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1. Introduction 

The transport industry is essential in the growth of an 

economy because it facilitates resource sharing, mainly 

through communication and the transfer of goods and 

services. The popular means of transport is motor 

vehicles and this is marked by the elaborate road network 

infrastructure in modern society. Furthermore, as 

technology advances so does innovation, which 

necessitates the advancement in the automation of 

automobiles with an aim of improving the transportation 

process. In order to reduce errors, which may lead to 

accidents among other problems, vehicles have been 

automated, which has also led to other inventions like 

autonomous vehicles [11, 32]. These next generation 

technologies are also associated with vices and crimes 

such as auto-theft. As such, a need arises to curb the risks 

with practical counter-measures. Among these 

mitigating options, artificial intelligence presents itself 

as a viable option that can be applied in the monitoring, 

tracking, detection and recovery of stolen vehicles [3, 

24].  

Concerning the suitability of the algorithms present in 

various categories, the performance of algorithms based 

on deep learning supersedes the statistical-based 

machine learning algorithms because of their meta-

heuristic properties [9, 34]. This means that optimality, 

completeness, precision and speed are guaranteed via 

carefully adjusted parameters and hyper parameters 

present in the algorithms to assure confidence in the 

obtained results [22].  

 
This is an extended version of the conference paper 

[8], in which we make use of the Deep Belief Network 

(DBN) algorithm in addition to the Convolutional 

Neural Network (CNN), the Recurrent Neural Network 

with Long Short-Term Memory (RNN-LSTM), Deep 

Boltzmann Machines (DBM), and Deep Auto Encoders 

(AE). Moreover, we introduce the whale optimization 

algorithm among the following bio-inspired algorithms: 

particle swarm optimization, artificial bee colony, ant 

colony optimization and bat algorithm. These algorithms 

will be evaluated using the Figure 1. Score for accuracy 

and precision in addition to the Mean Squared Error 

which was used in the initial study [8]. Furthermore, in 

this study both the Aggressive driving dataset [23] and 

the Driving Behavior dataset [38] are used along with the 

Vehicular Trace Dataset [30].  

This article is organized in the following order: The 

next section covers related work in the use of deep 

learning for the automobile industry. The section that 

follows is the methodology employed in performing the 

experiments for this study. Thereafter, sections four and 

five present the deep neural networks and swarm 

intelligence algorithms used in the experiments. Then 

section six discusses the attained results followed by a 

conclusion in the final section. 

2. Related Work 

The approaches used in previous related studies 

primarily rely on physical features of the stolen motor 

vehicle during their tracking, detection and recovery. 

Such approaches mostly rely on the use of license plate 
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recognition, Global Position System (GPS) tracking 

devices, sensors and other telecommunication devices 

fitted into the vehicle. These devices are used for 

geolocation and transmission of the vehicles position. 

However, this approach is relatively reliable until such 

devices are disabled, tampered with or even removed [2, 

35].  

Additionally, novel approaches have been introduced 

which cover a broad spectrum from biometrics, driving 

patterns as well as driver behavior analysis [1, 13, 16, 17, 

19, 29, 36, 37]. However, the focus has been in areas 

such as accident prevention, drivers’ intent prediction 

and monitoring of the vehicle, it’s path or the driver’s 

behavior [5, 6, 25, 39, 40]. The other authors who have 

ventured into auto-theft detection have used some of the 

previous methods mentioned earlier which are reliant on 

the physical characteristics of the vehicle [21].  

Deep analytics, which refers to the use of 

sophisticated data processing techniques to yield 

information, has also been applied in other studies 

relating to automobile theft. The datasets may include 

both unstructured and semi-structured data from 

multiple sources [7, 14]. In this study, deep analytics is 

applied on the analysis of the driver’s driving behavior, 

consequently yielding the driver’s driving signature. 

Monitoring of the driver’s driving signature would help 

track a vehicle in transit and also detect a case of its theft. 

3. Methodology 

The objective of this study is to evaluate several deep 

learning algorithms and swarm intelligence algorithms, 

described in the next section, on the driver’s driving 

behavior pattern. Generally, the procedure followed in 

the implementation of the algorithms and subsequent 

analysis of the datasets [23, 30, 38] is shown below. 

1. Load the dataset. 

2. Pre-process the data. 

3. Define the algorithm. 

4. Configure the hyper parameters and parameters. 

5. Define the activation function. 

6. Define the Loss/Cost function. 

7. Train the algorithm. 

8. Optimize the network obtained. 

9. Test the results obtained. 

A well-prepared dataset will enhance the likelihood of 

obtaining better accuracy. The other configurations of 

the algorithm may be done stepwise as the overall 

reaction is observed so as to correctly analyze the dataset 

and obtain optimal results.  

 This research proposes the analysis of the driver’s 

driving style in conjunction with the GPS data as a 

signature to monitor and track a vehicle and also detect 

its loss and recovery. The analysis of the driver’s 

behavior will be done by the deep neural networks and 

swarm intelligence algorithms whose performance will 

be assessed based on the Mean Squared Error obtained 

from the execution of benchmark functions: Ackley 

function, Restringing function, Rosen rock function, 

Sphere function, Schaffer function and Himmelblau’s 

function. The results obtained from these algorithms will 

be compared in order to instill the confidence needed to 

guarantee the quality in terms of accuracy. 

4. Deep Neural Network Algorithms 

The deep learning algorithms under consideration are the 

CNN, the RNN-LSTM, DBM, AE and DBN.  

The CNN is actually popular in the analysis of images 

and by extension computer vision. In this case, this 

algorithm is used to systematically evaluate time series 

data. The algorithm follows the procedure in which the 

data’s features are extracted using feature detectors to 

create feature maps which are then reduced through sum 

pooling. This is followed by flattening of the pooled 

feature maps which acts as the input layer for the 

artificial neural network with several fully connected 

hidden layers. The algorithm for the CNN is as follows 

[20, 34]: 

Algorithm 1: Convolutional Neural Network 

Input:  

Initialize weights to a small randomly generated value, set 

learning rate to a small positive value, training period and the 

number of layers. 

Output:  

Begin with iteration n = 1  

For n < MaxIteration, do 

Forward propagate through convolution, pooling and 

then fully-connected layers 

Derive Loss Function value for the data 

Calculate the error term with respect to the weights for 

each type of layer  

Backpropagate the error generated and calculate the 

change in gradient for both the weights ∇ wk

(layer)
 and bias 

∇ bk

(layer)
respectively 

Update the weights and bias respectively 

End For.  

The RNN-LSTM algorithm can process the current 

input with respect to previously memorized input. This 

information flow through the network is controlled 

using the input gate i, forget gate f and output gate o 

These three gates constitute the memory cell which 

determines how much information to propagate through 

the network and which data should be discarded. The 

algorithm of the RNN-LSTM is shown in Algorithm 2 

below [33]. 

Algorithm 2: Recurrent Neural Network with LSTM 

Input:  

Input sequence xi , training period T , learning rate ϵ , hidden 

layer h and output sequence y. 

Output: 

Calculate the hidden vector sequence 

For ∀ t = 1: T do, 

At the input gate, calculate the effective data using 

it = σ (wxixt + whiht-1 + wcict-1 + bi)  where σ  is the logistic 

sigmoid function 
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At the forget gate, determine the data to retain using 

f
t
 = σ (wxfxt + whfht-1 + wcfct-1 + bf) 

Calculate the memory cell state using ct = σct-1+ 

ic tan h (wxcxt + whcht-1 + bc) 
Determine the output to be passed out the memory cell using 

Ot = f
t
 (wxoxt + whoht-1 + wcoct-1 + bo) 

Then calculate the effective output of the hidden layer using ht = 
Ot tan h (ct) 
End for  

Calculate the predicted output using y
t
 = f

t
 (whyht + by) 

The DBM algorithm utilizes the global optimization 

capability of simulated annealing. The visible input 

neurons are clamped onto specific states while the 

visible output neurons and the hidden neurons operate 

freely. Boltzmann machines learn their weights using 

simulated annealing. The correlation-based learning 

procedure of the DBM is presented in algorithm 3 below 

[12]. 

Algorithm 3: Deep Boltzmann Machine 

Input:  

Initialize 𝑤𝑖𝑗  as uniform random values in [-a0 , a0] , where 

a0 = 0.5 or 1.  

Set the initial temperature T0 and the final temperatures Tf 

Output:  

At the clamping phase, present the pattern and for each example 

𝑥𝑖, perform simulated annealing until Tf is reached. 

At each T, relax the network by the Boltzmann distribution for a 

length of time through updating the states of the unclamped 

(hidden) units  

xi = {
+1, with probability Pi

 -1, with probability 1-Pi
 

Where Pi is calculated using; 

Pi = 
1

1 + e
-
neti
T

 and neti = ∑ wi
J
j = 1, j ≠ i x 

Then update T by the annealing schedule and at Tf estimate the 

correlation in the clamped condition using; 

Pij
+=E[xi xj] where i, j=1,2,…,J; i ≠ j 

At the free-running phase, only the input neurons are clamped 

and the output neurons are free-running hence at Tf estimate the 

correlation in the free-running condition using; 

Pij
-  = E[xi xj] where i, j = 1,2,…, J; i ≠ j 

Perform the weight update using; 

∆wij = η(Pij
+ - Pij

- ) where i, j = 1,2,…, J; i ≠ j 

Where η = 
ε

T
 , with ε being a small positive constant 

Repeat the steps above for next epoch until there is no change in 

wij , ∀i , j.  

The deep autoencoder makes use of several stacked 

hidden layers that force the data to converge hence retain 

only the optimal data that is suitable for predictions. 

Furthermore, the non-linear hidden layers allow the 

network to learn more complex encoding functions and 

enhance higher precision. The following is the deep 

autoencoder algorithm [10]. 

Algorithm 4: Deep Autoencoder Neural Network 

Input:  

Input matrix  A ϵ {0, 1}m x n , where rows and columns 

correspond to vector values for input features  

Output:  

Fix a number ℎ of hidden units (h ϵ N, h<m), and 

a number 𝑑 of hidden layers (d ϵ {1, …, maxhl}  

Training: for each driver profile ai of A, where i ϵ [1, m]: 

for each 𝑑 hidden layer compute hidden activation ℎ𝑖 from the 

input vectors  

Compute reconstructed output �̂�𝑖 from hidden activation ℎ𝑖  

Perform the stochastic gradient descent and compute the MSE 

between ai and âi 

Back-propagate error gradient to update weight parameters 

Testing: for each driver profile ai of 𝐴, where i ϵ [1, m]: 

autoencode ai and produce âi 

Set âi as i
th

row of the output matrix Ã. 

The DBN is a combination of Restricted Boltzmann 

Machines (RBM) that are stacked. The initial RBM in 

the stack contains undirected connections but the others 

have directed connections that enable them to act as 

feature detectors. RBMs are special DBM composed of 

dual layer networks that allow for both intra-layer and 

inter-layer connections. Therefore, DBN presents us 

with a means of extracting and exploring knowledge 

present in the hierarchical abstraction of the dataset. The 

procedure of the DBN is presented in algorithm 5 below 

[18, 31]. 

Algorithm 5: Deep Belief Network 

Input:  

Set the initial temperature T0, minimum temperatureTmin, intra-

layer iteration limitDmax , network overall iteration limitGmax , 

objective function threshold Rend , initial network depth D = 2 

(input layer and output layer), and memory matrix I. 

Output:  
i. For i = 1: Dmax align all the symbols correctly  

D = D + 1, T = T0  

a. Generate Ni, form current network structure C based 

on Ni, and calculate the reconstruction error R of C.  
b. For j = 1: Gmax The new number of neurons N' is 

randomly generated as the undetermined solution, the 

DBN structure C' formed by N' is the candidate DBN 

structure, and the reconstruction error R' 

corresponding to C' is calculated. 

i. If ΔR = R' - R < 0 or exp(-ΔR/T) > rand 

C = C', j = 1: Gmax  

ii. If j ≥ Gmax
1 or T ≤ Tmin or R ≤ Rend find Cbest in 

matrix I and search the adjacent domain of Cbest 

to obtain Cfinal  
c. If D ≥ Dmax or R ≤ Rend return the optimal network 

structure 

5. Swarm Intelligence Algorithms 

This study uses the following swarm intelligence 

algorithms; Particle Swarm Optimization (PSO), 

Artificial Bee Colony (ABC), Ant Colony Optimization 

(ACO), Bat Algorithm (BA) and Whale Optimization 

Algorithm (WOA).  

The PSO algorithm mimics bird flocking and 

predation. Thus, the particles represent birds in a search 

space. The particles will fly in restricted directions of the 

bounded search space which the group perceives to be 

ideal. Their velocities are dynamically adjusted based on 
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both their individual experience and that of the other 

particles in the population. Adjustment of the inertia 

weight facilitates both the global and local search 

capability of the algorithm during its implementation 

[15]. 

Algorithm 6: Particle Swarm Optimization 

Initialization: 

For each particle i = 1, …, Np , do 

i. Initialize the particle’s position with a uniformly 

distribution as Pi(0) ~ U (LB, UB), where LB and UB 

represent the lower 

ii. and upper bounds of the search space 

iii. Initialize 𝑝𝑏𝑒𝑠𝑡 to its initial position: pbest (i, 0) = Pi(0). 

iv. Initialize 𝑔𝑏𝑒𝑠𝑡 to the minimal value of the swarm: gbest 

(0) = argminf [Pi(0)]. 

v. Initialize velocity: Vi ~ U (-|UB-LB|, |UB-LB|). 

Termination: 

Repeat until a termination criterion is met 

For each particle i = 1, …, Np, do 

i. Pick random numbers: ri, r2 ~ U (0, 1) 

ii. Update particle’s velocity using Vi (t + 1) = ωVi (t) + 

c1r1 (pbest (i, t) - p
i
 (t)) + c2r2 (gbest (t) - Pi (t)) 

iii. Update particle’s position using Pi (t + 1) = Pi (t) + 

Vi (t + 1). 

iv. If f[Pi(t)] < f [ pbest (i, t)], do 

a. Update the best-known position of particle 

i: pbest(i, t) = p
i
(t). 

b. If f[Pi(t)] < f [ gbest (i, t), update the swarm’s best-

known position: gbest(t) = p
i
(t). 

v. t←(t+1); 

Output gbest(t) that holds the optimal solution.  

The ABC algorithm is dependent on the foraging 

patterns of the honey bees in nature. The bees are split 

into groups based on their responsibilities. The 

unemployed onlooker bees will wait for the employed 

bees who will use the waggle dance to communicate to 

them about the viability of the food source based on the 

quality and quantity of nectar. These bees will then be 

recruited to that food source or alternatively start 

scouting for potential food sources. The food sources in 

this case are the plausible solutions available in the 

search space. The quantity and quality of these solutions 

is measured using fitness and probabilistic functions 

respectively as shown in the algorithm steps below [17]. 

Algorithm 7: Artificial Bee Colony 

Initialization: 

For each bee i = 1, …, n, do 

i. Initialize the positions of bees (xi = 1, …, SN) 

ii. Randomly initialize the food sources within the search 

space using xij = xj
min + rand (0, 1) (xj

max-xj
min) where xij 

represents the parameter for ith employed bee on j
th

 

dimension 

iii. Evaluate fitness (fit
i
) of the population 

Termination: 

Repeat until (iter ≤ MaxCycles) 

i. Generate new positions which represent new solutions vij 

by the employed bees and calculate the fitness value (fit
i
) 

on the new population 

ii. Apply greedy selection process between the initial 

solutions (xij) and the resultant solutions (vij). 

iii. Calculate the probability values (Pi) for the solutions (xi) 

iv. Generate other new solutions (vi) for the onlookers from 

the solutions (xi) selected depending on their (Pi) values 

and evaluate the nectar quality of new positions using 

(fit
i
). 

v. Apply greedy selection process to solutions found by 

onlooker bees. 

vi. If there is an abandoned solution for the scout then 

replace it with a new random solution (xi).  
vii. Memorize the best solution so far (xbest ← xi || vi).  

viii. Increment iteration (iter + 1) 

Output (xbest) the best memorized solution.  

The ACO algorithm is based on the foraging behavior of 

ants which start by randomly exploring the area 

surrounding their nest. The ant that finds a worthwhile 

food source will evaluate the quality and quantity of the 

food which determines the rate of pheromone it will 

deposit on its trail back to the nest. The rest of the ants 

evaluate the viability and shortest route to the source of 

the food using the pheromones deposited on the trail as 

a means of communication. Therefore, the essence of the 

ACO approach is the pheromone model which uses a 

probability function to evaluate the probable solutions in 

each iteration measured by pheromones deposited and 

further quantified using the evaporation rate. The 

algorithm is presented below [26].  

Algorithm 8: Ant Colony Optimization Algorithm 

Initialization: 

For each ant j = 1, …, na do 

i. Initialize pheromones trail (T0)  

ii. Assign best solution (Sbs) at any time in each iteration t 

iii. Assign the minimum Tmin and maximum Tmax value for the 

pheromone trail  

iv. Store the best solution in each iteration (Sib) 

Termination: 

Repeat until a termination criterion is met 

For j = 1, …, na do 

i. Construct a solution (Sib) using a probabilistic function 

ii. If Sib is a valid solution then optionally perform a local 

search to find the best solution Sbs 

iii. If (f(Sis, t) < f(Sbs, t) or Sbs = NULL) then Sbs ← Sib  

iv. Update the pheromone bounds (Tmin , Tmax) using Tij ← 

(1 - ρ) Tij, ∀(i, j) where ρ is the evaporation rate of the 

pheromones which satisfies 0 < ρ ≤ 1  

v. If (stagnation behavior detected) then initialize 

pheromones trail (tmax) 

vi. Update the iteration t ← (t + 1); 

Output Sbs which is considered the optimal solution  

The bat algorithm is another met heuristic optimization 

algorithm based on the echolocation technique of 

microbats which they use for detecting prey, avoiding 

obstacles and locating their roosting crevices. These bats 

emit short bursts of sound pulses whose echo is detected 

by the bats and together with the time delay, detection 

difference between the ears and pitch of the echo to build 

a three dimensional view of their surroundings. 

Therefore, the bat algorithm relies on the way bats fly 
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randomly from their crevices at a given velocity and emit 

sound pulses at an adjustable frequency to locate their 

food. The bat algorithm is presented below [4]. 

Algorithm 9: Bat Algorithm 

Initialization: 

For each bat i = 1, … , n, do 

i. Initialize the bat positions xi (i = 1, …, n) and velocity vi 

ii. Define the pulse frequency f
i
 at xi 

iii. Initialize pulse rates r and the loudness A 

Termination: 

Repeat until (t < tmax) 

i. Generate new solutions by;  

a. adjusting frequency f
i
 = f

min
 + (f

max
 - f

min
)β, where β is 

a random vector in the range of [0,1] 

b. updating velocities vi
t = vi

t-1 + (xi
t-1 - xbest)f

i
  

c. update locations xi
t = xi

t-1 + vi
t  

ii. If (rand > r), do 

a. Select a solution among the best solutions  

b. Generate a local solution around the selected best 

solution 

iii. Generate a new solution by flying randomly  

iv. If (rand < A & f(xi) < f(xbest)) then accept the new 

solutions 

v. Rank the bats and find the current best xbest 

Output the optimal solution (xbest). 

The WOA is based on the hunting behavior of the 

humpback whales. These whales may start by randomly 

chasing the prey in order to encircle and capture it and 

later on employ the bubble net strategy. This feeding 

strategy enables the whales to survive in their 

environment. The algorithm starts by assigning the 

whale population with random solutions. This assumes 

either a minimum or maximum value for the optimal 

solution. Afterwards, the objective function is calculated 

for each search agent which must update its location on 

each iteration depending on their best solution. This is 

then repeated until an optimal solution is found. The 

whale optimization algorithm is presented below [27, 

28].  

Algorithm 10. Whale Optimization Algorithm 

Initialization: 

For each whale i = 1, … , n, do 

i. Randomly initialize the whale population Xi (i = 1, …, n)  

ii. Calculate the fitness of each search agent 

Termination: 

Repeat until (t < tmaxiterations) 

i. For each search agent;  

a. Update a, A, C, l, and p where A and C are coefficient 

vectors and l is the logarithmic spiral 

b. If (p < 0.5), and (|A| < 1) 

i. Update the current search agent position by 

 X(𝑡+1) = 𝑋∗
(𝑡) - A.D  

ii. But if (|A| > 1) select a random search agent 

Xrandand update the current search agent by 

X(𝑡+1) = 𝑋𝑟𝑎𝑛𝑑 - A.D 

c. Otherwise, If (p ≥ 0.5), 

i. Update the position of the current search agent by 

 X(𝑡+1) = D.𝑒𝑏𝑙 .cos(2𝜋𝑙) + 𝑋∗
(𝑡)  

d. Check if any search agent goes beyond the search 

space and amend it.  

e. Calculate the fitness of each search agent.  

ii. Update X* if there is a better solution t = t+1 

Output the optimal solution X* = the best search agent 

6. Experiments and Results  

The deep neural network and swarm intelligence 

algorithms are implemented in python programming 

language. The parameters and hyper parameters of the 

algorithms are configured and consistently adjusted on 

several runs based on performance. In this study, there 

were three datasets used as shown in Table 1.  

Table 1. The datasets. 

No. Dataset Short Name 

1. Vehicular Trace Dataset [30] Dataset 1 

2. Aggressive driving dataset [23] Dataset 2 

3. Driving Behaviour dataset [38] Dataset 3 

The performance of the algorithms was evaluated by 

using the Mean Squared Error (MSE) defined in (1) 

below. 

MSE=
∑ (yi- ŷi)

2N
i = 1

N
  

Where  is the predicted value and  is the actual 

value. The MSE is the average squared difference 

between the predicted values and the actual values.  

The datasets were split into three divisions during the 

experiments; 70% for training, 20% for validation and 

the other 10% for testing. The idea behind splitting the 

datasets is to compare the results obtained with the 

original values. This makes it easy to verify the accuracy 

of the respective algorithms in terms of the obtained 

results as shown in the MSE values of the three datasets 

in Tables 2, 3, 4. 

Table 2. The Mean Squared Error (MSE) obtained when performing driver behavior analysis on Dataset 1. 

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA 

F1 Ackley Function 1.7329 0.4578 0.4101 1.7305 1.6791 0.7741 1.5038 1.2596 2.1733 0.8176 

F2 Rastrigin Function 1.6521 1.5673 1.02947 0.6958 1.1738 2.4205 1.7396 2.6681 2.6908 2.0107 

F3 Rosenbrock Function 1.7952 0.1203 1.0592 1.3942 0.7235 1.7103 1.8529 3.7305 2.5842 1.9958 

F4 Sphere Function 2.0178 1.2995 2.3061 3.9148 2.7945 2.3059 0.4099 0.9426 3.2227 2.5132 

F5 Schaffer Function 1.1262 1.4189 2.2979 2.7427 2.0046 1.9904. 1.0733 0.4471 2.6932 1.7661 

F6 Himmelblau’s Function 2.4911 2.2194 3.9647 3.4031 2.4395 1.5390 2.5412 4.7841 4.6117 1.8326 

 

 

 

 

(1) 
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Table 3. The MSE obtained when performing driver behavior analysis on dataset 2. 

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA 

F1 Ackley Function 2.9472 1.3925 1.5650 1.0385 0.3221 1.4599 1.0251 1.0498 1.3490 1.4491 

F2 Rastrigin Function 1.4482 1.9937 1.7932 1.7943 1.0629 2.4033 1.9245 1.1719 1.4962 2.1803 

F3 Rosenbrock Function 2.1193 0.2847 1.9471 0.9221 1.3401 1.4042 1.2485 0.3421 2.5691 1.7601 

F4 Sphere Function 2.6201 1.6005 2.4310 1.3339 1.2005 2.4309 1.3021 1.9032 1.9837 2.5152 

F5 Schaffer Function 1.3492 1.2289 2.0122 1.7066 1.2054 2.4309 1.2294 1.4502 3.6501 2.3640 

F6 Himmelblau’s Function 2.4503 1.5460 2.1132 1.9011 2.1201 2.2231 2.4025 1.5049 3.4402 2.3231 

Table 4. The MSE obtained when performing driver behavior analysis on dataset 3. 

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA 

F1 Ackley Function 2.0119 0.1039 1.4933 1.8873 1.2945 1.2997 1.0405 1.2143 2.2190 1.4578 

F2 Rastrigin Function 1.2941 1.2833 1.9244 1.0095 2.5450 1.0037 1.6307 1.4552 2.3901 1.1365 

F3 Rosenbrock Function 1.3921 0.0239 1.9930 1.4550 1.9745 1.7003 0.9017 1.2071 1.3081 1.9033 

F4 Sphere Function 2.0143 1.3049 2.0078 2.3993 1.1067 1.9975 0.0630 1.5600 1.4501 2.0105 

F5 Schaffer Function 1.3032 1.5822 1.4057 1.6770 1.2011 1.4367 1.3002 2.6722 1.2844 1.9274 

F6 Himmelblau’s Function 1.9910 1.9925 2.4011 1.4401 2.3851 1.2829 1.8541 2.4901 2.0012 1.3966 

Additionally, the accuracy (a), precision (p) recall (r) 

and F1-score measures are used to verify the results 

through assessing the predictability performance of the 

algorithms. Hence, we are able to determine the number 

of correct predictions against predictions made. These 

measures are calculated as shown below.  

a =
𝑇𝑃+ 𝑇𝑁

TP+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

p 
𝑇𝑃

 + 𝐹𝑃
 

 

r 
𝑇𝑃

 + 𝐹𝑁
 

 

𝐹1 
2𝑝𝑟

 + 𝑟
 

Where the True Positive (TP), is the True Negative (TN), 

is the False Positive (FP) and is the False Negative (FN).  

In order to make use of the performance measures, we 

generate a confusion or matching matrix representing the 

frequency of the actual values against the predicted 

values. Then, we calculate and tabulate the values as 

shown in Table 5, from these values we are able to verify 

the performance of the algorithms on the three datasets. 

The results show that the RNN-LSTM algorithm has the 

best overall F1 score of 97.78% in all the three datasets 

followed by the ABC algorithm that performed better 

amongst the swarm intelligence algorithms with a 

maximum 96.5% F1 score. The CNN algorithm also 

performed well on dataset III particularly on accuracy 

(90.78%) and precision (94.16%). Moreover, the CNN 

and PSO algorithms were second in performance to the 

RNN-LSTM and ABC algorithms based on the F1 

Scores. On average, the DNN performed better than the 

swarm intelligence algorithms on all the three datasets.  

Table 5. The accuracy, precision, recall and F1. Score values obtained for dataset 1, dataset 2 and dataset 3. 

Dataset Measure CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA 

1 

Accuracy (a) 73.67% 95.02% 77.62% 89.05% 91.44% 91.69% 96.71% 87.90% 92.56% 93.83% 

Precision (p) 97.97% 98.73% 88.72% 91.23% 94.31% 93.07% 97.21% 80.03% 86.55% 89.48% 

Recall (r) 88.33% 96.84% 88.01% 92.52% 91.38% 91.71% 95.82% 83.07% 94.57% 93.21% 

F1 Score 92.90% 97.78% 88.36% 91.87% 92.82% 92.38% 96.51% 81.52% 90.38% 91.31% 

2 

Accuracy (a) 85.84% 95.21% 91.38% 90.77% 79.52% 90.47% 92.46% 75.67% 92.45% 84.58% 

Precision (p) 92.27% 97.04% 90.01% 88.39% 91.75% 89.16% 96.43% 85.61% 93.21% 93.18% 

Recall (r) 92.15% 95.23% 88.68% 94.27% 86.38% 93.14% 92.32% 88.01% 92.18% 94.52% 

F1 Score 92.21% 96.13% 89.34% 91.24% 88.98% 91.11% 94.33% 86.79% 92.69% 93.85% 

3 

Accuracy (a) 90.78% 91.26% 78.72% 90.11% 89.04% 90.14% 88.43% 85.45% 88.63% 79.46% 

Precision (p) 94.16% 96.73% 80.46% 86.51% 93.48% 92.74% 93.16% 91.79% 84.72% 90.18% 

Recall (r) 90.86% 93.77% 85.68% 90.94% 91.22% 90.68% 92.23% 80.77% 82.71% 91.25% 

F1 Score 92.48% 95.23% 82.99% 88.67% 92.34% 91.70% 92.69% 85.93% 83.70% 90.71% 

During the parameter tuning, results also show that the 

depth of the deep neural networks in terms of the number 

of hidden layers had a relatively minimal influence on the 

predictability accuracy. This is because increasing the 

number of hidden layers past 50 slowed down the 

network and this had a minimal increase in relation to the 

accurate predicted values. 

Furthermore, the breadth of the network in terms of 

the number of neurons per layer had a correlation with 

the number of features that were being observed in the 

dataset. This is because increasing the number of neurons 

past 20 did not make a significant change in the MSE. 

The RNN-LSTM performed relatively better than the 

other algorithms.  

Generally, increasing the breadth and depth of the 

network had a relatively small impact on the performance 

in terms of classification and matching of the drivers with 

their driving pattern. However, there was some 

dependence on the features being observed. This means 

that observing fewer features for a larger dataset 

(2) 

(3) 

(4) 

(5) 
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increased the confidence levels for the predictability 

compared to many features for the same large dataset. 

The ABC algorithm and the PSO algorithm also made 

good predictions although the bio-inspired algorithms 

made significant changes when the parameters were 

slightly changed. This is unlike the deep neural networks 

which were dependent on the hyper parameter changes 

in order to lower the errors in predictions. 

Overall, there was a high dependence of both hyper 

parameter and parameter tuning to feature selection to 

achieve accurate prediction by the algorithms. 

7. Conclusions 

The ultimate objective of this study was to use the results 

as a means of specifically identifying a driver based on 

their driving pattern and using this information to detect 

and possibly recover a stolen vehicle. The results 

obtained show that this is possible and presents 

possibilities for further research.  

The analysis of driving behavior provides insight to 

the vehicles design, safety of the occupants, quality and 

maintenance. Therefore, there are several aspects of any 

driver’s behavior that can be studied in order to help us 

understand how we can improve the quality of driving 

and assure safety. 

Furthermore, the driver’s driving signature is 

dependent upon their experience and skill as exhibited 

by their reactions over time. This is dynamic owing to 

the fact that their reactions may change, more so, when 

other extenuating factors are involved such as the 

weather, road condition or the kind of occupants present 

in the vehicle.  
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