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Abstract: Speech de-nosing is one of the essential processes done inside hearing aids, and has recently shown a great 

improvement when applied using deep learning. However, when performing the speech de-noising for hearing aids, adding noise 

frequency classification stage is of a great importance, because of the different hearing loss types. Patients who suffer from 

sensorineural hearing loss have lower ability to hear specific range of frequencies over the others, so treating all the noise 

environments similarly will result in unsatisfying performance. In this paper, the idea of environmental adaptable hearing aid 

will be introduced. A hearing aid that can be programmed to multiply the background noise by a weight based on its frequency 

and importance, to match the case and needs of each patient. Furthermore, a more generalized Deep Neural Network (DNN) 

for speech enhancement will be presented, by training the network on a diversity of languages, instead of only the target language. 

The results show that the learning process of DNN for speech enhancement is more efficient when training the network using 

diversity of languages. Moreover, the idea of adaptable hearing aid is shown to be promising and achieved 70% overall accuracy. 

This accuracy can be improved using a larger environmental noise dataset. 
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1. Introduction 

A Hearing aid is an electronic device which improves 

speech quality for hearing impaired people who suffer 

from hearing loss. There are three types of hearing loss: 

conductive hearing loss, sensorineural hearing loss, and 

mixed hearing loss [13]. Conductive hearing loss is 

related to any impairment in the outer or the middle ear, 

while sensorineural hearing loss is related to a 

deficiency in the inner ear. Mixed hearing loss is a 

combination of the previous two types. Patients who 

suffer from sensorineural hearing loss lack the ability to 

separate desired sound from undesired noise; for that 

reason, they find it difficult to hear in a noisy 

environment [24]. As a result, a speech enhancement 

technique is needed for the hearing aid device to 

overcome this disability.  

Hearing aids can be analog or digital. Analog hearing 

aids amplifies the sound entering the ear; while, digital 

hearing aids have other advanced features and 

preprocessing techniques applied to the input sound 

before the amplification process [33]. Recently, most 

available digital hearing aids have an embedded speech 

enhancement system, that is used to eliminate the noise  

 
accompany the speech signal [26]. This system is based 

on classical speech enhancement approaches. However, 

recent researches [5, 4, 37, 42] have shown that the 

speech enhancement process has been greatly improved 

by using deep learning techniques instead of the 

classical de-noising approaches. The basic difference 

between deep learning and the classical approaches for 

speech enhancement is that these classical approaches 

are based on statistical assumption of the noise 

accompanying the speech. On the contrast, deep 

learning approaches predict the complex nonlinear 

function, which maps noisy speech to clean speech, 

without prior knowledge of the statistical relationship 

between speech and noise. For this reason, deep learning 

techniques are more powerful and generalized than the 

classical ones. As a result, deep learning based speech 

enhancement is a promising technique to be used in 

future hearing aid devices [22, 32, 35, 40].  

The rest of this paper is organized as follows. The 

related work and the scope of the paper are presented in 

section 2. The idea of using a diversity of languages in 

the training of a deep neural network for speech 

enhancement is suggested in section 3. The noise 

classification using convolutional neural network is 
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proposed in section 4. The final design for the 

environmental noise adaptable hearing aid device is 

described in section 5. The experimental work is 

explained in section 6. Results and discussion are 

detailed in section 7. Finally, the paper is concluded in 

section 8, along with suggestions for future work. 

2. Related Work 

There are many features nowadays available in hearing 

aids that make it more adequate for users’ needs. Hands-

free technology is one of the powerful features that was 

added to modern hearing aids, which automatically 

adjusts the device based on the user's listening 

environment [12], whether the user on the phone, in a 

restaurant, in a crowd, or a windy area. The device can 

be programmed to meet personal requirements. 

However, all these features are still limited, because 

they are based on classical signal processing techniques 

[26]. Moreover, every added feature may require a 

separate electronic circuit to be performed [33]. 

Many speech enhancement deep neural networks 

have been proposed recently, and some of them are 

proved to be very effective and managed to remove all 

the noise from the speech signal. For these reasons, 

introducing deep learning signal processing techniques 

in hearing aids will develop more advanced features that 

will lead to users’ satisfaction; this is the main idea of 

the work presented in this paper. 

The learning procedure of any deep neural network 

requires a huge amount of data to give a significant 

improvement in the performance. Regarding the speech 

enhancement process, used inside all the hearing aids 

devices, a large dataset of pairs of clean and noisy 

speech samples are required to learn the mapping 

function that maps noisy speech to clean speech. There 

are two common problems that may arise when training 

a deep neural network, namely: variance problem and 

bias problem [1]. Variance is the problem of overfitting 

the training dataset, which means the network is 

performing very well on the training data, but unable to 

generalize this good performance on unseen test data. A 

technique called regularization is used to overcome this 

problem, and the most common one used nowadays is 

called Dropout regularization [6]. In dropout, the 

network randomly drops a certain percentage of the 

hidden units, in the hidden layers, during the training 

process. In this way, the learning process becomes more 

efficient, because dropout regularization prevents the 

dependence on only some specific features during the 

training, and in turn makes the network more robust to 

the changes in the test set. Although this technique 

negatively affects the network performance on the 

training set, it improves the network generalization 

capability.  

On the other hand, bias is the problem of underfitting 

the training dataset. This means that the network is 

unable to perform the required task. To solve this 

problem, a more complex network, a deeper network or 

a network with many hidden units, was used in [1]. This 

option may not always work, and most importantly, it is 

not practical to increase the complexity of the network 

due to hardware restrictions. The other option to solve 

this issue is to increase the size of the dataset. This was 

proved to have a positive impact on network 

performance. However, it will be difficult to collect a 

large clean speech dataset for each language spoken 

worldwide. Some researches [17, 38] tried to solve the 

availability of dataset problem by using what is called 

transfer learning, applied in [15]. They used the 

parameters of a pre-trained network on any other 

language as initialization to their network’s parameters, 

and then fine tune the network using a small dataset of 

the target language. The problem of this approach is its 

complexity. Also, it is not granted that any trained 

model on other languages can be fine-tuned to the target 

language, and gives good performance without 

distorting the speech. Moreover, a collection of a small 

dataset for the target language is still needed for this 

approach. 

In addition, sensorineural hearing loss affects the hair 

cells of the inner ear, which have the functionality of 

analysing the frequencies in the received sound. As a 

result, all the frequencies in the received sound, that are 

supposed to be analyzed by the affected hair cells, will 

not be heard properly [9], and patients may suffer from 

lower ability to receive high, mid, or low frequency 

sounds. While other patients may experience something 

called recruitment, which means the ear is unable to hear 

low intensity sound (below 50dB). Furthermore, they 

find high intensity sounds, higher than 80dB, 

unbearably loud. Some patients also may have a lower 

ability to hear any kind of speech, which is known as 

profound hearing loss. As a conclusion, the hearing 

impairment differs from one patient to another due to 

the reason of the deficiency in the ear functionality and 

the severity of the hearing loss [28]. Based on this fact, 

hearing aids should be adapted according to the type of 

hearing loss and its level. The Audiologist can use tests, 

such as audiometry test [25], to detect the ability of a 

patient to hear different sounds, and recognize which 

ranges of frequencies are not received appropriately. 

The work in [32, 40] applied this idea using 

classification approach. 

The above survey reveals the contribution of deep 

learning in the speech enhancement field. However, 

available speech enhancement techniques, employing 

deep neural networks, suffer from the problems listed 

below. 

a) They require a large dataset of clean and noisy speech 

for training, which is difficult for each language 

worldwide. 

b) They may suffer from the variance and bias problems 

mentioned previously. 

c) They lack the ability to classify the sound frequency 
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range, which is an important feature that should be 

added to hearing aid devices, as discussed earlier. 

Consequently, having a hearing aid that can classify 

the type and frequency of a certain noise environment 

will be more satisfactory to the patient's needs. 

This paper attempts to solve the above mentioned three 

problems. It develops an environmental adaptable 

hearing aid using deep neural networks by making an 

integrated speech enhancement and noise frequency 

classification system to be embedded in the hearing aid 

device. Where, the hearing aid should treat different 

frequency sounds according to the case of each patient, 

and this can be achieved by adding the frequency 

classification stage in the hearing aid device. 

The proposed system first enhances the speech signal 

by using deep neural network by removing any 

accompanying noise. Afterwards, it classifies the 

frequency and the type of the noise environment using 

two cascaded classifiers based on convolutional neural 

network. Finally, to output an improved version of the 

noisy speech, the noise is multiplied by certain weights 

based on each patient's needs and the importance of the 

noise.  

In order to avoid the problem of collecting a huge 

dataset for the target language, the deep neural network 

used in this work was trained using an online available 

dataset with a diversity of languages. These proposed 

ideas are presented in the following sections. 

3. The Suggested Speech Enhancement 

DNN using Diversity of Languages 

Speech enhancement is one of the most challenging 

tasks in the signal processing field. Recently, many 

researchers used deep learning to solve this challenging 

task. The training of the deep neural network is based 

on feeding the network with a large number of pairs of 

clean and noisy speech for the network to learn the 

mapping function that maps noisy speech to clean 

speech [11]. Since neural networks learn similarly as 

human brains, the idea that attracts our attention in this 

research is that the brain can distinguish between noise 

and speech of any language even if this language is 

unknown to the brain. This means there are specific 

features for any kind of speech that make it different 

from noise. Based on this idea, a deep neural network 

for speech enhancement was trained in this work three 

times, using different speech corpora as an input to 

address the effect of using a diversity of languages in 

the training process.  

The deep neural network used in this work is based 

on multi-layer perceptron architecture, as the commonly 

used architecture for speech enhancement in recent 

studies [35, 37, 39]. The network has three fully 

connected hidden layers with ReLU activation function, 

and a final output fully connected layer with linear 

activation for prediction. Dropout is the regularization 

technique used, which randomly drops percentage of the 

hidden units during the training process to make the 

network more robust to the changes in the test set, and 

hence avoid overfitting by overcoming the variance 

problem, and hence make the network more generalized. 

A 20% dropout was used in the three hidden units. 

Adam optimizer is the algorithm used to decrease the 

mean square error between the clean speech signal and 

the estimated clean speech signal. Spectrogram 

mapping is the feature extraction method used, and the 

features were normalized to zero mean and unit variance 

before entering the network. The phase angle of the 

noisy speech was separated to be added at the end after 

the enhancement process. It is assumed in this work that 

our ear is not sensitive to the changes that happened in 

the phase angle because of the noisy environment [34].  

This network was trained with three different datasets. 

The first dataset used English speech corpus. The 

second dataset, half of it is composed of English speech 

and the other half has 175 other languages. The third 

dataset employed 175 languages, excluding English. A 

comparison was then made by testing the three trained 

networks on English speech samples as the target 

language, to figure out the effect of using other 

languages rather than the target language in the training 

process and to solve problem (a), mentioned in section 

2. 

Furthermore, this proposed approach is implemented 

as a solution for both bias and variance problems 

(problem (b) in section 2). This is due to the fact that 

using this huge online available dataset will lessen the 

effort of searching or collecting a large dataset of the 

target language, leading to a reduction in bias. 

Furthermore, exposing the network to various languages 

during the training will prevent the network from 

overfitting the training dataset, thus reducing the 

variance. 

4. The Proposed Noise Classifier using 

Convolutional Neural Network 

Recently, Convolutional Neural Networks (CNNs) 

proves to be very effective in audio classification [20]. 

CNN firstly made for image classification to work with 

the huge amount of image’s parameters. The power of 

CNN is that it depends on the idea of convolution, which 

leads to the usage of less parameter because of two 

reasons: parameter sharing and sparsity of connections. 

Parameter sharing means that a feature takes the 

advantage of other features in a certain part of the image, 

and uses it in another stage in the network training. 

While sparsity of connections means that the output 

value in each layer does not depend on all inputs of the 

previous layer, but instead depends only on a small 

number of inputs [41]. The basic convolutional neural 

network consists of three main layers: convolution layer 

in which the convolution operation is done to the input 

features; pooling layer that is used to further reduce the 
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dimensionality of the convolution layer output by 

keeping only important information and discarding the 

others; and the last layer is fully connected layer that is 

responsible for the classification process and generating 

the output [11]. 

When dealing with the audio signal, there are 

varieties of features to represent the data. These acoustic 

features represent the important information in any 

sound, which leads to a compact representation of the 

sound [10]. In this paper, Mel Frequency Cepstrum 

Coefficient (MFCC) is the audio feature used for the 

classification purpose. 

 MFCC is one of the widely used acoustic features in 

today’s research [2]. The Mel scale maps the normal 

frequency representation to a representation more 

similar to the way our auditory system deals with 

different frequencies. The relation between standard 

frequency and frequency on the mel scale is given in 

Equation (1) as follows: 

Fmel =  
1000

log(2)
(1 +

FHz

1000
) , 

Where Fmel is the mel frequency and FHz is the normal 

frequency. While, Cepstrum c(n) is defined as the 

inverse Fourier transform of the log spectrum of a time 

signal s(n), and this is defined in Equation (2) as follows: 

c(n) =  F−1{log|F{s(n)}| } . 

When calculating the MFCCs, the Mel-scale and the 

cepstrum are combined, to give perceptual meaningful 

acoustic features. The steps of extracting the MFCC 

features are summarized in Figure 1, shown below: 

 
Figure 1. MFCC feature extraction method. 

After extracting the MFCC features, the features are 

fed to two deep convolutional neural network cascaded 

classifiers. Each of the two classifiers consists of two 

convolutional layers with ReLU activation function, 

followed by max pooling layer for dimensionality 

reduction [20]. The final two layers are fully connected: 

the first with 500 activation units and ReLU activation 

function, and the second is the output classification 

layer with linear activation function.  

It may be observed that two cascaded classifiers are 

suggested in this paper. The first classifier is designed 

to classify the frequency of the background noise as one 

of three classes: low, mid, or high frequency, and then a 

second classification stage is carried out to classify the 

environmental noise itself. This proposed two stages 

noise classification solves problem (c), discussed in 

section 2, and makes the hearing aid more adaptable to 

each user case and needs, as will be illustrated in the 

results section. The full block diagram of the proposed 

adaptable hearing aid is depicted in Fig. 2, and will be 

discussed in details in the following section.  

5. The Proposed Environmental Noise 

Adaptable Hearing Aid 

This section compiles the approaches proposed in 

sections 3, and 4, to obtain the proposed design of the 

environmental noise adaptable hearing aid as illustrated 

in Figure 2. The deep neural network, explained in 

section 3, is first used to perform the speech 

enhancement process to produce clean speech. 

Following the speech enhancement process, the clean 

speech is subtracted from the noisy speech resulting in 

the background noise. This background noise signal is 

then passed through two classification stages. The first 

stage classifies the noise as one of three broad categories 

based on its frequency range, as explained below. 

a) Natural noise sounds, which are of low frequency 

range, less than 500 Hz 

b) Animal noise sounds, which are of medium 

frequency range, between 500-1500 Hz. 

c) Urban noise sounds, which are of high frequency 

range, higher than 1500 Hz. 

The average dominant frequency [18, 21] of each sound 

is stated in Table 1, and the spectrograms of the sounds 

are shown in Figures 3, 4, and 5. 

The second classification stage consists of three 

classifiers; each categorizes the type of the 

environmental noise (Figure 2). Then, this noise is 

multiplied by a weight according to its frequency and 

type. Finally, this weighted noise is added to the output 

clean speech from the speech enhancement stage to have 

an improved version of the noisy speech. This weight 

should be adapted to each user's case, and based on the 

importance of the noise environment. The noise could 

be directly multiplied by a weight and added to the clean 

speech signal based on the first classification stage; 

however, the second classification stage is used to 

satisfy the needs of users who will be interested in 

hearing certain sounds over others. Additionally, the 

third category in the first classification stage, namely the 

urban noise, serves as an alerting device as it detects 

emergency important noise. This adds to the hearing aid 

device a smart feature [14]. These important kinds of 

noises will be multiplied by higher weight to act as an 

integrated alerting circuit. Moreover, the first 

classification stage represents a deep learning 

implementation of Hands-free technology that is 

available in nowadays hearing aids. Based on this 

classification, the listening environment can be detected, 

and accordingly, the device can be automatically 

adjusted. Consequently, a deep learning based 

environmental noise adaptable smart hearing aid can be 

developed using the proposed design. The details of the 

experimental work are presented in section 6. 

 
 

 
 

(1) 

(2) 
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Figure 2. A block diagram of the proposed system. 

a) Wind. b) Thunderstorm. c) Rain. d) Sea waves. 

Figure 3. Spectrograms of nature low frequency sounds: classified by the first classifier. 

 

a) Dog. b) Cat. c) Rooster. d) Sheep. 

Figure 4. Spectrograms of animal mid frequency sounds: classified by the second classifier. 

 
a) Alarm. b) Door bell. c) Car horn. d) Car siren. 

Figure 5. Spectrograms of urban noise high frequency sounds: classified by the third classifier. 
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Table 1. Average dominant frequency of each sound. 

Sound Dominant Frequency (Hz) 

Dog 765.5 

Cat 1438.4 

Rooster 1350.1 

Sheep 789.2 

Rain 423.1 

Sea Waves 377.9 

Wind 278.9 

Thunderstorm 114.1 

Alarm 2540.9 

Door Bell 1843.8 

Car Horn 1500 

Car Siren 1687.5 

6. Experimental Work 

The clean English speech data were collected by 

randomly selecting audio samples of about 3 hours from 

the Voice Bank Corpus [31], this corpus consists of 400 

English sentences for each of 28 English speakers, 14 

male and 14 female, and another 56 different accent 

speakers, 28 male and 28 female, from Scotland and 

United States.  

Another clean speech corpus [29] was used, which 

has 66,176 files, each of them contains approximately 

10 second of speech recorded in 1 of 176 possible 

languages spoken worldwide. A total of 3 hours audio 

samples were also randomly selected from this dataset, 

which were chosen to be a collection of the available 

languages, excluding English. 

For test purposes, we have chosen 75 speech 

utterances from LibriSpeech ASR corpus [16], which is 

a 1000 hours corpus of clean read English speech.  

On the other hand, 128 noise environments were 

collected from three different datasets which are: the 

100 environmental noise dataset [7], the USTC-made 

15 noise types dataset [36], and the NOISEX-92 corpus 

[30], from which we selected another 13 noise types. 

The first two datasets had been used for the training 

procedure, while the last dataset for testing purpose. 

All the collected audio files were truncated to be 3 

seconds in length, and re-sampled at 16 KHz. In all 

cases, the deep neural network was tested on the unseen 

75 English speech audio samples, taken from 

LibriSpeech ASR corpus, and each of them was 

corrupted with unseen 3 noise types from the NOISEX-

92 corpus, to form a total of 225 noisy speech samples, 

used in the test stage. Concerning the training process, 

the deep neural network was first trained on 4000 pairs 

of clean and noisy speech audio samples, which were 

created by mixing each of 2000 speech audios with two 

randomly selected noise environments from the 115 

noises used in the training process. After that, we 

doubled the training dataset and trained the network a 

second time. In both cases, the deep neural network was 

trained three times, using three different training sets. In 

the first time, the network was trained on English only 

dataset, taken from the Voice Bank English corpus. In 

the second time, the training set was split into two 

halves, half of clean English speech samples, taken 

from the voice bank English corpus, and the other half 

was from the 176 different languages corpus. In the 

third time, it was trained on speech audio samples, 

which all were taken from the 176 different languages 

corpus, excluding English Language. 

The noise environments used to train the classifiers 

were collected from ESC-50 dataset [19] and from 

urban noise dataset [23] to make a total of 400 samples 

of each broad category in the first stage, and 40 sample 

of each class in the second stage. The dataset was 

divided to 60% for training set, 20% for validation, and 

20% for testing. The obtained results are discussed in 

the following section. 

7. Results and Discussion 

7.1. Speech Enhancement Stage Results 

The speech quality was evaluated based on the three 

well known scores: Perceptual Evaluation of Speech 

Quality (PESQ) [8], Short Time Objective Intelligibility 

(STOI) [27], and Log Spectral Distortion (LSD) [3]. All 

these measurements were done using six values of 

Signal to Noise Ratios (SNRs) ranged from -5 to 20 with 

a step of 5. The speech audios were tested on three 

unseen noise environments which are: Machine gun, 

Volvo 340, and HF channel, and then the average was 

computed. In all the spectrogram graphs illustrated in 

Figure 6, the x-axis represents the frequency and the y-

axis represents the power spectral density. 
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                                                                                  a) Clean speech.                                                                 b) Noisy speech.  

 
c) English only trained network enhanced speech. d) Half/ half trained network enhanced speech. e) Language diversity trained network enhanced speech. 

Figure 6. Spectrograms of clean speech utterance (a) and its noisy version (b) with unseen Volvo 340 noise, tested at 0 dB SNR, when the 

network was trained on 3 hours of speech, in the three cases of the training datasets, English only (c), half English and half different languages 

(d), and 176 different languages (e). 

PESQ is an objective method of measuring speech 

quality, its score ranges from -0.5 to 4.5 and the higher 

the score, the better the speech quality. It can assess the 

speech quality by making a comparison between the 

original and degraded speech. PESQ results are shown 

in Table 2 for the three training sets used in the training 

procedure. It is found that using a training set of half 

English speech and half of the other languages gives the 

highest PESQ value. Moreover, training the network 

with diversity of languages, excluding the target 

language, produces slightly higher PESQ values than 

the network trained on the English dataset only. 

Table 2. Average PESQ comparison between the three used datasets 

in the training process, in case of 1.5 and 3 hours training, at different 

SNRs using three unseen noise environments.  

SNR 1.5 Hours Training 3 Hours Training 

 English Half/Half Mixture English Half/Half Mixture 

SNR 20 2.3586 2.4530 2.3839 2.4258 2.5146 2.3976 

SNR 15 2.2982 2.3685 2.3059 2.3606 2.4306 2.3266 

SNR 10 2.1746 2.2567 2.2007 2.3070 2.3204 2.2105 

SNR 5 1.9791 2.1131 2.0602 2.0155 2.1638 2.0569 

SNR 0 1.7212 1.9078 1.8488 1.7300 1.9462 1.8537 

SNR -5 1.4376 1.6192 1.5757 1.4068 1.6993 1.6060 

Ave 1.9949 2.1197 2.0625 2.0410 2.1792 2.0752 

STDEV 

(𝝈) 
0.3584 0.3121 0.3047 0.4051 0.3099 0.3017 

 

STOI is another measure that evaluates the 

intelligibility of the enhanced speech after removing the 

noise, which means how many words could be 

interpreted from this processed speech. It ranges from 0 

to 1, and the higher the value, the better the speech 

intelligibility. Table 3 reveals the results of the STOI, in 

which again the network that was trained on half 

English speech and half of the other languages gave the 

best STOI values, and the network that was trained on 

diversity of languages resulted in slightly higher STOI 

values than the English only trained network, so these 

results matched with the PESQ results, given previously.  

LSD is used to measure the amount of distortion 

happened after processing the speech signal, so lower 

values indicate low distortion, and higher values point 

out to high distortion. In Table 4, the results of the LSD 

for the three datasets are given. It is observed that the 

dataset of half English and half other languages makes 

the network outputs a speech with the lowest level of 

distortion, and this distortion decreases when increasing 

the size of the dataset. On the other hand, the network 

trained on a diversity of languages outputs speech with 

a bit higher distortion than the other two.  

Table 3. Average STOI comparison between the three used datasets 

in the training process, in case of 1.5 and 3 hours training, at different 
SNRs using three unseen noise environments. 

SNR 1.5 Hours Training 3 Hours Training 

 English Half/Half Mixture English Half/Half Mixture 

SNR 20 0.8087 0.8392 0.8341 0.8214 0.8552 0.8423 

SNR 15 0.8058 0.8281 0.8212 0.8156 0.8458 0.8298 

SNR 10 0.7967 0.8086 0.8022 0.8043 0.8286 0.8111 

SNR 5 0.7772 0.7785 0.7737 0.7790 0.7971 0.7814 

SNR 0 0.7343 0.7328 0.7264 0.7301 0.7492 0.7339 

SNR -5 0.6576 0.6684 0.6506 0.6560 0.6765 0.6581 

Ave 0.7634 0.7759 0.7680 0.7677 0.7921 0.7761 

STDEV 

(𝝈) 0.0586 0.0651 0.0692 0.0641 0.0684 0.0696 

Table 4. Average LSD comparison between the three used datasets 

in the training process, in case of 1.5 and 3 hours training, at 
different SNRs using three unseen noise environments. 

SNR 1.5 Hours Training 3 Hours Training 

 English Half/Half Mixture English Half/Half Mixture 

SNR 20 1.0190 0.9697 1.1080 1.0076 0.8417 1.0210 

SNR 15 1.0311 0.9839 1.1096 1.0333 0.8657 1.0404 

SNR 10 1.0540 1.0422 1.1337 1.0536 0.9007 1.1213 

SNR 5 1.0910 1.1230 1.1484 1.0753 0.9573 1.1754 

SNR 0 1.2666 1.1641 1.2329 1.2131 1.1174 1.3237 

SNR -5 1.4644 1.2124 1.4435 1.3772 1.3482 1.4646 

Ave 1.1544 1.0826 1.1960 1.1267 1.0052 1.1911 

STDEV 

(𝝈) 0.1768 0.0992 0.1296 0.1422 0.1948 0.1727 

 

The results of the three metrics: PESQ, STOI, and 

LSD prove that using a diversity of language can serve 

as an alternative way of using a huge database of the 

target language. This will save much time for 

researchers to search for a huge database of the target 

language or try to collect large number of clean speech 

audio, because the results are very close for the three 

used datasets. The results also support the assumption 

that using diversity of language may enhance the 

network performance and the generalization ability, 

especially when increasing the dataset size. 
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The spectrograms of the trained network with the 

three datasets are shown in Figure 6, in the case of 3 

hours training. These spectrograms also prove that 

exposing the network to diversity of languages enables 

it to better eliminate the noise accompanied with the 

speech. 

From these results, it may be interpreted that the 

speech possesses unique features, regardless of the 

language, that are captured by the network. Training the 

network with the target language and some other 

languages seems to render the network robustness to 

any changes in the dataset. Moreover, this allows the 

network to learn all the speech features by re-tuning its 

parameters to better differentiate between speech and 

noise, instead of overfitting some specific features in the 

target language. This will solve the variance problem, 

and increase the generalization capacity of the network. 

Furthermore, training the network with diversity of 

languages, without the target language, did not greatly 

affect the network performance. On contrast, as the 

results show, it gave better performance with respect to 

some evaluation metrics. Consequently, the proposed 

method of training the deep neural network for speech 

enhancement by using diversity of languages can be 

implemented as a substitute to any unavailable target 

language dataset (problem (a) in section 2) and as a 

solution for both variance and bias problems (problem 

(b) in section 2).  

7.2. Noise Classification Stage Results 

The accuracy of the first stage classifier depicted in 

Figure 2, which classifies the broad category of the 

sound, was found to be 83% for unseen sound 

environment. The second classification stage consists of 

three classifiers. The accuracies of the first classifier, 

which classifies four nature sounds; the second 

classifier, which classifies four animal sounds; and the 

third classifier, which classifies four urban noise 

environments, were 75%, 83% and 80%, respectively. 

All these three classifiers’ accuracies were evaluated on 

unseen noise environments. The overall accuracy of the 

system was measured by running the whole system 

several times, using unseen noise environments, and it 

was found to be 70%. These accuracies are all 

summarized in Table 5.  

Table 5. Accuracy of each classification stage. 

 Accuracy 

First Stage 83% 

Second Stage 

First Classifier 75% 

Second Classifier 83% 

Third Classifier 80% 

Whole System 70% 

 

The accuracy was not high enough in the second 

stage because of the small dataset used. This is due to 

the fact that only 60% of the 40 audio files of each sound 

contributed in the training process. This means that only 

24 audio files, each of 5 seconds in length, were used, 

leading to about 2 minutes of training or less. These 

audio files contain silent periods that were deducted 

before the training. Thus, the actual training was even 

less than 2 minutes. As a result, this training data was 

not enough, and lead to this low accuracy. Moreover, 

the test set is of 10 randomly chosen sound files, so if 

the system fails to classify only 2 audios, this will lead 

to 80% output accuracy. 

To increase the data size, manual data were collected, 

and the network was retrained. However, the accuracy 

remained approximately the same due to data 

redundancy, because for example there is no variety in 

the rain sounds online available. As a result, this data 

scarcity problem affected the overall performance of the 

system. However, these results can be improved by 

collecting larger amount of non-redundant data, as 

proved by any deep learning approach. The results also 

depend on the sounds required to be classified, because 

as these sounds are of similar features, the classification 

process becomes more challenging. This problem can 

be clearly observed when studying the spectrograms, of 

the sounds in each broad category, in Figures 3, 4, and 

5. It is noticed that the first category, which is 

classifying four sounds of nature, has almost similar 

random representation. For this reason, the classifier for 

this category resulted in the least accuracy. This 

compares favourably to the work done in [36], which 

considered the whole ESC 50 dataset, and resulted in an 

accuracy of 82%.  

It should also be mentioned that the second 

classification stage, which classifies the type of the 

noise environment, can be deducted from the system in 

order to decrease the complexity. However, the second 

classification stage at the same time adds a more 

advanced feature to the hearing aid device, which is the 

ability to detect specific noise environments, and 

multiply them by a weight based on each user needs. 

8. Conclusions 

In this paper, the idea of environmental adaptable 

hearing aid using deep neural networks was introduced. 

A study was conducted first to show how the 

performance of a deep neural network is affected by 

using many languages in the training process for speech 

enhancement. The network was trained with three 

different datasets: one with English speech only; one 

with half of English and half of other languages; and the 

last with a mixture of many languages, excluding 

English. The results illustrated that the network better 

detects the clean speech when exposed to a diversity of 

languages during the training process. This approach is 

supposed to be used to make the network more 

generalized by overcoming the variance problem. 

Furthermore, this could be a proposed solution for the 

scarcity problem of datasets for some target languages. 

The removed noise from the speech enhancement 

network was then analyzed using two cascaded 
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convolutional neural network classifiers. The first 

classifier classifies the noise frequency, and the second 

classifier detects the type of noise. Based on this two 

stages classification, the background noise is multiplied 

by a weight that mainly depends on each user's needs 

and the importance of the noise environment. 

Consequently, the final output of the system is an 

improved version of the noisy speech. By implementing 

this design, the hearing aid device can be adaptable to 

each patient. In addition, it will be smart as it is able to 

detect emergency noise and make it audible. Finally, 

this will result in a more satisfying performance for the 

hearing aid users. The results show that the proposed 

system is applicable, and further improvements may be 

achieved by increasing the size of the environmental 

noise training dataset.  

As a future work, collecting large dataset for noise 

environments is very crucial to be able to apply the idea 

of adaptable hearing aid with better performance. This 

dataset should be also of a variety of conditions to avoid 

data redundancy. Moreover, convolutional neural 

network based noise classifiers are proved to give good 

performance in hearing aid. It is suggested to compare 

the obtained results to those obtained when classical 

classifiers are employed. Furthermore, most of DNN 

based speech enhancement networks managed to map 

noisy speech to clean speech; however, due to hardware 

implementation restriction, complexity will be the main 

issue. The speech enhancement process is used for 

applications like, mobile communication and hearing 

aids, so the algorithm must fit a certain amount of 

memory, and run on a small processor that can be 

attached to the product. As a result, researchers should 

find a solution to decrease deep neural network 

complexity. 
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