
 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022110

Mining Frequent Sequential Rules with An

Efficient Parallel Algorithm

Nesma Youssef1,3, Hatem Abdulkader3, and Amira Abdelwahab2,3
1Department of Information System, Sadat Academy for Management Science, Egypt

2Department of Information Systems, King Faisal University, Saudi Arabia

 3Department of Information Systems, Menoufia University, Egypt

Abstract: Sequential rule mining is one of the most common data mining techniques. It intends to find desired rules in large

sequence databases. It can decide the essential information that helps acquire knowledge from large search spaces and select

curiously rules from sequence databases. The key challenge is to avoid wasting time, which is particularly difficult in large

sequence databases. This paper studies the mining rules from two representations of sequential patterns to have compact

databases without affecting the final result. In addition, execute a parallel approach by utilizing multi core processor

architecture for mining non-redundant sequential rules. Also, perform pruning techniques to enhance the efficiency of the

generated rules. The evaluation of the proposed algorithm was accomplished by comparing it with another non-redundant

sequential rule algorithm called Non-Redundant with Dynamic Bit Vector (NRD-DBV). Both algorithms were performed on

four real datasets with different characteristics. Our experiments show the performance of the proposed algorithm in terms of

execution time and computational cost. It achieves the highest efficiency, especially for large datasets and with low values of

minimum support, as it takes approximately half the time consumed by the compared algorithm.

Keyword: Non-redundant rule, multi-core processors, dynamic bit vector, closed sequential patterns, sequential generator

pattern.

Received December 6, 2020; accepted April 28, 2021

 https://doi.org/10.34028/iajit/19/1/13

1. Introduction

Pattern mining is a data mining technique that includes

two subsections called itemset mining and Sequential

Pattern Mining (SPM). The extraction of frequent

sequences from large datasets is known as SPM. It has

only one measure named minimum Support (minSup)

that calculates existence items in sequence databases. It

may be deceptive and insufficient to make a prediction.

Sequential Rule Mining (SRM) is proposed as a

solution to the limitation of SPM. It takes into account

another measure called; minimum confidence

(minConf) that calculates the expectation of the

following pattern. It aids in predicting situations by

identifying relationships between sequential items

occurrences. The mining process consists of two

stages: first, mining frequent sequential patterns

Fournier-Viger et al. [4]. Second, produce sequential

rules which depend on the first phase. So, many

researchers concentrate on enhancing the efficiency of

mining sequential patterns Upadhyay et al. [26]. There

are three concise representations for mining

sequential patterns; Closed Sequential Patterns

(CSP), Sequence Generator Patterns (SGP), and

maximal sequential patterns. Most recent enhanced

algorithms intend to discover non-redundant sequential

rules based on only one representation. This method

depends on data structure with many tasks

implementing the same process. It suffers from

consuming time and causes CPU idle, especially with

low values of minSup. However, generating sequential

rules based on compact information to reduce the time

required for generating the rules as in closed sequential

patterns requires expensive computations on cost and

time. As a result, an enhanced algorithm for mining

rules is required, particularly for large databases and

with low values of minSup.

Utilizing two types of patterns concise (CSP and

SGP) can resolve previous obstacles of producing

many candidates. First, it can reduce the search space

with the lowest values of minSup. Second, it can assist

users analyze the sequences in large datasets

efficiently.

Another aspect of improving the efficiency of

sequential rules is using a parallel approach. One

method to perform this approach is a multi-core

processor. It can increase performance by applying

many tasks simultaneously. So that large datasets can

be analyzed in a reasonable time.

In this paper, we propose an enhanced algorithm for

mining non-redundant sequential rules as follows:

 Performing sequential pattern mining based on

blinding closed with sequential generator patterns in

the same procedure. It aids in acquiring more

information with a more compact database than

111 Mining Frequent Sequential Rules with An Efficient Parallel Algorithm

mining the complete set of sequential patterns.

 Multi core processor architecture is performed on

only two procedures of the proposed algorithm to

achieve the highest possible efficiency.

The rest of this paper is organized as follows: Section 2

introduces the definition of the problem and related

work. Section 3 shows the data structure in a parallel

approach. Section 4 represents the proposed algorithm.

Section 5 discusses the experimental results. The

conclusions are presented in section 6. Finally,

recommendations and future works are summarized in

section 7.

2. Background

2.1. Problem Definition

Suppose I={i1, i2,….., in} is a collection of n distinct

items, and Ij are items or events where 1≤ j ≤ n. An

itemset X is a set of unordered items that are

represented with brackets. Such as (AC) indicates an

itemset with two items ‘A’ and ‘C’. A sequence

includes an ordered itemset denoted S = {I1, I2,…, Im}

where Ij is an itemset and1 ≤ j ≤ m. The number of

events in a sequence named the sequence length. The

frequent first sequence refers to F1-S; for example, the

sample sequence database in Figure 1.

 Definition 1: (prefix and postfix), set two sequences

sy=<y1, y2……yn> and sz=<z1,z2…..zm>, (m≤n).

The sequence sz is a prefix of sy if only z=y for (1≤ i

≤ m). We indicate sz is a subsequence of sy, and sy

refers to the super sequence of sz as sy⊂sz.

 Definition 2: (substring of length),suppose sy is a

sequence and sub n, m(sy), (n≤m) refer to the

portion from locus n to locus m of sy. Substring of

length calculated as (m-n+1). For example, sub3,5

of (<AB(AC)D>) is <(AC)D>.

 Definition 3: (frequent sequence), a support measure

is the number of included items in a database

divided by |DB|. Frequent sequences are composed

of sequence items that satisfy the minimum support

threshold (minSup) and are referred to as sup (Sb)

>=minSup. When given a minimum support

threshold, the main challenge is to find the complete

set of frequent subsequences.

 Definition 4: (frequently closed sequence), respect

two frequent sequential patterns; sy and sz. Frequent

Closed Sequential Patterns (FCSP) indicate that no

sz such that sy⊂sz ᶺ sup(sy) =sub (sz), sy. FCSP is

more compressed than mining the whole set of

sequential patterns. It keeps information fully

extracted without affecting the results. If the

subsequence (sy) has the same support value of the

super sequence (sz); (sy) will be ingested by (sz).

 Definition 5: (frequent generator patterns) if there is

no subsequence sy with the same support of the sz;

this called Frequent Sequential Generator Patterns

(FSGP). FGSP is shorter than FCSP and indulgent

to the noise produced in training data. It has more

accuracy for the classification of the sequence.

 Definition 6: (combine FCSP with FGSP), based on

definitions 4 and 5, it takes advantage of fetching

additional information. The FCSP can't produce

alone non-redundant sequential rules with higher

accuracy.

 Definition 7: (sequential rule and frequent

sequential rules) suppose r is a sequential rule in the

form x→y, which states that if x happens, y will

obey. Consider x, y are frequent sequences, and r

has two measures (Sup,Conf).The support value is

referred to as (minSup) that equals sup(X+Y),

where the confidence value is indicated as

(minConf) that regards the probability of the

following patterns andequal to sup(X+Y)/sup(X). A

rule that achieved a minSup threshold is named a

frequent sequential rule. While; the rule that reached

a min Conf value is a strong sequential rule.

 Definition 8: (redundant rule and non-redundant

rule), if a rule can be deduced by another rule, it

regards a redundant rule. For example, suppose two

rules r1:< B>→< (AC) CD> and r2: →<CD>.

So, r2 is a redundant rule if it is included in r1 and

has the same support as r1. Otherwise, a rule is non-

redundant if x+y∈FCS and x∈kˋ such as k⊂kᶺsup

(kˋ) =sup (k) referred to as a prefixed generator.

Figure 1. Sample sequence database.

2.2. Related Work

Sequential Pattern Mining is a significant phase for

producing sequential rules. It is proposed by

Ravikumar et al. [20] within the Apriori All technique.

The purpose of this phase is to discover all sets of

patterns from large search spaces. It includes two

principal processes called s-extension and i-extension

that are needed for growing the patterns.

The GSP algorithm appeared to solve the database's

multiple scans problem that caused complex

computations in cost and time. It is determined by the

horizontal database and the downward closure property

Titarenko et al. [25]. Many database searches, non-

existent candidates, and holding candidates in memory

are just some of the drawbacks. As a result, the depth-

first search algorithms have been developed (vertical

format). As an example, Spade Zaki [33], Prefix Span

Mollenhauer et al. [15], Spam Wang and Cao [29],

LapinSpam Alja’am et al. [1], CM-Spam, and CM-

Spade Naseer and Malsoru [16]. The algorithms can

 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022112

increase the mining performance by searching the

database once and calculating the pattern's support

quickly. There are also various short representations of

producing sequential patterns with higher precision and

less time required than mining all sequential patterns

Fournier-Viger, et al. [4]. Closed sequential patterns

are one of these representations. It is compact with

fully extracted information.

A sequential generator pattern is the other succinct

representation. It's more tolerant regarding the noise in

candidate patterns. Gen Miner Wu et al. [30], FSGP

Mukhlash et al. [15], and VGEN Husák et al. [8].

Closed patterns are associated with generator patterns

to generate a sequential rule that provides more detail

than closed patterns alone Guyet [7]. However, still

consumes time in building the candidate patterns.

Mining non-redundant sequential rules, such as

CNR, Patel and Malviya [17] Spiliopoulou [21] is also

more efficient than mining sequential rules. Several

researchers have improved SRM algorithms by relying

on the prefix tree to enhance their efficiency. They

reducing search space as included in MNSR and IMSR

pre-Tree. However still suffer from efficiency

regarding the consuming time Pham et al. [19] and

Van et al. [27] particularly for large databases. There

were two directions for most researchers to improve

sequential rule mining algorithms. The first direction is

using the set of procedures that deletes un-candidate

patterns from the beginning, thus enhancing the

efficiency of the generated rules and improving

memory usage. However, it was going through many

steps, leading to an increase in the required time. The

second direction is appending an additional constraint

for producing an extension of the previous algorithm,

as it is in the TRuleGrowth algorithm. It considers

window size parameters to control the maximum

number of the generated rules, but it proved limited

efficiency with the large datasets Youssef et al. [32].

 Numerous researchers fixed this problem by using

a parallel technique to minimize the processor's

execution time. Pspade Zhou et al. [34], PHUSP

Zihayat et al. [35], and other distributed memory-based

parallel algorithms have appeared. In addition, use a

parallel approach in generating sequential pattern

mining to reduce run time and memory consumption,

but it has limitations by causing data corruption and

overheating Huynh et al. [10].

The multicore processor has emerged as a result of

enormous developments in modern processor

engineering, and it has proven to be effective in

improving performance. It allows several tasks

completed at the same time Jamsheela and

Gopalakrishna [11], Huynh et al. [9] Parallel

algorithms have been used to solve several problems,

including improving load balancing and achieving

lock-free parallelism Le et al. [13]. Various researches

have been proposed for improving association rule

mining algorithms using a multitasking approach to

avoid time-consuming, but they are still mining all

patterns in the sequence database TAŞER et al. [24]

Suresh Kumar and Thangamani [22], Kuriakose and

Nedunchezhian [12].

Although these algorithms outperform serial

algorithms efficiently, they require a lot of memory and

go through multiple phases to construct the data

structure. There is no previous research that

concentrated on generating sequential rules and

improving sequential pattern mining simultaneously.

The mining process passes through many tasks

executes the same processes that consume time and

using a lot of memory. There is a constant needed to

gain knowledge, predict patterns, and discover

sequential rules in a reasonable time. Enhancing the

efficiency of the sequential rule mining algorithms is

one solution for this challenge.

3. Data Structure for Parallel Mining NRD-

Rules

3.1. Architecture of Multi-Core Processor

Large datasets are searched in a short amount of time

using a parallel mining method. A multi-core processor

is one way to implement this strategy. On a single chip,

it has several processor cores. It can improve

productivity by doing several tasks at once.

Two or more autonomous cores are located in the

same physical package in a multi-core processor

Upadhyay et al. [26] Czarnul et al. [2]. As seen in

Figure 2, each processor core has its memory and

shares the main memory.

Figure 2. Quad-core processor diagram.

Each core has its L1, and L2 cache, with a single L3

cache for all cores. The highest resource use is

accomplished by sharing more resources between

cores. The data duplication is decreased through the

shared cache. As a result, communications will be

more efficient. We can implement it through the

multiprocessing package in a python that performs

multiple tasks simultaneously on a multi-core CPU.

There are four modules included in Python for

achieving parallelization. The first module is the

threading module that suitable for I/O operations.

113 Mining Frequent Sequential Rules with An Efficient Parallel Algorithm

When a processor is waiting for the data from remote

resources, it is in idle mode. It performs inefficiently

for basic tasks. It increases the complexity degree of

the program, and causes overhead during managing

threads. Second, is utilizing the system method in the

OS module. It allows the external command-line

programs to run in a separate process. It causes

overhead and makes it much more expensive than

others. Third, the subprocess module that is depending

on facilitates spawning processes. It connects them

through signals and gathers the produced output with

their fault message. It doesn't protect operations from

the fault message. Fourth, the multiprocessing package

can perform parallel execution through processes,

pools, queues, and pipes. It provides both local and

remote synchronization. It can effectively lock the

global interpreter by using subprocess rather than

threads.

The current study proposes apNRD-CloGen

algorithm for parallel mining to enhance the execution

time based on the multi-core processor. Utilizing the

multiprocessing module with Pool class has the

advantage of controls the execution of processes. It

supports either synchronous or asynchronous parallel

implementation. Figure 3 shows the applied method for

the proposed parallel algorithm.

Figure 3. Parallel approach for a proposed PNRD-CloGen

algorithm.

3.2. Generators with Closed-DBV Patterns

3.2.1. Closed-DBV Patterns

Closed sequential pattern algorithms that rely on a

vertical format are more efficient than those dependent

on a horizontal data format Gan et al. [5]. It has a

significant advantage in that it scans the database only

once and speedily calculates the support count of

sequences. Those formats store additional information.

So, it demands a great deal of memory.

A bit vector solves this problem that represents

itemsets as several transactions Xie and Tan [31].

However, it has an obstacle that increases the required

memory and execution time because depending on a

fixed size. The size depends on the appearance of each

item that is expressed by ‘1’ otherwise ‘0’. To

overcome this problem, they proposed a Dynamic Bit

Vector (DBV). After clearing the ‘0’ bits at the

beginning and end of the vector, it generates a bit

vector. It improves efficiency for item sets with many

‘0’ bits Tang et al. [23] Gokulapriya and Kumar [6]

Consider the case where the sequence database has 16

transactions. It denotes the presence of two things, one

with a ‘1’ and the other with a ‘0’. As seen in Figure 4,

the bit vector takes 16 bytes to store this operation,

while DBV only considers the start of the index and

the series from the first to the last ‘1’.The proposed

algorithm uses the DBV structure to save sequences in

vertical format. It facilitates the computations of

sequence support. By combining the location of two

items concerning the position of each item, it performs

well in the ANDING operation. It provides a more

accurate result. When performing the ANDING

operation of item <C> to obtain<CB>, the result of

DBV only is (111). When we consider the structure of

DBV, terms of position, it is clear that it does not

include the <CB>, and the correct result is (00000).

The ANDING method should produce the precise

outcome, which is (111) for <BC>. For example in

Figure 1, item in sequence database that existence

in sequences 1, 2, and 3. The bit vector for is

(1,1,1,0,0) that the first appearance of item in

sequence 1 in the second and third position denoted as

2:{2,3}. Figure 5 represents the DBV structure of

item.

Figure 4. Example of bit vector.

Figure 5. DBV structure for item .

3.2.2. Generators Patterns

Sequential generator patterns are more compressed

than closed sequential patterns. Numerous algorithms

are proposed, such as the GenMiner algorithm. It has

three-phases; compact /generate/ and filter Veroneze et

al. [28]. The FEAT Mukhlash et al. [15] and

Mollenhauer and Atzmueller [14] algorithm that relies

on growth with forward and backward pruning

techniques helps speed up the mining process. Mining

Sequential Generator Patterns (MSGPs) Wu et al. [30]

algorithm depends on sequential generator patterns

feature and sequence extensions to discover all

 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022114

generator patterns Upadhyay et al. [26]. Generator

patterns are the prioritized representation of the classes

in classification and model selection.

3.2.3. Blend Sequential Closed with Generator

Patterns

Using closed with sequential generator patterns can

add more information than closed alone can't be

provided. It can generate non-redundant rules with a

high degree of Precision.

CSGM method is used to mine both patterns

simultaneously, but it consumes much time to form

databases Pham et al. [18]. So we propose the pNRD-

CloGen algorithm to mine both type of sequential

patterns and prove the higher performance in runtime.

4. The Proposed Algorithm

The proposed parallel NRD-CloGen (pNRD-CloGen)

algorithm is described in this section. It performs in a

parallel approach and depends on mining patterns from

two concise representations. The first representation is

frequent closed sequential patterns that use DBV data

structure. The second representation is sequential

generator patterns.

In the parallel mining approach, each branch in the

prefix tree is distributed as a single task. Each node is

dealt with as a separate task, and the total computations

can perform in a parallel approach. Then, tasks are

distributed within the available processor cores and

independently handled to generate pNRD-CloGen

rules.

The pNRD-CloGen algorithm consists of six steps:

1. Converting sequence dataset to DBV structure.

Producing the first frequent sequence and assigning

them in a prefix tree.

2. Utilizing a parallel approach for generated

sequential patterns.

3. Pruning the prefix generator.

4. Sequence extension.

5. Generating pNRD-CloGen rules as shown in Figure

6.

The pseudo-code of the pNRD-CloGen algorithm is

shown in Algorithm (1). The DB is scanned to create

the list of items. Next, discovers all Frequent First

Sequences (F1-S) that achieve the minSup threshold.

The items in F1-S are set as child nodes in the prefix

tree. Then, pNRD-CloGen creates new tasks for each

node of the root. Each task implements the method

CloGen-extension.

Figure 6. Framework of a proposed pNRD-CloGen algorithm.

Multiple tasks run in parallel approach to producing

frequent CloGen sequential patterns. Finally, generate

NRD-SR that achieves the minConf threshold.

Algorithm 1: NRD-pCloGen algorithm

Input: SDB, minSup, minConf

Result: NRD-SR

1 Scan DB to create an ID list of items.

2 Calculate DB length& set the

3 minSup value

4 Find F1-S>= minSup

5 Establish DBV structure in a dictionary to have

6 the positions of each item

7 Add F1-S as child nodes, where node=null

8 For each node do

9 Create a new task, then call pCloGen-

10 extension.

11 Set minConf & generate NRD-SR

Consider the database in Figure 1, and set minSup

equal to 0.5. The following procedure is executed to

find the F1-S, as F1={a:5, b:3, c:5}. The procedure that

extends the F1-S is shown in Algorithm (2), named

CloGen pattern-Extension. This procedure sets the F1-

S as child nodes in the prefix tree.

We apply the pruning technique in a parallel

approach to eliminate candidates that cannot extend

frequent patterns. For example, consider the DB in

Figure 1. It is not required to extend prefix ‘B’, as

there is an item ‘A’ which has (start position=1) that

usually occurs before an item ‘B’ which has (start

position=2). The prefix ‘A’ extension already has ‘B’

with the same support. So, ‘B’ will be absorbed. After

that, the CloGen pattern extension procedure extends

patterns by rendering sequence extension to produce

new sequential patterns through a parallel approach.

Algorithm 2: CloGen pattern-Extension

Input:nodes in prefix tree and minSup

Output: set of frequent CloGen patterns

12 set listNode as child nodes

13 For each SP in listNode do

115 Mining Frequent Sequential Rules with An Efficient Parallel Algorithm

14 If SP is pruned then

15 set SP as SP node

16 set Spa as SP child node

17 If (sup (Spa)≥minSup)then

18 Add Spa as child node of SP

19 check and set the attribute of SP

20 (closed or prefixed generator)

Algorithm 3. pCloGen algorithm

Input: nodes, F1-S, MinSup

Output: all child nodes ready to generate rules

22 Set process equal to CPUs as pool

23 Set parameters of listNode as Childs

24 Get child node by star-map () in pool

The parallel approach is implemented in python by

using the multiprocessing package. The package

executes many tasks simultaneously depends on

Central Processing Unit (CPU) cores. It utilizes a Pool

object to perform many tasks and passes them to the

Pool object. Starmap () function. This function can

accept multiple arguments. So, the user can overcome

multiple assumptions of one item having in the list, as

seen in Algorithm (3).
After discovering all frequent CloGen patterns, the

algorithm initializes to generate all NRD sequential

rules, as shown in Algorithm (4). This algorithm

produces all rules through a sub-tree. Each child node

may be a prefix or closed. The prefix is pre and closed

as post of the rule. It performs recursively in parallel

until child nodes don't achieve the minConf value.

Algorithm 4: Generate pNRD-CloGen Rule

Input: root, minConf

Output: pNRD-CloGen Rule

25 Set prefix as a sequence of the root

26 Set sub-node as child node

27 For SP node in the root

28 Search prefix (SP node, rules, minConf)

29If a node is a prefix

30 Search closed (value of a node, nod,

31 rules, minConf)

32 For a child of a children node

33 search prefix (child, rules,

34 minConf)

35 If a sequence is closed

36 Conf= Sup of seq (Sup)/pre(Sup)

37 If Conf ≥ minConf

38 Set rules = anterior posterior

39 Append the rule

40 Else stop producing rules

41 End if

42 End for

43 Call generate NRD-CloGen Rule

44 End for

5. Experimental Results

5.1. Experiments on a Sample Dataset

We assess the reliability of coding the proposed

algorithm in python by using sample data. A sample

data set includes 30 transactions with five consumer

behavior items that include the purchase of various

items. We performed it and have the result manually,

then compared the results with the results of the python

code. It has proved the validity of the code the

emergence of the same results. Set the minSup=0.5 and

minConf=0.5, Figure 7 shows the phases of

implementing the algorithm. As shown in Figure 8, the

tested code prints the number of transactions, objects,

the F1-S count, and the CloGen patterns in the tree,

generated sequential rules, and the spending time for

each operation.

Figure 7. Sample execution of the NRD-DBV algorithm.

Figure 8. Executed code of sample dataset.

5.2. Experiments on a Real Datasets

We evaluated the proposed algorithm by comparing it

with the Non-Redundant with Dynamic Bit Vector

(NRD-DBV) algorithm. The algorithms are run on a

Windows 7 laptop with an Intel Core i5 2.33GHz

processor and 6.58 GB of free RAM. They were

implemented in python and run on Jet Brains Pycharm.

Four real datasets with different sizes and features

are utilized to assess the performance of the algorithm.

The first dataset is named BMSWebView1 (Gazelle),

which contains 59601 sequences of click stream data

included in an e-commerce website. The second data

set called the Sign refers to, sign language utterance. It

has 800 sequences transcript from videos and

embedded 267 distinct items. The third dataset is

 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022116

named Korsarak, a large dataset containing 990,000

sequences of click-stream data from an online news

portal. The fourth dataset, MSNBC, is huge which has

over 1 million transactions. All used datasets are

downloaded from SPMF Fournier-Viger et al. [3].

The experiments were applied to compare the

runtime of the two algorithms for various minSup

values. For this experiment, the minConf value was set

to 0.5 % for all states. The parameters' values were

calculated after a variety of preliminary tests to achieve

the highest efficiency.

5.2.1. Runtime on a Gazelle Dataset

In the Gazelle dataset, items didn't iterate multiple

times very often. So, we set a lower minSup to get the

sequential rules. That means when setting minSup

value as included in other experiments; we didn't have

any sequential rules during the mining process. In

general, the runtime increases with low minSup values

that lead to an increased number of generated rules.

Experience shows that the proposed pNRD-CloGen

algorithm takes much less time than the NRD-DBV

algorithm. When the minSup is set to low values, it has

proven to be effective, as the time to generate

sequential rules is roughly half that of the NRD-DBV,

as shown in Figure 9.

Figure 9. Runtime of Gazelle dataset.

5.2.2. Runtime on a Sign Dataset

The sign dataset has a variety of characteristics,

including sparse, dense, having short and long

sequences. It has an average sequence length of

51.997, while the Gazelle dataset has an average of

2.24.These features, related to its small size, allowed

the algorithm to generate rules in a fraction of the time

it took the Gazelle dataset. In both algorithms, runtime

convergence occurs at low minSup values. When

setting minSup with the lowest values, the pNRD-

CloGen algorithm took less time to reach the highest

performance.

As a result, it takes five times as long as the NRD-

DBV algorithm. Figure 10, shows that when minSup is

set to 0.1, pNRD-CloGen takes 105.6 (s) to complete,

while NRD-DBV takes 514.3 (s).

Figure 10. Runtime of sign dataset.

5.2.3. Runtime on a Korsarak Dataset

Unlike the Gazelle database, both algorithms didn't

generate any rules with low values of min Sup because

of the features of a korsarak dataset. Korsarak dataset

has an item count of 41, 270 items and an average

length equal to 8.1, and the Gazelle dataset has 497

items and 2.24 of average sequence length. The pNRD-

CloGen achieved better performance with minimum

values of minSup. The execution time required for

generating the rules increases with the decreasing

minSup values. This is because of increasing the

computations for finding increased number of non-

redundant sequential rules from a large search space

area. The execution time between the two algorithms is

approximated when setting high values to the minSup,

but the pNRD-CloGen still consumes less time than the

NRD-DBV algorithm, as shown in Figure 11.

Figure 11. Runtime of korsarak dataset.

5.2.4. Runtime on a MSNBC Dataset

This dataset is a massive collection of click-stream

data from the MSNBC website. It is a discrete

sequence and very dense dataset. The proposed

algorithm generated the sequential rules in the shortest

amount of time. In terms of time consumption, the

proposed algorithm, pNRD-CloGen, was achieved the

most effective performance as shown in Figure 12.

117 Mining Frequent Sequential Rules with An Efficient Parallel Algorithm

Figure 12. Runtime of MSNBC dataset.

In terms of memory usage, the NRD-DBV

algorithm uses less memory than the pNRD-CloGen

algorithm on all databases, as shown in Figures 13, 14,

15, and 16. Both algorithms, however, used the same

method to store the sequences, with the pNRD-CloGen

algorithm requiring more memory due to the parallel

technique. It breaks down multiple tasks into smaller

chunks and processes each one separately. As a result,

more memory is needed to save the data.

Figure 13. Memory usage for webview1 dataset.

Figure 14. Memory usage for sign dataset.

Since there were fewer produced rules when the

value of minSup was increased, memory consumption

and runtime decreased. The proposed pNRD-CloGen

algorithm has a significant advantage in that it makes a

parallel approach only on two procedures. First, find

F1-S and add them as child nodes in a prefix tree.

Second, check all nodes whether, prefix or closed, to

generate the sequential rules, so helps in minimizing

the CPU idle time.

Figure 15. Memory usage for korsarak dataset.

Figure 16. Memory usage for MSNBC dataset.

5.2.5. Measuring the Computational Cost

We measure the computational cost to evaluate the

performance of the proposed algorithm. Producing

non-redundant rules has a complexity of O (n*c),

where ‘n’ is the number of nodes and ‘c’ is the average

number of child nodes. We must apply (n-1) operations

for testing and generating sequential rules such as

k<<n for each sequence. As a result, pNRD-CloGen

has a complexity equal to 𝑂 ≈ (𝑛). It implies the

algorithm's supreme running time is proportionate to

the input size. It is the second-best state of big

𝑂notation after the constant state, so the proposed

algorithm proves its efficiency.

5.2.6. Measuring the Scalability

Scalability measures the system's capacity to raise or

reduce its performance and cost in reply to changes in

system processing requirements. We can analyze the

scalability of a system by assessing how its

performance diversifies as a function of the input size

 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022118

growth. We examined the scalability of the two

compared algorithms on the MSNBC dataset for

various data sizes and a fixed value of minSup equal to

0.03. The analysis shows the influence of generating

rules on runtime. The results proved that the pNRD-

CloGen algorithm achieved better scalability than the

NRD-DBV algorithm, as shown in Figure 17.

Figure 17. Scalability of compared algorithms for various dataset

sizes with minSup=0.03.

6. Conclusions

Most algorithms mining sequential rules through only

one representation like closed, generator, or maximal

are time-consuming. The data structure goes through

many steps that follow the same process. In this study,

the proposed pNRD-CloGen algorithm is applied on

four real datasets with different characteristics: sparse,

dense, large, and very large datasets. We utilized a

dynamic bit vector structure with a prefix tree to store

frequent patterns. Also, pruning techniques are applied

to remove uninteresting sequences early. In addition, a

parallel approach is implemented on only two

processes to acquire the highest efficiency. The first

process of the parallel approach is the extension

method. The second process is to test all nodes to

generate sequential rules. The proposed algorithm

proved its efficiency in saving time the approximately

half time required from the compared algorithm,

especially for large datasets and low values of minSup.

7. Recommendations and Future Works

The researcher deduced that not time-saving when

implementing the parallel approach to the overall

processes of the pNRD-CloGen algorithm. The best

uses of the parallel technique are to test the child nodes

that achieved the minSup and check each pattern,

whether generator or closed pattern, to produce the

non-redundant sequential rules.

There is no need to utilize DBV then DBV structure

as applied in the NRD-DBV algorithm. It will take

extra time. Using the DBV structure is sufficient and

more accurate for generating valid rules with actual

positions of items.

The use of processes instead of threads provides

better memory utilization when memory goes down.

The multiprocessing approach prevents data corruption

and deadlocks that may appear with a multithreading

approach.

The pNRD-DBV algorithm helps in detecting

errors, intervening, and detecting bugs in much less

time. It is necessary in areas that ordering sequences

are needed, such as the therapeutic region (in the case

of suffering from a fever). The order of symptoms is

decreasing in coagulation levels, appearance a red

color on the body. The fact that the quiet will cure

dengue fever is tolerable. This timing structure is

critical in predicting the right kind of treatment).

For future works, we suggest implementing a

maximal patterns mininginstead of mining closed

generator patterns. Also, try tostudyits impact on

produced sequential rules in terms of the runtime, and

the accuracy of rules. Additionally, increasing the

number of cores, especially for large data bases and

studying the performance. We hope to avoid the

increase of the power consumption by increasing the

clock frequency, which helps to eliminate overheating.

References

[1] Alja’am J., El Saddik A., and Sadka A., Recent

Trends in Computer Applications: Best Studies

from the 2017 International Conference on

Computer and Applications, Springer, 2018.

[2] Czarnul P., Proficz J., and Drypczewski K.,

“Survey of Methodologies, Approaches, and

Challenges in Parallel Programming Using High-

Performance Computing Systems,” Scientific

Programming, vol. 2020, 2020.

[3] Fournier-Viger P., Lin J., Gomariz A., Gueniche

T., Soltani A., Deng Z., and Lam H., “The SPMF

Open-Source Data Mining Library Version 2,” in

Proceedings of in Joint European Conference on

Machine Learning and Knowledge Discovery in

Databases, Riva del Garda, pp. 36-40, 2016.

[4] Fournier-Viger P., Lin C., Rage U., Koh Y., and

Thomas R., “A Survey of Sequential Pattern

Mining,” Data Science and Pattern

Recognition, vol. 1, no. 1, pp. 54-77, 2017.

[5] Gan W., Lin J., Fournier-Viger P., Chao H., and

Yu P., “A Survey of Parallel Sequential Pattern

Mining,” ACM Transactions on Knowledge

Discovery from Data, vol. 13, no. 3, pp. 1-34.

2019.

[6] Gokulapriya R. and Kumar G., “Research

Aligned Analysis on Web Access Behavioral

Pattern Mining for User Identification,”

International Journal of Engineering and

Advanced Technology, vol. 8, no. 6, pp. 2249-

8958, 2019.

[7] Guyet T., “Enhancing Sequential Pattern Mining

with Time and Reasoning,” Doctoral

119 Mining Frequent Sequential Rules with An Efficient Parallel Algorithm

Dissertation, Université de Rennes 1, 2020.

[8] Husák M., Kašpar J., Bou-Harb E., and Čeleda P.,

“On the Sequential Pattern and Rule Mining in

The Analysis of Cyber Security Alerts,”

in Proceedings of the 12th International

Conference on Availability, Reliability and

Security, New York, pp. 1-10, 2017.

[9] Huynh B., Vo B., and Snasel V., “An Efficient

Method for Mining Frequent Sequential Patterns

Using Multi-Core Processors,” Applied

Intelligence, vol. 46, no. 3, pp. 703-716, 2017.

[10] Huynh B., Vo B., and Snasel V., “An Efficient

Parallel Method for Mining Frequent Closed

Sequential Patterns,” IEEE Access, vol. 5, pp.

17392-17402, 2017.

[11] Jamsheela O. and Gopalakrishna R.,

“Parallelization of Frequent Itemset Mining

Methods with FP-tree: An Experiment with

PrePost+Algorithm,” The International Arab

Journal of Information Technology, vol. 18, no.

2, pp. 208-213, 2021.

[12] Kuriakose S. and Nedunchezhian R., “Efficient

Adaptive Frequent Pattern Mining Techniques for

Market Analysis in Sequential and Parallel

Systems,” The International Arab Journal of

Information Technology., vol. 14, no. 2, pp. 175-

185, 2017.

[13] Le B., Huynh U., and Dinh D., “A Pure Array

Structure and Parallel Strategy for High-Utility

Sequential Pattern Mining, ” Expert Systems with

Applications, vol. 104, pp. 107-120, 2018.

[14] Mollenhauer D. and Atzmueller M., “Sequential

Exceptional Pattern Discovery Using Pattern-

Growth: an Extensible Framework for

Interpretable Machine Learning on Sequential

Data,” In XI-ML@ KI, 2020.

[15] Mukhlash, I., Mohammad I., and Astuti H.,

Sutikno S., “Performance Enhancement Of Cbs

Algorithm Using Fsgp and Feat Algorithm,”

Journal of Theoretical and Applied Information

Technology, vol. 67, no. 3, pp. 644-651, 2014.

[16] Naseera R. and Malsoru V., “Domain Specific

Performance Evaluation of Sequential Pattern

Mining Approaches,” in Proceedings of the

World Congress on Engineering, London, 2016.

[17] Patel P. and Malviya M., “A Review of Modern

Sequential Rule Mining Techniques,”

International Journal of Computer

Applications, vol. 88, no. 6, pp. 32-35, 2014.

[18] Pham T., Luo J., Hong T., and Vo B., “MSGPs: a

Novel Algorithm for Mining Sequential

Generator Patterns,” in Proceedings of the 4th

International Conference on Computational

Collective Intelligence: Technologies and

Applications, Ho Chi Minh City, pp. 393-401,

2012.

[19] Pham T., Luo, J., Hong T., and Vo B., “An

Efficient Method for Mining Non-Redundant

Sequential Rules Using Attributed Prefix-Trees,”

Engineering Applications of Artificial

Intelligence, vol. 32, pp. 88-99, 2014.

[20] Ravikumar P., Likhitha P., Raj B., Kiran R.,

Watanobe Y., and Zettsu K., “Efficient

Discovery of Periodic-Frequent Patterns in

Columnar Temporal Databases,”

Electronics, vol. 10, no. 12, pp. 1-20, 2021.

[21] Spiliopoulou M., Managing Interesting Rules in

Sequence Mining,” in Proceedings of the 3rd

European Conference on Principles of Data

Mining and Knowledge Discovery, Prague, pp.

554-560, 1999.

[22] Suresh Kumar N. and Thangamani M., “Parallel

Semi‐Supervised Enhanced fuzzy Co‐Clustering

(PSEFC) and Rapid Association Rule Mining

(RARM) Based Frequent Route Mining

Algorithm for Travel Sequence Recommendation

on Big Social Media,” Concurrency and

Computation: Practice and Experience, vol. 31,

no. 14, pp. e4837, 2019.

[23] Tang K., Dai C., and Chen L., “An Efficient

Mining Algorithm by Bit Vector Table for

Frequent Closed Itemsets,” Journal of

Software, vol. 6, no. 11, pp. 2121-2128, 2011.

[24] Taşer P., Birant K., and Birant D., “Multitask-

Based Association Rule Mining,” Turkish

Journal of Electrical Engineering and Computer

Sciences, vol. 28, no. 2, pp. 933-955, 2020.

[25] Titarenko S., Titarenko V., Aivaliotis G., and

Palczewski J., “Fast Implementation of Pattern

Mining Algorithms with Time Stamp

Uncertainties and Temporal Constraints,”

Journal of Big Data, vol. 6, no. 1, pp. 1-34, 2019.

[26] Upadhyay P., Pandey M., and Kohli N., “A

Comprehensive Survey of Pattern Mining:

Challenges and Opportunities,” International

Journal of Computer Applications, vol. 180, no.

24, pp. 32-39, 2018.

[27] Van T., Vo B., and Le B., “IMSR_PreTree: An

Improved Algorithm for Mining Sequential Rules

Based on the Prefix-Tree,” Vietnam Journal of

Computer Science, vol. 1, no. 2, pp. 97-105,

2014.

[28] Veroneze R., Corbi S., Da Silva B., De S-Rocha.,

C., Maurer-Morelli C., Orrico S., Cirelli J., Von

Zuben F., and Scarel-Caminaga R., “Using

Association Rule Mining to Jointly Detect

Clinical Features and Differentially Expressed

Genes Related to Chronic Inflammatory

Diseases,” PloS one, vol. 15, no. 10, pp.

e0240269, 2020.

[29] Wang W. and Cao L., “VM-NSP: Vertical

Negative Sequential Pattern Mining with Loose

Negative Element Constraints,” ACM

Transactions on Information Systems, vol. 39, no.

2, pp. 1-27, 2021.

[30] Wu Y., Zhu C., Li Y., Guo L., and Wu X.,

 The International Arab Journal of Information Technology, Vol. 19, No. 1, January 2022120

“NetNCSP: Nonoverlapping Closed Sequential

Pattern Mining,” Knowledge-Based Systems, vol.

196, pp. 105812, 2020.

[31] Xie M. and Tan L., “An Efficient Algorithm for

Frequent Pattern Mining over Uncertain Data

Stream,” in Proceedings of 12th International

Symposium on Computational Intelligence and

Design, Hangzhou, pp. 84-88, 2019.

[32] Youssef N., Abdulkader H., and Abdelwahab A.,

“Evaluating Non-Redundant Rules of Various

Sequential Rule Mining Algorithms,” in

Proceedings of International Conference on

Advanced Intelligent Systems and Informatics,

Cairo, pp. 429-440, 2020,

[33] Zaki M., “SPADE: An Efficient Algorithm for

Mining Frequent Sequences,” Machine

Learning, vol. 42, no. 1, pp. 31-60, 2001.

[34] Zhou S., Liu H., Chen B., Hou W., Ji X., Zhang

Y., Chang W., and Xiao Y., “Status Set Sequential

Pattern Mining Considering Time Windows and

Periodic Analysis of Patterns,” Entropy, vol. 23,

no. 6, pp. 738, 2021.

[35] Zihayat M., Hut Z., An A., and Hut Y.,

“Distributed and Parallel High Utility Sequential

Pattern Mining,” in Proceedings of IEEE

International Conference on Big Data,

Washington, pp. 853-862, 2016.

Nesma Youssef has received her

master’s degree from Sadat

Academy for management science,

department of an information

system, Cairo, Egypt, 2014. The

equivalency score was obtained

with computers and information at

the Supreme Council of Universities. Currently, she is

working as an assistant teacher in the information

system department at Sadat Academy for management

science, Cairo, Egypt. She has 10 years of teaching

experience. She is a research Scholar in the

Information System department at the Faculty of

Computers and Information, Menoufia University,

Egypt.

Hatem Abdulkadar has obtained his

BS and M.SC., both in electrical

engineering from the Alexandria

University, faculty of Engineering,

1990 and 1995, respectively. He

obtained his Ph.D. in electrical

engineering also from faulty of

engineering, Alexandria University, Egypt 2001. His

area of interest is data security, web applications,

artificial intelligence, and he is specialized neural

networks. He is currently a professor in the

information system department, faculty of computers

and information, Menoufia University, Egypt.

Amira Abdelwahab has received

BSc degree in computer science and

information systems from Faculty of

Computers and Information, Helwan

University, Egypt in 2000, and Ph.D.

in information systems from Chiba

University, Japan in 2012. In 2013,

she was a postdoctoral fellow in Chiba University,

Japan. from 2012 till 2018, she has been an assistant

professor in information systems department, Faculty

of Computers and Information, Menoufia University,

Egypt. Since 2018, she has been an assistant professor

in information systems department, college of

Computer science and information technology, King

Faisal University. Her research interests include

Software Engineering, Decision Support System,

database Systems, Data Mining, Machine Learning,

Recommendation Systems, Web intelligence, and Big

Data analytics.

