extract the data only, decrypt the image only, or can perform both actions

depending on the type of keys he has. When compared to a very similar and recent algorithm, performance evaluation proved

the ability of the proposed algorithm in increasing the embedding capacity with reasonable quality of the directly decrypted

image. In terms of the security, the analytical and quantitative assessment showed the superiority of the proposed algorithm in

protecting the encrypted image.

Keywords: Encryption, embedding capacity, privacy, reversible data hiding.

Received April 23, 2021, accepted December 2, 2021

https://doi.org/10.34028/iajit/19/5/13

1. Introduction

With the wide spread and use of digital multimedia

objects, copyright protection, tamper detection and

privacy have become major security concerns. In

practice, encryption, digital forensics, and secret

sharing [19, 21] are some of the technologies that have

been employed to protect multimedia objects. Data

Hiding is another concept in which secret data is

embedded imperceptibly in multimedia objects such as

text, audio, images and videos [2]. When digital images

are considered as the host or cover objects, a special

class of data hiding algorithms evolved in order to

losslessly recover both the data and the cover image

once the data is extracted. Such algorithms are referred

to as Reversible Data Hiding (RDH) algorithms and

they are useful in applications that do not tolerate

changes in the cover image such as artistic works,

medical and military images [15].

Many RDH algorithms have been proposed in the

literature to maximize the amount of data that can be

embedded, improve the quality of the stego image, and

guarantee reversibility. These algorithms can be

grouped into four basic fundamental categories,

namely, lossless compression [3, 5], Difference

Expansion (DE) [1, 17], Pixel Value Ordering (PVO)

[8, 10] and Histogram Shifting (HS) [6, 14].

Given the challenge of optimizing the design of RDH

algorithms in terms of embedding capacity, quality of

stego image and complexity, the emergence

of cloud technology has imposed a new and pressing

factor in the design of RDH algorithms [13, 21].

Recently, cloud services allow users to store and

manipulate their images. For management and storage

utilization purposes, it might be useful to embed data in

the images that reside on the cloud for different

purposes such as image annotation and authentication.

However, using the images to store the data of a third

party jeopardizes the privacy of the content owner. One

workaround is to allow the content owner to encrypt the

image using one of the known encryption schemes such

as permutation, stream cipher, DES, or AES before data

is embedded into the image in a reversible manner.

RDH algorithms designed for this purpose are usually

referred to as Reversible Data Hiding in Encrypted

Images (RDHEI).

Several RDHEI algorithms have been proposed in

the literature. One way to classify these algorithms is

based on separability. Effectively, an RDHEI algorithm

is considered either joint or separable. In the joint

methods, data extraction and image recovery are

performed jointly. In other words, extracting the data

requires decrypting the image first. Many algorithms

have been proposed in this area [7, 20, 23]. The

embedding capacity in such algorithms is usually low

and the quality of the restored image is degraded with

the possibility of generating errors in the extracted data,

especially at high payloads. On other hand, the

separable algorithms [9, 11, 22, 24] are designed such

https://doi.org/10.34028/iajit/19/5/13

Separable High Capacity Reversible Data Hiding Algorithm for Encrypted Images 813

that data extraction and image decryption can be

performed separately.

In this paper, a separable reversible data hiding

algorithm in the encrypted image domain is proposed.

The encryption process in the proposed algorithm relies

on circularly shifting the columns of the image,

blocking the image into B×1 blocks, mapping the blocks

to irregularly-shaped blocks generated from Hilbert

pattern, complementing the pixels in a set of randomly

selected blocks, and finally permuting these blocks. For

data embedding, the data hider scans the blocks and

order their pixels based on their linear index and then

uses the modification of prediction error approach to

embed the data. The algorithm showed impressive

performance in increasing the embedding capacity and

the privacy of the encrypted image when compared to a

related state-of-the-art RDHEI algorithm with a slight

and acceptable degradation in the quality of the directly-

decrypted image at high payloads.

Figure 1. Framework of the proposed algorithm.

The rest of the paper is organized as follows. In

section 2, we review two algorithms that are strongly

related to the proposed algorithm. We present the details

of the proposed algorithm in section 3 and evaluate its

performance in section 4. We conclude the paper in

section 5.

2. Related Work

Shui et al. [17] proposed a separable permutation-based

algorithm that encrypts the image using Fisher-Yates

permutation after partitioning the image into non-

uniform blocks obtained through traversing the Hilbert

curve. Additionally, another key is used to scramble and

permute pixels in each block. The authors argued that

using such permutation to encrypt the image is more

secure, analytically and visually, than stream cipher, in

addition to fact that permutation does not alter the local

correlation between pixels within the block and this has

direct impact on increasing the embedding capacity. For

data embedding, the algorithm relied on PVO [8] to

embed the data through prediction error expansion of

the minimum and maximum values in each block.

The algorithm showed impressive results in terms of

the quality of the directly decrypted image. This is due

to the fact that only two pixels are modified in each

block in the worst case. However, the embedding

capacity is quite limited especially when the block size

is increased. Technically, for an image with M×N pixels

that is blocked into blocks each with 𝐵 pixels, the

maximum number of pixels that can be used for

embedding is 2×M×N/B pixels which implies that only

(2/B×100)% of the pixels are possibly utilized in

embedding.

Nonetheless, using only two pixels from each block

for embedding has the advantage of Pushing The Peak-

Signal-To-Noise Ratio (PSNR) of the directly-

decrypted image in this algorithm to high values which

gets better as the block size increases since fewer pixels

are modified. In terms of security, the algorithm relies

on using two keys to perform permutation of blocks and

pixels and avoided using other forms of encryption in

order to preserve the correlation of the pixels. The

permutation is expected to affect some of the security

measures in the encrypted image; however, since the

pixels’ values are not modified, the entropy of the

image, which is an important security measure, after

encryption is not affected.

3. The Proposed Algorithm

The framework of the proposed algorithm is shown in

Figure 1. Similar to other RDHEI algorithms, there are

three parties involved in the framework; the content

owner, the data hider and the receiver. The algorithm is

composed of three phases: encryption, data hiding and

decryption and data extraction. The following

subsections detail the different phases in the proposed

algorithm.

814 The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022

a) Original image.

b) Circularly shifted image.

c) Blocking column-wise.

2

d) Hilbert curve for 8×8 image.

e) Blocks along the hilbert curve.

f) Mapping to hilbert blocks.

g) Complementing blocks.

h) Permutation of blocks.

Figure 2. Example on encrypting a simple image in the proposed algorithm.

3.1. Encryption Phase

For an n-bit M×N Cover Image (CI), the content owner

starts the encryption phase by considering the columns

in the image. Using the shifting key (KS), N random

values are generated to form the set S={Sk, 0 ≤ k ≤ N -

1}. The range of the values in 𝑆 is [0,M - 1], where M is

the number of rows in the image, which is the number

of pixels in each column. Afterwards, the pixels in each

column are circularly shifted using 𝑆 such that the new

position of pixel Qk,i in column CK is given by

𝑞𝑘,𝑖
′ = (𝑞𝑘,𝑖 + 𝑠𝑘) 𝑚𝑜𝑑 (𝑀 − 1)

The purpose of this step, when compared to [16], is to

create some sort of visual confusion in the encrypted

image to avoid scrambling and permuting pixels within

the block, when the image is blocked later. Figure 2-a)

shows a hypothetical 8×8 3-bit image that we will use

throughout this subsection to explain the encryption

process. Figure 2-b) shows the original image that has

been shifted column-wise circularly when S is {3, 0, 1,

3, 4, 5, 2, 1}.

The next step in the encryption phase is block

permutation. Technically, the circularly shifted image is

blocked column-wise into B×1 blocks. This blocking

generates the set G of NB blocks, where NB =[M × N /

B], such that G={ɡk, 0 ≤ k ≤ NB - 1}. The ordering and

numbering of the blocks in 𝐺 is based on column-wise

scanning. For example, the image in Figure 2-c) is

blocked into 13 blocks such that the red block is block

number 1 while the gray block is block number 13. Each

element in G is basically a B-tuple that contains the

values of the pixels in the block when they are read

column-wise such that ɡk =(vk,0, vk,1, vk,2, …, vk,B-1). For

instance, the tuple that represents the second pink block

ɡ2 in Figure 2-c) is (6, 0, 6, 7, 6).

Next, and similar to [16], the Hilbert curve for the

M×N image is generated and the pixels along the path

of the curve are grouped into 𝐵-pixel blocks to generate

the set H={hk, 0 ≤ k ≤ NB - 1}. The blocks in H are

ordered and numbered based on their location along the

Hilbert curve. For example, the red block in Figure 2-e)

is block h1, the dark-pink block is h2, and so on.

Initially, each element in H is an empty B-tuple, hk

=(xk,0, xk,1, xk,2, …, xk,B-1), or less for last block in case

M×N is not an integer multiple of B. The order of the

elements inside ℎ𝑘 is based on their column-major in

the image. Figure 2-d) shows the Hilbert curve for an

8×8 image and Figure 2-e) shows the blocks in H when

the block size is 5. Having the two sets, G and H, blocks

in G are mapped to those in H in the same order, i.e., ɡk

→ hk. The elements in the hk tuples are filled with the

values in ɡk such that vk,I → xk,i. Figure 2-f) shows how

the blocks in H are filled with values from the tuples

found in G.

In order to improve the security of the final encrypted

image, the next step in encryption is to use the

complement key KC to form the set T that contains NC

random values in the range [0, NB-1] The set T identifies

the block numbers in H that are randomly selected and

processed by complementing their pixels such that the

new pixel value of the ith pixel in the hk block is

calculated using.

𝑥𝑘,𝑖
′ = 2𝑛 − 𝑥𝑘,𝑖 , ∀ 𝑘 ∈ 𝑇

This step has the effect of flipping the pixels in NC

randomly selected blocks, which is expected to increase

the security of the encrypted image to a certain extent,

while maintaining the relative spatial correlation

between the pixels within the block. Figure 2-g)

demonstrates the effect of applying the complement

step on a subset of the blocks (diagonally-patterned

blocks) in the image in Figure 2-f) where 𝑛 here is

assumed to be 3 since the image in Figure 2-a) is

assumed to be a 3-bit image.

For example, consider the original block

h1=(2,4,3,6,5) in Figure 2-f) which is selected as one of

the blocks to be complemented to become (5, 3, 4, 1, 2).

It is clear how this simple complement operation has

preserved the absolute difference between successive

values which is an important factor in the embedding

6 7 1 1 1 0 2 5

5 6 1 2 3 4 0 1

6 2 1 1 0 7 7 7

0 7 7 4 0 1 0 1

6 1 2 3 4 4 0 1

2 2 5 6 1 2 3 1

4 0 1 6 1 2 3 4

3 3 3 1 4 0 1 1

2 7 3 6 4 1 3 1

4 6 1 6 1 4 1 5

3 2 1 1 1 2 2 1

6 7 1 1 4 2 0 7

5 1 7 2 1 0 7 1

6 2 2 1 3 0 0 1

0 0 5 4 0 4 0 1

6 3 1 3 0 7 3 4

2 7 3 6 4 1 3 1

4 6 1 6 1 4 1 5

3 2 1 1 1 2 2 1

6 7 1 1 4 2 0 7

5 1 7 2 1 0 7 1

6 2 2 1 3 0 0 1

0 0 5 4 0 4 0 1

6 3 1 3 0 7 3 4

2 3 5 6 3 5 1 1

4 6 6 7 1 1 1 4

2 7 0 7 2 7 0 7

3 1 2 0 0 7 0 3

3 1 4 3 4 1 0 1

1 1 6 1 4 1 4 2

7 5 6 2 1 0 1 2

2 1 1 1 3 0 4 0

5 4 2 6 4 2 1 1

3 1 6 7 6 6 1 4

2 7 0 7 2 0 0 7

3 1 2 0 0 7 0 3

3 1 3 4 3 6 0 1

1 1 6 1 4 6 4 5

0 2 1 2 1 0 6 5

5 6 1 1 3 0 3 7

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

(1)

(2)

Separable High Capacity Reversible Data Hiding Algorithm for Encrypted Images 815

phase as we will discuss in the following subsection.

The last step in the encryption phase is to use the

permutation key KP to generate KB randomly-ordered

unique values in the range [0, NB - 1] to form the set U

and then use it to permute and scramble the blocks in H

such that the contents of each block hk is mapped to hU(k)

to form the encrypted image EI. In case M×N is not an

integer multiple of B, the last block is not permuted and

the size of set U is NB - 1 and the range of values in it

becomes [0, NB - 2]. Figure 2-h) demonstrates this last

step when applied to the image in Figure 2-g) using

U={4, 7, 11, 10, 3, 1, 8, 12, 2, 5, 9, 6}.

3.2. Data Embedding Phase

Once the Encrypted Image (EI) is obtained from the

encryption phase, the content owner can safely hand it

to the data hider in order to start the data embedding

phase. Since the correlation between pixels in the same

block is somehow preserved, the embedding operation

should process the encrypted image block-wise.

Accordingly, and after encrypting the data to be

embedded using the data hiding key KH, the embedding

phase starts by generating the Hilbert curve for an M×N

image. Afterwards, and knowing the block size B, the

image is blocked into B-pixel blocks by scanning the

pixels in 𝐸𝐼 along the generated path to obtain the set

H={hk, 0 ≤ k ≤ NB - 1}. such that each element in hk is a

𝐵-tuple that contains the pixels values in the block

ordered by column-major, i.e., hk =(vk,0, vxk,1, vk,2, …,

vk,B-1). Similar to the blocking performed during

encryption, the blocks in H are numbered according to

their order along the Hilbert path.

Next, the blocked image is scanned and the blocks

are checked to determine whether they contain pixels

with values of 0 and/or 2n -1 as these values may result

in underflow/overflow if data is embedded. These

blocks have to be excluded from data embedding. In

order to record the overflow/underflow blocks, the set

location map (L) is created such that L={lk, 0 ≤ k ≤ NB -

1}, where lk is basically a one bit that is set to 1 in case

ℎ𝑘 is an overflow/underflow block; otherwise, lk it is

zero. Figure 3-a) shows the blocked encrypted while

Figure 3-b) shows the blocks that are excluded from

data embedding (horizontally-patterned) due to

overflow.

For the remaining blocks, they are scanned in order

to embed the given data. For every block that can be

used in embedding, h=(v0,v1,v2, …, vB-1), the pixels are

manipulated to store the given bits as follows. For pixels

vi, i ∈ [1, B-2], the prediction is calculated using.

𝑝𝑖 = ⌊(𝑣𝑖−1 + 𝑣𝑖+1)/2⌋

Where ⌊𝑥⌋ is the floor operator, and hence , the

prediction error is:

𝑝𝑒𝑖 = 𝑣𝑖 − 𝑝𝑖

Accordingly, the pixel value in the block is then

modified and updated to embed one bit, if possible,

using where 𝑏 is the bit to embedded. Effectively,

prediction errors of 0 and -1 are utilized to embed the

data and they are either left unchanged when b is 0 or

incremented/decremented by 1 when b is 1. Other

prediction errors are incremented or decremented by 1

based on their polarity in order to open space for
embedding data in prediction errors of 0 and -1.

a) Blocked-encrypted image. b) Overflow blocks excluded.

c) Stego-encrypted image.

Figure 3. Data embedding steps.

𝑣𝑖 = {

 𝑝𝑖 + 𝑝𝑒𝑖 + 𝑏 ; 𝑝𝑒𝑖 = 0
 𝑝𝑖 + 𝑝𝑒𝑖 − 𝑏 ; 𝑝𝑒𝑖 = −1

 𝑝𝑖 + 𝑝𝑒𝑖 + 1 ; 𝑝𝑒𝑖 > 0
 𝑝𝑖 + 𝑝𝑒𝑖 − 1 ; 𝑝𝑒𝑖 < −1

For the last pixel in the block, vB-1, Equations (4), and

(5) are used to perform embedding; however, the

prediction is calculated using.

𝑝𝐵−1 = ⌊(𝑣𝐵−2 + 𝑣𝐵−3)/2⌋

In order to maximize the usage of all pixels in the block

for data embedding, the first pixel v0 is also considered

for data embedding after processing pixel vB-1 using the

same steps but the prediction for this pixel is calculated

such that

𝑝0 = ⌊(𝑣1 + 𝑣2)/2⌋

To demonstrate the idea, let’s consider the first block,

the red block h=(6, 1, 1, 2, 1), in the image in Figure 3-

b) and assume that the data to be embedded is a stream

of bits that alternates between 1 and 0, i.e., d= (1, 0, 1,

0,….). Figure 4 shows the embedding steps for

processing all pixels in the first block. In each step, the

pixel under consideration is shaded with red while the

pixels that are used to calculate the prediction are

shaded with green. For example, the value of 𝑣1 in this

block is 1 while the neighboring pixels have values of 6

and 1, thus the p1 is ⌊(6 + 1)/2⌋ which is 3 and the

prediction error pe1 is -2. According to (5), this pixel

will be decremented by 1 and no bit is embedded. So,

the new pixel value v1 is 0. The same process is applied

to the remaining pixels, except in calculating the

prediction for the last and first pixels in the block.

Figure 3-c) shows the stego-encrypted image when all

of the blocks are considered for the data embedding.

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

7 2 1 5 4 3 1 0

0 3 6 5 1 0 2 5

0 5 3 7 2 0 2 1

6 2 6 1 7 1 0 2

2 0 6 0 6 7 4 1

5 2 4 6 4 7 4 7

0 7 1 6 5 7 2 0

4 3 6 0 2 7 0 0

(3)

(4)

(6)

(7)

(5)

816 The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022

Figure 4. Embedding example for one block (Pixel being processed

is in red while pixels used for prediction are in green).

Depending on the size of the data to be embedded, all

or subset of the blocks and pixels within the last block

might be used for data embedding. In order to extract

the data correctly and ensure the reversibility, the data

hider should provide the receiver with address of the last

pixel Ae that was used for embedding. Additionally, the

receiver should have the location map L in order skip

the overflow blocks during data extraction. This

information forms the Overhead (OH) to the embedding

operation that has to be communicated to the receiver.

Alternatively, and similar to how most RDH algorithms

treat the overhead, the embedding phase reserves the

first NOH pixels to store Ae and L. Effectively, the

location map is first compressed to reduce its size to SL

bits. Then, the Least Significant Bits (LSBs) of the first

NOH pixels along the Hilbert curve are replaced with Ae,

SL and L. These LSBs are pre-appended to the data to be

embedded and stored in the image during embedding.

The number of pixels to be used for this purpose is:

𝑁𝑂𝐻 = ⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ + 𝑆𝐿 + 𝐿

The value ⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ is basically the number of

bits required to store Ae. Since the size of the location

map after compression will vary from image to image,

and thus SL, we opt to set and fix SL to ⌈𝑙𝑜𝑔2(𝑀 ×
𝑁)⌉ bits as well for any image.

3.3. Data Extraction and Image Decryption

Phase

In this phase, the receiver may perform three different

operations depending on the available keys as depicted

in Figure 1. In case the receiver has the data hiding key

𝐾ℎ only, then he can only extract the data from the

stego-encrypted image to obtain the encrypted image

and the embedded data.

Effectively, data extraction starts by generating the

Hilbert curve for the M×N stego-encrypted image and

reading the LSBs of the first 2⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ pixels

along the path. The first half of these bits is Ae while the

second half is SL which is used to read the following SL

bits that represent the location map. After

decompressing the location map, the stego-encrypted

image is blocked using B and the data extraction

proceeds starting from the block that contains the pixel

with address Ae. If the corresponding bit of a block is 1

in the location map, then the block skipped. Otherwise,

restoring the pixels’ values in the block and extracting

the bits is as follows.

Figure 5. Extraction example for one block (Pixel being processed

is in red while pixels used for prediction are in green).

For a block in the stego-encrypted image, h=(v0,v1,v2,

…, vB-1), processing starts by considering the first pixel

v0 and calculating the prediction and prediction errors,

p0 and pe0, using (7) and (4), respectively. Based on the

prediction error value, the original value of v0 in the

encrypted image is restored using

𝑣𝑖 = {

 𝑝𝑖 + 𝑝𝑒𝑖 ; 𝑝𝑒𝑖 ∈ {−1,0}
𝑝𝑖 + 𝑝𝑒𝑖 − 1 ; 𝑝𝑒𝑖 > 0

 𝑝𝑖 + 𝑝𝑒𝑖 + 1 ; 𝑝𝑒𝑖 < −1

While the embedded bit, if any, is extracted such that

𝑏 = {

 0 ; 𝑝𝑒𝑖 ∈ {−1,0}

 1 ; 𝑝𝑒𝑖 ∈ {−2,1}

𝑁𝑜𝑛𝑒 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Next, exaction moves to the last pixel in the block vB-1,

calculates the prediction using (6) and restores the

original value and the embedded bits using (9) and (10),

respectively. For the remaining pixels, they are

processed in a reverse order, i.e., from vB-2 to v1, with

the prediction calculated using (3). This process repeats

for all blocks until the first block is processed.

Once all data is extracted, the first 𝑁𝑂𝐻 bits of the

data are stored back into the first 𝑁𝑂𝐻 pixels in the

Hilbert path and the embedded data is decrypted using

𝐾𝐻. Figure 5 demonstrates the extraction process for the

red block in the stego-encrypted image in Figure 3-c). It

is clear in this example how the original values in the

first block in the encrypted image in Figure 2-e) is

restored and how the embedded bits are extracted

correctly.

The second case is when the receiver has the

encryption keys only, i.e., KP, NC, KC and KS. In this

case, the receiver can only decrypt the stego-encrypted

image to obtain the directly-decrypted image.

Specifically, and after blocking the image over the

Hilbert path into NB blocks, the receiver decrypts the

stego-encrypted image by simply reversing the

operations performed during encryption.

Technically, the key KP is used to generate the NB

randomly-ordered unique values in the range [0, NB-1]

to form the set U that is used to reverse the permutation

step such that block hU(k) is mapped to hk, except for the

last block when M×N is not and integer multiple of B.

Next, and using KC and NC, the blocks that were

complemented during encryption are identified and the

(8)

(9)

(10)

Separable High Capacity Reversible Data Hiding Algorithm for Encrypted Images 817

their pixels are complemented using (2). Afterwards,

the Hilbert blocks are mapped to B×1 blocks and in the

same order. Finally, the key KS is used to generate the

set S={Sk, 0 ≤ k ≤ N - 1} to reverse the shifting operation

performed on the columns such that the original

position of pixel qk,i in column Ck is given by

𝑞𝑘,𝑖 = (𝑞𝑘,𝑖
′ − 𝑠𝑘) 𝑚𝑜𝑑 (𝑀 − 1)

The result of this decryption process is the directly-

decrypted image which is slightly different from the

original cover image due to the fact that the embedded

data has not been extracted. As a matter of fact,

improving the quality of this directly-decrypted image

is one important metric that RDHEI algorithms compete

in.

The third case is when the receiver has both the data

hiding and encryption keys. In this case, the receiver can

extract the data first from the stego-encrypted image

using the steps we discussed in the first case.

Afterwards, the receiver uses the encryption keys to

decrypt the image to recover the original image by

following the steps discussed in the second case. The

output is an image that exactly matches the original

cover image as shown in Figure 1.

4. Experimental Results
4.1. Evaluation Setup and Performance

Metrics

In this section, we evaluate the performance of the

proposed algorithm and compare it with Shui et al.’s

[17] algorithm. The MATLAB code for both algorithms

along with the evaluation code can be found on

(shorturl.at/gqrs9) In the evaluation, we used six

512×512 test images, namely; Clock, Cat, Bird, Tank,

Butterfly and Cameraman [18, 21] which are shown in

Figure 6.

a) Clock.

b) Cat.

c) Bird.

d) Tank.

e) Butterfly.

f) Cameraman.

Figure 6. Test images.

The evaluation considers the embedding capacity

(bits) and the quality of the directly decrypted images

using the peak PSNR. To evaluate the security of the

encrypted images, four different metrics are considered;

the PSNR value between the cover image and the

encrypted image, the entropy, Number Of Changing

Pixel Rate (NPCR) and the Unified Averaged Changed

Intensity (UACI) [4, 12]. The last three metrics are

usually used as indicators for the resistibility to

differential attacks.

4.2. Evaluation Under Maximum Embedding

Capacity

The first experiment in the evaluation considers

assessing the maximum amount of data that can be

embedded in the test images when the block size B is

varied is varied between 3 and 15 pixels.

Figure 7 shows the maximum embedding capacity

obtained using the two algorithms for different block

size. It is evident how the proposed algorithm

outperforms [17] significantly in terms the embed data.

This result is expected given the fact that [17] uses only

two pixels in each block for embedding; hence, and as

we mentioned earlier, only (2/B×100)% of the pixels in

each block is considered for embedding. So, as the

block size increases, the embedding capacity decreases.

On the contrary, the proposed algorithm uses all

pixels in the blocks for embedding and this gives the

proposed algorithm the potential to achieve higher

capacities even when the block size is increased.

Ignoring the overhead and assuming there are no

overflow blocks, the embedding capacity in the

proposed algorithm could be as high as M×N.

Despite the impressive increase in the embedding

capacity for the proposed algorithm, the directly-

decrypted image is expected to have relatively lower

PSNR values when compared to Shui et al.’s [17]

algorithm since the proposed algorithm affects all pixels

in the block. Effectively, and in the worst case scenario,

if we assume that all pixels in the proposed algorithm

are either incremented or decremented by 1 during data

embedding, then this implies that the lower bound for

the PSNR value is 10loɡ102552 which 48.13 dB. On the

other hand, the lower PSNR bound in the worst case

scenario in [16] is 10𝑙𝑜𝑔10(
𝐵×2552

2
) if we assume that

two pixels in each block are modified by 1. For

example, when B is 3, the lower PSNR bound is 49.89

dB.

Figure 8 shows the PSNR values for the six test

images in both algorithms when the block is varied. It is

clear how the PSNR value in Shui et al.’s [17] algorithm

increases as the block size increases. However, the

PSNR of the directly-decrypted image is always lower

in the proposed algorithm but it is always above 48.13

dB. Nonetheless, this difference in the PSNR values

between the two algorithms under maximum

embedding capacity slightly affects the visual quality of

the decrypted image and this can be traded for the

increased ECmax Figure 9 shows the original image

Clock and the directly decrypted versions in both

algorithms when the block size is 3 and 15. The visual

appearance of the images in both algorithms is very

similar but with advantage of having significantly larger

embedding capacity in the proposed algorithm.

(11)

https://fisjo-my.sharepoint.com/personal/iyad_jafar_ju_edu_jo/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fiyad%5Fjafar%5Fju%5Fedu%5Fjo%2FDocuments%2FResearch%2FReversible%20Data%20Hiding%2FEncryption%2FSabbatical%2FIAJIT%20Paper%20Code%2Erar&parent=%2Fpersonal%2Fiyad%5Fjafar%5Fju%5Fedu%5Fjo%2FDocuments%2FResearch%2FReversible%20Data%20Hiding%2FEncryption%2FSabbatical&ga=1

818 The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022

 a) Clock. b) Cat. c) Bird.

 d) Tank. e) Butterfly. f) Cameraman.

Figure 7. Effect of block size on maximum embedding capacity for the six test images.

4.3. Security Analysis

One major concern in RDHEI algorithms is the security

level of the encrypted image as it will be exploited by

the data hider to embed the data. Thus, it is important

that the encryption in RDHEI algorithms protects the

privacy of the content owner. This subsection evaluates

the security of encrypted images in both algorithms

using the security metrics presented in 4.1.

Analytically, the security of encryption algorithms

mainly depends on the size of key space. The larger the

key space, the more secure the algorithm is. For Shui et

al.’s [17] algorithm, there are two keys; one for

permuting the blocks and the other for permuting the

pixels within the block. Hence, if we assume that the

size of each key is 𝑟 bits, then the key space for Shui et

al.’s [17] algorithm is min(2r,NB!) × min(2r,B!), where

NB and 𝐵 are the number of blocks and the number of

pixels in the block, respectively. On the other hand, the

proposed algorithm uses four different keys to shift the

columns, complement subset of the blocks, and permute

the blocks. So, the overall key space size will be

𝑚𝑖𝑛 (2𝑟, 𝑀 × 𝑁) × min (2𝑟, 𝑁𝐵!) × min (2𝑟 ×

𝑁𝐵, ∑ (
𝑁𝐵

𝑖
)

𝑁𝐵
𝑖=0).

 a) Clock. b) Cat. c) Bird.

 d) Tank. e) Butterfly. f) Cameraman.

Figure 8. PSNR values of the directly-decrypted version for the six test images.

4 8 12 16
0

2

4

6

8

10

12

14
x 10

4 Clock

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
0

2

4

6

8

10

12
x 10

4 Cat

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
0

1

2

3

4

5

6

7
x 10

4 Bird

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Tank

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Butterfly

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
0

2

4

6

8

10

12
x 10

4 Cameraman

Block Size (pixels)

E
m

b
e

d
d

in
g

 C
a

p
a

c
it

y
 (

b
it

s
)

Shui et al.

Proposed

4 8 12 16
45

50

55

60

65

70
Clock

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

4 8 12 16
48

50

52

54

56

58

60

62
Cat

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

4 8 12 16
48

50

52

54

56

58

60

62
Bird

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

4 8 12 16
48

50

52

54

56

58

60
Tank

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

4 8 12 16
48

50

52

54

56

58

60
Butterfly

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

4 8 12 16
48

50

52

54

56

58

60

62
Cameraman

Block Size (pixels)

P
S

N
R

 (
d

B
)

Shui et al.

Proposed

Separable High Capacity Reversible Data Hiding Algorithm for Encrypted Images 819

a) Shui et al., B=3.

b) Shui et al., B=15.

c) Proposed, B=3.

d) Proposed, B=15.

Figure 9. Directly-decrypted.

Figure 10 shows the size of the keys in both

algorithms (log scale) as a function of block size for a

512×512 image and when the size for any key is 64 bits.

It is apparent how the overall key size in the proposed

algorithm is much higher than that in Shui et al.’s [17]

algorithm, which indicates higher security since it

implies that an attacker who attempts to decrypt the

image through brute-force attack will need to spend

large time. For example, the average time required to

decrypt the image in the proposed and Shui et al. [17]

algorithms was 3.04 and 0.24 seconds, respectively,

when a PC with Intel® Core i7 2 GHz processor and 16

GB of RAM, respectively, when the block size is 7

pixels. So, the time required to decrypt the image in

Shui et al.’s [17] algorithm through brute-force attack is

years, while it is 2.5424× 1044 is 7.0755 ×1014 years in

the proposed algorithm.

Visually, Figure 11 compares the encrypted images

in Shui et al. [17] and proposed algorithms when the

block size is 3 and 15 with 𝑁𝐶 in the proposed algorithm

set such that 75% of the blocks are complemented. Both

algorithms were capable of scrambling the image

content in an unperceivable manner with higher visual

confusion observed for smaller blocks. However, the

proposed algorithm was capable of changing the major

tone in the image due to complementing the pixels in

some of the blocks.

Quantitatively, Table 1 lists the PSNR, entropy,

NPCR and UACI metrics of the encrypted six test

images for both algorithms when the block size is 7 and

the same permutation key KP is used to permute the

Hilbert blocks in both algorithms while a different key

is used to permute the pixels with the blocks in Shui et

al.’s [17] algorithm. In the proposed algorithm, 𝑁𝐶 is

specified such that 75% of the blocks are

complemented. Investigating the numbers in Table 1

reveals that the PSNR values of the encrypted image in

the proposed algorithm are always lower than those in

Shui et al.’s [17] algorithm. This reflects lower

similarity between the encrypted and original images in

the proposed algorithm. The same conclusion can be

made by considering the NPCR and UACI metrics. The

numbers in Table 1 shows the superiority of the

proposed algorithm which produced encrypted images

with higher values for these metrics for all test images.

As for the entropy, which measures the randomness

in the encrypted image, the values of Shui et al.’s [17]

algorithm are effectively the entropy value of the

original cover image since this algorithm only permutes

the blocks and the pixels within the blocks without

affecting their values during encryption. On the other

hand, the proposed algorithm does not only shift the

columns and permute the blocks, but it also

complements the pixels’ values in a randomly selected

blocks using NC and KC keys. This has the effect of

changing a subset of the pixels in the image; thus

increasing the entropy as shown in Table 1.

Figure 10. Key size as function of block size in both algorithms (log scale).

a) Shui et al., B=3.

b) Shui et al., B=15.

c) Proposed, B=3.

d) Proposed, B=15.

Figure 11. Encrypted images.

5. Conclusions

Privacy protection for images uploaded to cloud

services has become an issue; especially when these

0 5 10 15 20 25 30 35 40
20

25

30

35

40

45

50

Block Size (pixels)

K
ey

 S
iz

e

Shui et al.

Proposed

820 The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022

images are subject to data embedding for different

purposes. In this papers, we presented a separable

reversible data hiding algorithm for encrypted images.

The algorithm is essentially based on permutation in

order to preserve the correlation between pixels which

has direct impact on the embedding capacity. The

contribution of the algorithm in terms of encryption lies

in encrypting the image through specific scrambling of

the image columns and blocks and complementing

pixels’ values in subset of the blocks which helps in

embedding larger amount of data through the

modification of prediction errors in the encrypted

image. The results of the algorithm verified its ability in

increasing embedding capacity as well as the security

and privacy of the encrypted image. The security of the

proposed algorithm can be further enhanced by

considering classifying the blocks based on their texture

and using blocks with low texture for data embedding

while blocks with high texture are encrypted using

Advanced Encryption Standard (AES) or Data

Encryption Standard (DES).

Table 1. Values of security metrics for the test images in both algorithms.

 PSNR Entropy NPCR UACI

Image Prop. Shui et al.[17] Prop. Shui et al.[17] Prop. Shui et al.[17] Prop. Shui et al.[17]

Clock 5.87 9.98 7.12 6.71 99.37 97.92 42.85 22.89

Cat 5.66 9.91 5.79 5.19 96.43 86.09 43.95 24.34

Bird 9.89 16.57 6.91 6.22 99.48 98.18 27.74 11.41

Tank 17.47 17.47 5.68 5.05 98.30 95.31 9.44 8.57

Butterfly 12.18 12.57 6.86 6.61 99.15 98.76 20.11 19.07

Cameraman 9.15 9.27 7.40 7.05 99.54 98.98 28.40 26.33

References

[1] Alattar A., “Reversible Watermark Using

Difference Expansion of Quads,” in Proceeding of

the IEEE International Conference on Acoustics,

Speech, and Signal Processing, Motreal, pp. 377-

380, 2004.

[2] Alsaidi A., Al-Lehaibi K., Alzahrani H.,

AlGhamdi M., and Gutub A., “Compression

Multi-Level Crypto Stego Security of Texts

Utilizing Colored Email Forwarding,” Journal of

Computer Science and Computational

Mathematics, vol. 8, no. 3, pp. 33-42, 2018.

[3] Celik M., Sharma G., and Tekalp A., “Lossless

Generalized-LSB Data Embedding,” IEEE

transactions on image processing, vol. 14, no. 2,

pp. 253-266, 2005.

[4] Chen G., Mao Y., and Chui C., “A Symmetric

Image Encryption Scheme Based on 3D Chaotic

Cat Maps,” Chaos, Solitons and Fractals, vol. 21,

no. 3, pp. 749-761, 2004.

[5] Fridrich J., Goljan M., and Du R., “Lossless Data

Embedding New Paradigm in Digital

Watermarking,” Eurasip Journal on Advances in

Signal Processing, vol. 2002, no. 2, pp. 1-12,

2002.

[6] Hong W., Chen T., and Shiu C., “Reversible Data

Hiding for High Quality Images Using

Modification of Prediction Errors,” Journal of

Systems and Software, vol. 82, no. 11, pp. 1833-

1842, 2009.

[7] Hong W., Chen T., and Wu H., “An Improved

Reversible Data Hiding in Encrypted Images

Using Side Match,” IEEE Signal Processing Lett,

vol. 19, no. 4, pp. 199-202, 2012.

[8] Kumar R. and Jung K., “Enhanced Pairwise

IPVO-Based Reversible Data Hiding Scheme

Using Rhombus Context,” Information Sciences,

vol. 536, pp. 101-119, 2020.

[9] Long M., Zhao Y., Zhang X., and Peng F., “A

Separable Reversible Data Hiding Scheme for

Encrypted Images Based on Tromino Scrambling

and Adaptive Pixel Value Ordering,” Signal

Processing, vol. 176, pp. 107703, 2020.

[10] Li X., Li J., and Li B., “High-Fidelity Reversible

Data Hiding Scheme Based on Pixel-value-

ordering and Prediction-Error Expansion,” Signal

Processing, vol. 93, no. 1, pp. 198-205, 2013.

[11] Ma K., Zhang W., Zhao X., Yu N., and Li F.,

“Reversible Data Hiding in Encrypted Images By

Reserving Room Before Encryption,” IEEE

Transactions on Information Forensics and

security, vol. 8, no. 3, pp. 553-562, 2013.

[12] Mao Y., Chen G., and Lian S., “A Novel Fast

Image Encryption Scheme Based on 3D Chaotic

Baker Maps,” International Journal of

Bifurcation and chaos, vol. 14, no. 10, pp. 3613-

3624, 2003.

[13] Marawan M., AlShahwan F., Sifou F., Kartit A.,

and Ouhamne H., “Improving The Security of

Cloud-Based Medical Image Storage,”

Engineering Letters, vol. 27, no. 1, 2019.

[14] Ni Z., Shi Y., Ansari N., and Su W., “Reversible

Data Hiding,” IEEE Transactions on Circuits and

Systems for video technology, vol. 16, no. 3, pp.

354-362, 2006.

[15] Puech W., Chaumont M., and Strauss O., “A

Reversible Data Hiding Method for Encrypted

Images,” in Proceeding of the Security, Forensics,

Steganography, and Watermarking of Multimedia

Contents X, pp. 534-542, 2008.

Separable High Capacity Reversible Data Hiding Algorithm for Encrypted Images 821

[16] Shi Y., Li X., Zhang X., Wu H., and Ma B.,

“Reversible Data Hiding: Advances in the Past

Two Decades,” IEEE Access, vol. 4, pp. 3210-

3237, 2016.

[17] Shiu C., Chen Y., and Hong W., “Reversible Data

Hiding in Permutation-based Encrypted Images

with Strong Privacy,” KSII Transactions on

Internet and Information Systems, vol. 13, no. 2,

pp. 1020-1042, 2019.

[18] The USC-SIPI Image Database [Online].

Available: http://sipi.usc.edu/database, Last

Visited 2021.

[19] Thahab A., “A Novel Secure Video

Steganography Technique Using Temporal Lifted

Wavelet Transform and Human Vision

Properties,” The International Arab Journal for

Information Technology, vol. 17, no. 2, pp. 147-

153, 2020.

[20] Wang W., “A Reversible Data Hiding Algorithm

Based on Bidirectional Difference Expansion,”

Multimedia Tools and Applications, vol. 79, no.

9, pp. 890- 896, 2020.

[21] Waterloo Image Repository [Online]. Available:

http://links.uwaterloo.ca/Repository.html, Last

Visited, 2021.

[22] Xu C., Zhang Y., and Gu Z., “A Novel Color

Image Encryption Method Based on Sequence

Cross Transformation and Chaotic Sequences,”

Engineering Letters, vol. 28, no. 4, 2020.

[23] Zhang X., “Reversible Data Hiding in Encrypted

Image,” IEEE Signal Processing Letters, vol. 18,

no. 4, pp. 255-258, 2011.

[24] Zhang X., Qian Z., Feng G., and Ren Y.,

“Efficient Reversible Data Hiding in Encrypted

Images,” Journal of Visual Communication and

Image Representation, vol. 25, no. 2, pp. 322-328,

2014.

Iyad Jafar received the B.S. degree

in Electrical Engineering from The

University of Jordan in 2001, the

M.Sc. degree in Electrical

Engineering from the Illinois

Institute of Technology in 2004, and

the Ph.D. degree in Computer

Engineering from Wayne State University in 2008. He

is currently working as a professor and acting chair in

the Department of Computer Engineering at the

University of Jordan. His research interests are in signal

and image processing, pattern recognition, and

computer networks.

Khalid Darabkh Received the PhD

degree in Computer Engineering

from the University of Alabama in

Huntsville in 2007 with honors. He is

currently a professor in the Computer

Engineering Department at the

University of Jordan. He authored

and co-authored of at least a hundred eighty highly

esteemed research articles. He is among World’s Top

2% Scientists List compiled by Stanford University in

2020 and 2021. He serves on the Editorial Board of

Telecommunication Systems, published by Springer,

Computer Applications in Engineering Education,

published by John Wiley & Sons, and Journal of High

Speed Networks, published by IOS Press. Additionally,

he serves as a TPC member of highly reputable IEEE

conferences such as GLOBECOM, ICC, LCN, VTC-

Fall, PIMRC, ISWCS, ATC, ICT, and IAEAC. He is

engaged in research mainly on Internet of things,

Software-defined networks, vehicular networks, flying

ad-hoc networks, Fog networking, Full duplex

cognitive radio networks, queuing systems and

networks, multimedia transmission, channel coding,

steganography and watermarking, as well as innovative

and interactive learning environments.

Fahed Jubair graduated from

Purdue University in 2014 with a

Ph.D. degree in Electrical and

Computer Engineering. He received

his B.Sc. degree from the University

of Jordan in 2007. Dr. Jubair is

currently an assistant professor of

Computer Engineering at the University of Jordan. His

main research interests include optimizing compilers,

parallel computing, heuristic algorithms, and machine

learning.

http://sipi.usc.edu/database
http://links.uwaterloo.ca/Repository.html

