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Abstract: This paper presents a separable Reversible Data Hiding Algorithm for Encrypted Images (RDHEI) that consists of 

three phases. The encryption phase in the algorithm circularly shifts the columns in the image by a random amount, blocks the 

image into equal and regular blocks and maps them to irregular blocks generated based on Hilbert filling curve, and finally 

complements a random subset of the blocks. The embedding phase is essentially an adapted version of the modification of the 

prediction errors algorithm that is applied to each block in the encrypted image independently. In the decryption phase, and 

since the algorithm is separable, the user can extract the data only, decrypt the image only, or can perform both actions 

depending on the type of keys he has. When compared to a very similar and recent algorithm, performance evaluation proved 

the ability of the proposed algorithm in increasing the embedding capacity with reasonable quality of the directly decrypted 

image. In terms of the security, the analytical and quantitative assessment showed the superiority of the proposed algorithm in 

protecting the encrypted image. 
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1. Introduction  

With the wide spread and use of digital multimedia 

objects, copyright protection, tamper detection and 

privacy have become major security concerns. In 

practice, encryption, digital forensics, and secret 

sharing [19, 21] are some of the technologies that have 

been employed to protect multimedia objects. Data 

Hiding is another concept in which secret data is 

embedded imperceptibly in multimedia objects such as 

text, audio, images and videos [2]. When digital images 

are considered as the host or cover objects, a special 

class of data hiding algorithms evolved in order to 

losslessly recover both the data and the cover image 

once the data is extracted. Such algorithms are referred 

to as Reversible Data Hiding (RDH) algorithms and 

they are useful in applications that do not tolerate 

changes in the cover image such as artistic works, 

medical and military images [15].  

Many RDH algorithms have been proposed in the 

literature to maximize the amount of data that can be 

embedded, improve the quality of the stego image, and 

guarantee reversibility. These algorithms can be 

grouped into four basic fundamental categories, 

namely, lossless compression [3, 5], Difference 

Expansion (DE) [1, 17], Pixel Value Ordering (PVO) 

[8, 10] and Histogram Shifting (HS) [6, 14]. 

Given the challenge of optimizing the design of RDH 

algorithms in terms of embedding capacity, quality of 

stego image and complexity, the emergence  

 
of cloud technology has imposed a new and pressing 

factor in the design of RDH algorithms [13, 21]. 

Recently, cloud services allow users to store and 

manipulate their images. For management and storage 

utilization purposes, it might be useful to embed data in 

the images that reside on the cloud for different 

purposes such as image annotation and authentication. 

However, using the images to store the data of a third 

party jeopardizes the privacy of the content owner. One 

workaround is to allow the content owner to encrypt the 

image using one of the known encryption schemes such 

as permutation, stream cipher, DES, or AES before data 

is embedded into the image in a reversible manner. 

RDH algorithms designed for this purpose are usually 

referred to as Reversible Data Hiding in Encrypted 

Images (RDHEI).  

Several RDHEI algorithms have been proposed in 

the literature. One way to classify these algorithms is 

based on separability. Effectively, an RDHEI algorithm 

is considered either joint or separable. In the joint 

methods, data extraction and image recovery are 

performed jointly. In other words, extracting the data 

requires decrypting the image first. Many algorithms 

have been proposed in this area [7, 20, 23]. The 

embedding capacity in such algorithms is usually low 

and the quality of the restored image is degraded with 

the possibility of generating errors in the extracted data, 

especially at high payloads. On other hand, the 

separable algorithms [9, 11, 22, 24] are designed such 
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that data extraction and image decryption can be 

performed separately. 

In this paper, a separable reversible data hiding 

algorithm in the encrypted image domain is proposed. 

The encryption process in the proposed algorithm relies 

on circularly shifting the columns of the image, 

blocking the image into B×1 blocks, mapping the blocks 

to irregularly-shaped blocks generated from Hilbert 

pattern, complementing the pixels in a set of randomly 

selected blocks, and finally permuting these blocks. For 

data embedding, the data hider scans the blocks and 

order their pixels based on their linear index and then 

uses the modification of prediction error approach to 

embed the data. The algorithm showed impressive 

performance in increasing the embedding capacity and 

the privacy of the encrypted image when compared to a 

related state-of-the-art RDHEI algorithm with a slight 

and acceptable degradation in the quality of the directly-

decrypted image at high payloads. 

 

Figure 1. Framework of the proposed algorithm.

The rest of the paper is organized as follows. In 

section 2, we review two algorithms that are strongly 

related to the proposed algorithm. We present the details 

of the proposed algorithm in section 3 and evaluate its 

performance in section 4. We conclude the paper in 

section 5. 

2. Related Work 

Shui et al. [17] proposed a separable permutation-based 

algorithm that encrypts the image using Fisher-Yates 

permutation after partitioning the image into non-

uniform blocks obtained through traversing the Hilbert 

curve. Additionally, another key is used to scramble and 

permute pixels in each block. The authors argued that 

using such permutation to encrypt the image is more 

secure, analytically and visually, than stream cipher, in 

addition to fact that permutation does not alter the local 

correlation between pixels within the block and this has 

direct impact on increasing the embedding capacity. For 

data embedding, the algorithm relied on PVO [8] to 

embed the data through prediction error expansion of 

the minimum and maximum values in each block.  

The algorithm showed impressive results in terms of 

the quality of the directly decrypted image. This is due 

to the fact that only two pixels are modified in each 

block in the worst case. However, the embedding 

capacity is quite limited especially when the block size 

is increased. Technically, for an image with M×N pixels 

that is blocked into blocks each with 𝐵 pixels, the 

maximum number of pixels that can be used for 

embedding is 2×M×N/B pixels which implies that only 

(2/B×100)% of the pixels are possibly utilized in 

embedding.  

Nonetheless, using only two pixels from each block 

for embedding has the advantage of Pushing The Peak-

Signal-To-Noise Ratio (PSNR) of the directly-

decrypted image in this algorithm to high values which 

gets better as the block size increases since fewer pixels 

are modified. In terms of security, the algorithm relies 

on using two keys to perform permutation of blocks and 

pixels and avoided using other forms of encryption in 

order to preserve the correlation of the pixels. The 

permutation is expected to affect some of the security 

measures in the encrypted image; however, since the 

pixels’ values are not modified, the entropy of the 

image, which is an important security measure, after 

encryption is not affected. 

3. The Proposed Algorithm 

The framework of the proposed algorithm is shown in 

Figure 1. Similar to other RDHEI algorithms, there are 

three parties involved in the framework; the content 

owner, the data hider and the receiver. The algorithm is 

composed of three phases: encryption, data hiding and 

decryption and data extraction. The following 

subsections detail the different phases in the proposed 

algorithm.  
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a) Original image. 

 

b) Circularly shifted image. 
 

c) Blocking column-wise. 

2  

d) Hilbert curve for 8×8 image. 

 

e) Blocks along the hilbert curve. 

 

f) Mapping to hilbert blocks. 

 
g) Complementing blocks. 

 

h) Permutation of blocks. 

Figure 2. Example on encrypting a simple image in the proposed algorithm. 

3.1. Encryption Phase 

For an n-bit M×N Cover Image (CI), the content owner 

starts the encryption phase by considering the columns 

in the image. Using the shifting key (KS), N random 

values are generated to form the set S={Sk, 0 ≤ k ≤ N - 

1}. The range of the values in 𝑆 is [0,M - 1], where M is 

the number of rows in the image, which is the number 

of pixels in each column. Afterwards, the pixels in each 

column are circularly shifted using 𝑆 such that the new 

position of pixel Qk,i in column CK is given by 

𝑞𝑘,𝑖
′ = (𝑞𝑘,𝑖 + 𝑠𝑘) 𝑚𝑜𝑑 (𝑀 − 1) 

The purpose of this step, when compared to [16], is to 

create some sort of visual confusion in the encrypted 

image to avoid scrambling and permuting pixels within 

the block, when the image is blocked later. Figure 2-a) 

shows a hypothetical 8×8 3-bit image that we will use 

throughout this subsection to explain the encryption 

process. Figure 2-b) shows the original image that has 

been shifted column-wise circularly when S is {3, 0, 1, 

3, 4, 5, 2, 1}. 

The next step in the encryption phase is block 

permutation. Technically, the circularly shifted image is 

blocked column-wise into B×1 blocks. This blocking 

generates the set G of NB blocks, where NB =[M × N / 

B], such that G={ɡk, 0 ≤ k ≤ NB - 1}. The ordering and 

numbering of the blocks in 𝐺 is based on column-wise 

scanning. For example, the image in Figure 2-c) is 

blocked into 13 blocks such that the red block is block 

number 1 while the gray block is block number 13. Each 

element in G is basically a B-tuple that contains the 

values of the pixels in the block when they are read 

column-wise such that ɡk =(vk,0, vk,1, vk,2, …, vk,B-1). For 

instance, the tuple that represents the second pink block 

ɡ2 in Figure 2-c) is (6, 0, 6, 7, 6).  

Next, and similar to [16], the Hilbert curve for the 

M×N image is generated and the pixels along the path 

of the curve are grouped into 𝐵-pixel blocks to generate 

the set H={hk, 0 ≤ k ≤ NB - 1}. The blocks in H are 

ordered and numbered based on their location along the 

Hilbert curve. For example, the red block in Figure 2-e) 

is block h1, the dark-pink block is h2, and so on.  

Initially, each element in H is an empty B-tuple, hk 

=(xk,0, xk,1, xk,2, …, xk,B-1), or less for last block in case 

M×N is not an integer multiple of B. The order of the 

elements inside ℎ𝑘 is based on their column-major in 

the image. Figure 2-d) shows the Hilbert curve for an 

8×8 image and Figure 2-e) shows the blocks in H when 

the block size is 5. Having the two sets, G and H, blocks 

in G are mapped to those in H in the same order, i.e., ɡk 

→ hk. The elements in the hk tuples are filled with the 

values in ɡk such that vk,I → xk,i. Figure 2-f) shows how 

the blocks in H are filled with values from the tuples 

found in G. 

In order to improve the security of the final encrypted 

image, the next step in encryption is to use the 

complement key KC to form the set T that contains NC 

random values in the range [0, NB-1] The set T identifies 

the block numbers in H that are randomly selected and 

processed by complementing their pixels such that the 

new pixel value of the ith pixel in the hk block is 

calculated using.  

𝑥𝑘,𝑖
′ = 2𝑛 − 𝑥𝑘,𝑖  , ∀ 𝑘 ∈ 𝑇 

This step has the effect of flipping the pixels in NC 

randomly selected blocks, which is expected to increase 

the security of the encrypted image to a certain extent, 

while maintaining the relative spatial correlation 

between the pixels within the block. Figure 2-g) 

demonstrates the effect of applying the complement 

step on a subset of the blocks (diagonally-patterned 

blocks) in the image in Figure 2-f) where 𝑛 here is 

assumed to be 3 since the image in Figure 2-a) is 

assumed to be a 3-bit image.  

For example, consider the original block 

h1=(2,4,3,6,5) in Figure 2-f) which is selected as one of 

the blocks to be complemented to become (5, 3, 4, 1, 2). 

It is clear how this simple complement operation has 

preserved the absolute difference between successive 

values which is an important factor in the embedding 

6 7 1 1 1 0 2 5

5 6 1 2 3 4 0 1

6 2 1 1 0 7 7 7

0 7 7 4 0 1 0 1

6 1 2 3 4 4 0 1

2 2 5 6 1 2 3 1

4 0 1 6 1 2 3 4

3 3 3 1 4 0 1 1

2 7 3 6 4 1 3 1

4 6 1 6 1 4 1 5

3 2 1 1 1 2 2 1

6 7 1 1 4 2 0 7

5 1 7 2 1 0 7 1

6 2 2 1 3 0 0 1

0 0 5 4 0 4 0 1

6 3 1 3 0 7 3 4

2 7 3 6 4 1 3 1

4 6 1 6 1 4 1 5

3 2 1 1 1 2 2 1

6 7 1 1 4 2 0 7

5 1 7 2 1 0 7 1

6 2 2 1 3 0 0 1

0 0 5 4 0 4 0 1

6 3 1 3 0 7 3 4

2 3 5 6 3 5 1 1

4 6 6 7 1 1 1 4

2 7 0 7 2 7 0 7

3 1 2 0 0 7 0 3

3 1 4 3 4 1 0 1

1 1 6 1 4 1 4 2

7 5 6 2 1 0 1 2

2 1 1 1 3 0 4 0

5 4 2 6 4 2 1 1

3 1 6 7 6 6 1 4

2 7 0 7 2 0 0 7

3 1 2 0 0 7 0 3

3 1 3 4 3 6 0 1

1 1 6 1 4 6 4 5

0 2 1 2 1 0 6 5

5 6 1 1 3 0 3 7

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

(1) 

(2) 
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phase as we will discuss in the following subsection. 

The last step in the encryption phase is to use the 

permutation key KP to generate KB randomly-ordered 

unique values in the range [0, NB - 1] to form the set U 

and then use it to permute and scramble the blocks in H 

such that the contents of each block hk is mapped to hU(k) 

to form the encrypted image EI. In case M×N is not an 

integer multiple of B, the last block is not permuted and 

the size of set U is NB - 1 and the range of values in it 

becomes [0, NB - 2]. Figure 2-h) demonstrates this last 

step when applied to the image in Figure 2-g) using 

U={4, 7, 11, 10, 3, 1, 8, 12, 2, 5, 9, 6}. 

3.2. Data Embedding Phase 

Once the Encrypted Image (EI) is obtained from the 

encryption phase, the content owner can safely hand it 

to the data hider in order to start the data embedding 

phase. Since the correlation between pixels in the same 

block is somehow preserved, the embedding operation 

should process the encrypted image block-wise. 

Accordingly, and after encrypting the data to be 

embedded using the data hiding key KH, the embedding 

phase starts by generating the Hilbert curve for an M×N 

image. Afterwards, and knowing the block size B, the 

image is blocked into B-pixel blocks by scanning the 

pixels in 𝐸𝐼 along the generated path to obtain the set 

H={hk, 0 ≤ k ≤ NB - 1}. such that each element in hk is a 

𝐵-tuple that contains the pixels values in the block 

ordered by column-major, i.e., hk =(vk,0, vxk,1, vk,2, …, 

vk,B-1). Similar to the blocking performed during 

encryption, the blocks in H are numbered according to 

their order along the Hilbert path. 

Next, the blocked image is scanned and the blocks 

are checked to determine whether they contain pixels 

with values of 0 and/or 2n -1 as these values may result 

in underflow/overflow if data is embedded. These 

blocks have to be excluded from data embedding. In 

order to record the overflow/underflow blocks, the set 

location map (L) is created such that L={lk, 0 ≤ k ≤ NB - 

1}, where lk is basically a one bit that is set to 1 in case 

ℎ𝑘 is an overflow/underflow block; otherwise, lk it is 

zero. Figure 3-a) shows the blocked encrypted while 

Figure 3-b) shows the blocks that are excluded from 

data embedding (horizontally-patterned) due to 

overflow.  

For the remaining blocks, they are scanned in order 

to embed the given data. For every block that can be 

used in embedding, h=(v0,v1,v2, …, vB-1), the pixels are 

manipulated to store the given bits as follows. For pixels 

vi, i ∈ [1, B-2], the prediction is calculated using.  

𝑝𝑖 =  ⌊(𝑣𝑖−1 + 𝑣𝑖+1)/2⌋ 

Where ⌊𝑥⌋ is the floor operator, and hence , the 

prediction error is:  

𝑝𝑒𝑖 =  𝑣𝑖 − 𝑝𝑖 

Accordingly, the pixel value in the block is then 

modified and updated to embed one bit, if possible, 

using where 𝑏 is the bit to embedded. Effectively, 

prediction errors of 0 and -1 are utilized to embed the 

data and they are either left unchanged when b is 0 or 

incremented/decremented by 1 when b is 1. Other 

prediction errors are incremented or decremented by 1 

based on their polarity in order to open space for 
embedding data in prediction errors of 0 and -1.  

 
a) Blocked-encrypted image.             b) Overflow blocks excluded. 

 
c) Stego-encrypted image. 

Figure 3. Data embedding steps.  

𝑣𝑖 =  {

  𝑝𝑖 + 𝑝𝑒𝑖 + 𝑏 ; 𝑝𝑒𝑖 = 0
     𝑝𝑖 + 𝑝𝑒𝑖 − 𝑏 ; 𝑝𝑒𝑖 = −1

  𝑝𝑖 +  𝑝𝑒𝑖 + 1 ; 𝑝𝑒𝑖 > 0
     𝑝𝑖 +  𝑝𝑒𝑖 − 1 ; 𝑝𝑒𝑖 < −1

 

For the last pixel in the block, vB-1, Equations (4), and 

(5) are used to perform embedding; however, the 

prediction is calculated using.  

𝑝𝐵−1 =  ⌊(𝑣𝐵−2 + 𝑣𝐵−3)/2⌋ 

In order to maximize the usage of all pixels in the block 

for data embedding, the first pixel v0 is also considered 

for data embedding after processing pixel vB-1 using the 

same steps but the prediction for this pixel is calculated 

such that 

𝑝0 =  ⌊(𝑣1 + 𝑣2)/2⌋ 

To demonstrate the idea, let’s consider the first block, 

the red block h=(6, 1, 1, 2, 1), in the image in Figure 3-

b) and assume that the data to be embedded is a stream 

of bits that alternates between 1 and 0, i.e., d= (1, 0, 1, 

0,….). Figure 4 shows the embedding steps for 

processing all pixels in the first block. In each step, the 

pixel under consideration is shaded with red while the 

pixels that are used to calculate the prediction are 

shaded with green. For example, the value of 𝑣1 in this 

block is 1 while the neighboring pixels have values of 6 

and 1, thus the p1 is ⌊(6 + 1)/2⌋ which is 3 and the 

prediction error pe1 is -2. According to (5), this pixel 

will be decremented by 1 and no bit is embedded. So, 

the new pixel value v1 is 0. The same process is applied 

to the remaining pixels, except in calculating the 

prediction for the last and first pixels in the block. 

Figure 3-c) shows the stego-encrypted image when all 

of the blocks are considered for the data embedding. 

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

6 1 1 5 4 3 1 1

1 2 6 5 1 0 1 4

0 5 3 7 2 0 2 1

5 2 6 1 7 1 0 1

3 1 6 0 6 7 3 1

4 2 4 6 3 7 3 7

0 7 1 6 4 6 2 0

4 3 6 0 3 6 0 0

7 2 1 5 4 3 1 0

0 3 6 5 1 0 2 5

0 5 3 7 2 0 2 1

6 2 6 1 7 1 0 2

2 0 6 0 6 7 4 1

5 2 4 6 4 7 4 7

0 7 1 6 5 7 2 0

4 3 6 0 2 7 0 0

(3) 

(4) 

(6) 

(7) 

(5) 
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Figure 4. Embedding example for one block (Pixel being processed 

is in red while pixels used for prediction are in green). 

Depending on the size of the data to be embedded, all 

or subset of the blocks and pixels within the last block 

might be used for data embedding. In order to extract 

the data correctly and ensure the reversibility, the data 

hider should provide the receiver with address of the last 

pixel Ae that was used for embedding. Additionally, the 

receiver should have the location map L in order skip 

the overflow blocks during data extraction. This 

information forms the Overhead (OH) to the embedding 

operation that has to be communicated to the receiver. 

Alternatively, and similar to how most RDH algorithms 

treat the overhead, the embedding phase reserves the 

first NOH pixels to store Ae and L. Effectively, the 

location map is first compressed to reduce its size to SL 

bits. Then, the Least Significant Bits (LSBs) of the first 

NOH pixels along the Hilbert curve are replaced with Ae, 

SL and L. These LSBs are pre-appended to the data to be 

embedded and stored in the image during embedding. 

The number of pixels to be used for this purpose is:  

𝑁𝑂𝐻 = ⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ + 𝑆𝐿 + 𝐿 

The value ⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ is basically the number of 

bits required to store Ae. Since the size of the location 

map after compression will vary from image to image, 

and thus SL, we opt to set and fix SL to ⌈𝑙𝑜𝑔2(𝑀 ×
𝑁)⌉ bits as well for any image. 

3.3. Data Extraction and Image Decryption 

Phase 

In this phase, the receiver may perform three different 

operations depending on the available keys as depicted 

in Figure 1. In case the receiver has the data hiding key 

𝐾ℎ only, then he can only extract the data from the 

stego-encrypted image to obtain the encrypted image 

and the embedded data.  

Effectively, data extraction starts by generating the 

Hilbert curve for the M×N stego-encrypted image and 

reading the LSBs of the first 2⌈𝑙𝑜𝑔2(𝑀 × 𝑁)⌉ pixels 

along the path. The first half of these bits is Ae while the 

second half is SL which is used to read the following SL 

bits that represent the location map. After 

decompressing the location map, the stego-encrypted 

image is blocked using B and the data extraction 

proceeds starting from the block that contains the pixel 

with address Ae. If the corresponding bit of a block is 1 

in the location map, then the block skipped. Otherwise, 

restoring the pixels’ values in the block and extracting 

the bits is as follows. 

 

Figure 5. Extraction example for one block (Pixel being processed 

is in red while pixels used for prediction are in green). 

For a block in the stego-encrypted image, h=(v0,v1,v2, 

…, vB-1), processing starts by considering the first pixel 

v0 and calculating the prediction and prediction errors, 

p0 and pe0, using (7) and (4), respectively. Based on the 

prediction error value, the original value of v0 in the 

encrypted image is restored using 

𝑣𝑖 =  {

    𝑝𝑖 + 𝑝𝑒𝑖   ; 𝑝𝑒𝑖  ∈ {−1,0}
𝑝𝑖 + 𝑝𝑒𝑖 − 1 ; 𝑝𝑒𝑖 > 0

    𝑝𝑖 +  𝑝𝑒𝑖 + 1 ; 𝑝𝑒𝑖 < −1
 

While the embedded bit, if any, is extracted such that 

𝑏 =  {

       0     ;    𝑝𝑒𝑖 ∈ {−1,0}

       1     ;   𝑝𝑒𝑖 ∈  {−2,1}

𝑁𝑜𝑛𝑒 ;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Next, exaction moves to the last pixel in the block vB-1, 

calculates the prediction using (6) and restores the 

original value and the embedded bits using (9) and (10), 

respectively. For the remaining pixels, they are 

processed in a reverse order, i.e., from vB-2 to v1, with 

the prediction calculated using (3). This process repeats 

for all blocks until the first block is processed.  

Once all data is extracted, the first 𝑁𝑂𝐻 bits of the 

data are stored back into the first 𝑁𝑂𝐻 pixels in the 

Hilbert path and the embedded data is decrypted using 

𝐾𝐻. Figure 5 demonstrates the extraction process for the 

red block in the stego-encrypted image in Figure 3-c). It 

is clear in this example how the original values in the 

first block in the encrypted image in Figure 2-e) is 

restored and how the embedded bits are extracted 

correctly.  

The second case is when the receiver has the 

encryption keys only, i.e., KP, NC, KC and KS. In this 

case, the receiver can only decrypt the stego-encrypted 

image to obtain the directly-decrypted image. 

Specifically, and after blocking the image over the 

Hilbert path into NB blocks, the receiver decrypts the 

stego-encrypted image by simply reversing the 

operations performed during encryption.  

Technically, the key KP is used to generate the NB 

randomly-ordered unique values in the range [0, NB-1] 

to form the set U that is used to reverse the permutation 

step such that block hU(k) is mapped to hk, except for the 

last block when M×N is not and integer multiple of B. 

Next, and using KC and NC, the blocks that were 

complemented during encryption are identified and the 

(8) 

(9) 

(10) 
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their pixels are complemented using (2). Afterwards, 

the Hilbert blocks are mapped to B×1 blocks and in the 

same order. Finally, the key KS is used to generate the 

set S={Sk, 0 ≤ k ≤ N - 1} to reverse the shifting operation 

performed on the columns such that the original 

position of pixel qk,i in column Ck is given by 

𝑞𝑘,𝑖 = (𝑞𝑘,𝑖
′ − 𝑠𝑘) 𝑚𝑜𝑑 (𝑀 − 1) 

The result of this decryption process is the directly-

decrypted image which is slightly different from the 

original cover image due to the fact that the embedded 

data has not been extracted. As a matter of fact, 

improving the quality of this directly-decrypted image 

is one important metric that RDHEI algorithms compete 

in.  

The third case is when the receiver has both the data 

hiding and encryption keys. In this case, the receiver can 

extract the data first from the stego-encrypted image 

using the steps we discussed in the first case. 

Afterwards, the receiver uses the encryption keys to 

decrypt the image to recover the original image by 

following the steps discussed in the second case. The 

output is an image that exactly matches the original 

cover image as shown in Figure 1.  

4. Experimental Results 
4.1. Evaluation Setup and Performance 

Metrics 

In this section, we evaluate the performance of the 

proposed algorithm and compare it with Shui et al.’s 

[17] algorithm. The MATLAB code for both algorithms 

along with the evaluation code can be found on 

(shorturl.at/gqrs9) In the evaluation, we used six 

512×512 test images, namely; Clock, Cat, Bird, Tank, 

Butterfly and Cameraman [18, 21] which are shown in 

Figure 6.  

 

 
a) Clock. 

 
b) Cat. 

 
c) Bird. 

 
d) Tank. 

 
e) Butterfly. 

 
f) Cameraman. 

Figure 6. Test images. 

The evaluation considers the embedding capacity 

(bits) and the quality of the directly decrypted images 

using the peak PSNR. To evaluate the security of the 

encrypted images, four different metrics are considered; 

the PSNR value between the cover image and the 

encrypted image, the entropy, Number Of Changing 

Pixel Rate (NPCR) and the Unified Averaged Changed 

Intensity (UACI) [4, 12]. The last three metrics are 

usually used as indicators for the resistibility to 

differential attacks.  

4.2. Evaluation Under Maximum Embedding 

Capacity 

The first experiment in the evaluation considers 

assessing the maximum amount of data that can be 

embedded in the test images when the block size B is 

varied is varied between 3 and 15 pixels.  

Figure 7 shows the maximum embedding capacity 

obtained using the two algorithms for different block 

size. It is evident how the proposed algorithm 

outperforms [17] significantly in terms the embed data. 

This result is expected given the fact that [17] uses only 

two pixels in each block for embedding; hence, and as 

we mentioned earlier, only (2/B×100)% of the pixels in 

each block is considered for embedding. So, as the 

block size increases, the embedding capacity decreases. 

On the contrary, the proposed algorithm uses all 

pixels in the blocks for embedding and this gives the 

proposed algorithm the potential to achieve higher 

capacities even when the block size is increased. 

Ignoring the overhead and assuming there are no 

overflow blocks, the embedding capacity in the 

proposed algorithm could be as high as M×N.  

Despite the impressive increase in the embedding 

capacity for the proposed algorithm, the directly-

decrypted image is expected to have relatively lower 

PSNR values when compared to Shui et al.’s [17] 

algorithm since the proposed algorithm affects all pixels 

in the block. Effectively, and in the worst case scenario, 

if we assume that all pixels in the proposed algorithm 

are either incremented or decremented by 1 during data 

embedding, then this implies that the lower bound for 

the PSNR value is 10loɡ102552 which 48.13 dB. On the 

other hand, the lower PSNR bound in the worst case 

scenario in [16] is 10𝑙𝑜𝑔10(
𝐵×2552

2
) if we assume that 

two pixels in each block are modified by 1. For 

example, when B is 3, the lower PSNR bound is 49.89 

dB.  

Figure 8 shows the PSNR values for the six test 

images in both algorithms when the block is varied. It is 

clear how the PSNR value in Shui et al.’s [17] algorithm 

increases as the block size increases. However, the 

PSNR of the directly-decrypted image is always lower 

in the proposed algorithm but it is always above 48.13 

dB. Nonetheless, this difference in the PSNR values 

between the two algorithms under maximum 

embedding capacity slightly affects the visual quality of 

the decrypted image and this can be traded for the 

increased ECmax Figure 9 shows the original image 

Clock and the directly decrypted versions in both 

algorithms when the block size is 3 and 15. The visual 

appearance of the images in both algorithms is very 

similar but with advantage of having significantly larger 

embedding capacity in the proposed algorithm. 

(11) 

https://fisjo-my.sharepoint.com/personal/iyad_jafar_ju_edu_jo/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fiyad%5Fjafar%5Fju%5Fedu%5Fjo%2FDocuments%2FResearch%2FReversible%20Data%20Hiding%2FEncryption%2FSabbatical%2FIAJIT%20Paper%20Code%2Erar&parent=%2Fpersonal%2Fiyad%5Fjafar%5Fju%5Fedu%5Fjo%2FDocuments%2FResearch%2FReversible%20Data%20Hiding%2FEncryption%2FSabbatical&ga=1
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                                                    a) Clock.                                                                              b) Cat.                                                                              c) Bird. 

 
                d) Tank.                                                                         e) Butterfly.                                                                 f) Cameraman. 

Figure 7. Effect of block size on maximum embedding capacity for the six test images.

4.3. Security Analysis 

One major concern in RDHEI algorithms is the security 

level of the encrypted image as it will be exploited by 

the data hider to embed the data. Thus, it is important 

that the encryption in RDHEI algorithms protects the 

privacy of the content owner. This subsection evaluates 

the security of encrypted images in both algorithms 

using the security metrics presented in 4.1. 

Analytically, the security of encryption algorithms 

mainly depends on the size of key space. The larger the 

key space, the more secure the algorithm is. For Shui et 

al.’s [17] algorithm, there are two keys; one for 

permuting the blocks and the other for permuting the 

pixels within the block. Hence, if we assume that the 

size of each key is 𝑟 bits, then the key space for Shui et 

al.’s [17] algorithm is min(2r,NB!) × min(2r,B!), where 

NB and 𝐵 are the number of blocks and the number of 

pixels in the block, respectively. On the other hand, the 

proposed algorithm uses four different keys to shift the 

columns, complement subset of the blocks, and permute 

the blocks. So, the overall key space size will be 

𝑚𝑖𝑛 (2𝑟, 𝑀 × 𝑁) × min (2𝑟, 𝑁𝐵!) × min (2𝑟 ×

𝑁𝐵, ∑ (
𝑁𝐵

𝑖
)

𝑁𝐵
𝑖=0 ). 

  

                  a) Clock. b) Cat.                             c) Bird. 

 

                     d) Tank.  e) Butterfly.                       f) Cameraman. 

Figure 8. PSNR values of the directly-decrypted version for the six test images. 
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a) Shui et al., B=3. 

 

b) Shui et al., B=15. 

 
c) Proposed, B=3. 

 
d) Proposed, B=15. 

Figure 9. Directly-decrypted.

Figure 10 shows the size of the keys in both 

algorithms (log scale) as a function of block size for a 

512×512 image and when the size for any key is 64 bits. 

It is apparent how the overall key size in the proposed 

algorithm is much higher than that in Shui et al.’s [17] 

algorithm, which indicates higher security since it 

implies that an attacker who attempts to decrypt the 

image through brute-force attack will need to spend 

large time. For example, the average time required to 

decrypt the image in the proposed and Shui et al. [17] 

algorithms was 3.04 and 0.24 seconds, respectively, 

when a PC with Intel® Core i7 2 GHz processor and 16 

GB of RAM, respectively, when the block size is 7 

pixels. So, the time required to decrypt the image in 

Shui et al.’s [17] algorithm through brute-force attack is 

years, while it is 2.5424× 1044 is 7.0755 ×1014 years in 

the proposed algorithm. 

Visually, Figure 11 compares the encrypted images 

in Shui et al. [17] and proposed algorithms when the 

block size is 3 and 15 with 𝑁𝐶  in the proposed algorithm 

set such that 75% of the blocks are complemented. Both 

algorithms were capable of scrambling the image 

content in an unperceivable manner with higher visual 

confusion observed for smaller blocks. However, the 

proposed algorithm was capable of changing the major 

tone in the image due to complementing the pixels in 

some of the blocks. 

Quantitatively, Table 1 lists the PSNR, entropy, 

NPCR and UACI metrics of the encrypted six test 

images for both algorithms when the block size is 7 and 

the same permutation key KP is used to permute the 

Hilbert blocks in both algorithms while a different key 

is used to permute the pixels with the blocks in Shui et 

al.’s [17] algorithm. In the proposed algorithm, 𝑁𝐶  is 

specified such that 75% of the blocks are 

complemented. Investigating the numbers in Table 1 

reveals that the PSNR values of the encrypted image in 

the proposed algorithm are always lower than those in 

Shui et al.’s [17] algorithm. This reflects lower 

similarity between the encrypted and original images in 

the proposed algorithm. The same conclusion can be 

made by considering the NPCR and UACI metrics. The 

numbers in Table 1 shows the superiority of the 

proposed algorithm which produced encrypted images 

with higher values for these metrics for all test images. 

As for the entropy, which measures the randomness 

in the encrypted image, the values of Shui et al.’s [17] 

algorithm are effectively the entropy value of the 

original cover image since this algorithm only permutes 

the blocks and the pixels within the blocks without 

affecting their values during encryption. On the other 

hand, the proposed algorithm does not only shift the 

columns and permute the blocks, but it also 

complements the pixels’ values in a randomly selected 

blocks using NC and KC keys. This has the effect of 

changing a subset of the pixels in the image; thus 

increasing the entropy as shown in Table 1. 

 
Figure 10. Key size as function of block size in both algorithms (log scale). 

 
a) Shui et al., B=3. 

 
b) Shui et al., B=15. 

 

c) Proposed, B=3. 

 

d) Proposed, B=15. 

Figure 11. Encrypted images. 

5. Conclusions 

Privacy protection for images uploaded to cloud 

services has become an issue; especially when these 
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images are subject to data embedding for different 

purposes. In this papers, we presented a separable 

reversible data hiding algorithm for encrypted images. 

The algorithm is essentially based on permutation in 

order to preserve the correlation between pixels which 

has direct impact on the embedding capacity. The 

contribution of the algorithm in terms of encryption lies 

in encrypting the image through specific scrambling of 

the image columns and blocks and complementing 

pixels’ values in subset of the blocks which helps in 

embedding larger amount of data through the 

modification of prediction errors in the encrypted 

image. The results of the algorithm verified its ability in 

increasing embedding capacity as well as the security 

and privacy of the encrypted image. The security of the 

proposed algorithm can be further enhanced by 

considering classifying the blocks based on their texture 

and using blocks with low texture for data embedding 

while blocks with high texture are encrypted using 

Advanced Encryption Standard (AES) or Data 

Encryption Standard (DES).  

 

 

 

Table 1. Values of security metrics for the test images in both algorithms. 

 PSNR Entropy NPCR UACI 

Image Prop. Shui et al.[17] Prop. Shui et al.[17] Prop. Shui et al.[17] Prop. Shui et al.[17] 

Clock 5.87 9.98 7.12 6.71 99.37 97.92 42.85 22.89 

Cat 5.66 9.91 5.79 5.19 96.43 86.09 43.95 24.34 

Bird 9.89 16.57 6.91 6.22 99.48 98.18 27.74 11.41 

Tank 17.47 17.47 5.68 5.05 98.30 95.31 9.44 8.57 

Butterfly 12.18 12.57 6.86 6.61 99.15 98.76 20.11 19.07 

Cameraman 9.15 9.27 7.40 7.05 99.54 98.98 28.40 26.33 
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