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Abstract: Sequential rule mining is one of the most common data mining techniques. It intends to find desired rules in large 

sequence databases. It can decide the essential information that helps acquire knowledge from large search spaces and select 

curiously rules from sequence databases. The key challenge is to avoid wasting time, which is particularly difficult in large 

sequence databases. This paper studies the mining rules from two representations of sequential patterns to have compact 

databases without affecting the final result. In addition, execute a parallel approach by utilizing multi core processor 

architecture for mining non-redundant sequential rules. Also, perform pruning techniques to enhance the efficiency of the 

generated rules. The evaluation of the proposed algorithm was accomplished by comparing it with another non-redundant 

sequential rule algorithm called Non-Redundant with Dynamic Bit Vector (NRD-DBV). Both algorithms were performed on 

four real datasets with different characteristics. Our experiments show the performance of the proposed algorithm in terms of 

execution time and computational cost. It achieves the highest efficiency, especially for large datasets and with low values of 

minimum support, as it takes approximately half the time consumed by the compared algorithm.  
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1. Introduction 

Pattern mining is a data mining technique that includes 

two subsections called itemset mining and Sequential 

Pattern Mining (SPM). The extraction of frequent 

sequences from large datasets is known as SPM. It has 

only one measure named minimum Support (minSup) 

that calculates existence items in sequence databases. It 

may be deceptive and insufficient to make a prediction. 

Sequential Rule Mining (SRM) is proposed as a 

solution to the limitation of SPM. It takes into account 

another measure called; minimum confidence 

(minConf) that calculates the expectation of the 

following pattern. It aids in predicting situations by 

identifying relationships between sequential items 

occurrences. The mining process consists of two 

stages: first, mining frequent sequential patterns 

Fournier-Viger et al. [4]. Second, produce sequential 

rules which depend on the first phase. So, many 

researchers concentrate on enhancing the efficiency of 

mining sequential patterns Upadhyay et al. [26]. There 

are three concise representations for mining 

sequential patterns; Closed Sequential Patterns 

(CSP), Sequence Generator Patterns (SGP), and 

maximal sequential patterns. Most recent enhanced 

algorithms intend to discover non-redundant sequential 

rules based on only one representation. This method 

depends on data structure with many tasks  

 
implementing the same process. It suffers from 

consuming time and causes CPU idle, especially with 

low values of minSup. However, generating sequential 

rules based on compact information to reduce the time 

required for generating the rules as in closed sequential 

patterns requires expensive computations on cost and 

time. As a result, an enhanced algorithm for mining 

rules is required, particularly for large databases and 

with low values of minSup.  

Utilizing two types of patterns concise (CSP and 

SGP) can resolve previous obstacles of producing 

many candidates. First, it can reduce the search space 

with the lowest values of minSup. Second, it can assist 

users analyze the sequences in large datasets 

efficiently.  

Another aspect of improving the efficiency of 

sequential rules is using a parallel approach. One 

method to perform this approach is a multi-core 

processor. It can increase performance by applying 

many tasks simultaneously. So that large datasets can 

be analyzed in a reasonable time. 

In this paper, we propose an enhanced algorithm for 

mining non-redundant sequential rules as follows: 

 Performing sequential pattern mining based on 

blinding closed with sequential generator patterns in 

the same procedure. It aids in acquiring more 

information with a more compact database than 
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mining the complete set of sequential patterns. 

 Multi core processor architecture is performed on 

only two procedures of the proposed algorithm to 

achieve the highest possible efficiency.  

The rest of this paper is organized as follows: Section 2 

introduces the definition of the problem and related 

work. Section 3 shows the data structure in a parallel 

approach. Section 4 represents the proposed algorithm. 

Section 5 discusses the experimental results. The 

conclusions are presented in section 6. Finally, 

recommendations and future works are summarized in 

section 7. 

2. Background 

2.1. Problem Definition 

Suppose I={i1, i2,….., in} is a collection of n distinct 

items, and Ij are items or events where 1≤ j ≤ n. An 

itemset X is a set of unordered items that are 

represented with brackets. Such as (AC) indicates an 

itemset with two items ‘A’ and ‘C’. A sequence 

includes an ordered itemset denoted S = {I1, I2,…, Im} 

where Ij is an itemset and1 ≤ j ≤ m. The number of 

events in a sequence named the sequence length. The 

frequent first sequence refers to F1-S; for example, the 

sample sequence database in Figure 1. 

 Definition 1: (prefix and postfix), set two sequences 

sy=<y1, y2……yn> and sz=<z1,z2…..zm>, (m≤n). 

The sequence sz is a prefix of sy if only z=y for (1≤ i 

≤ m). We indicate sz is a subsequence of sy, and sy 

refers to the super sequence of sz as sy⊂sz. 

 Definition 2: (substring of length),suppose sy is a 

sequence and sub n, m(sy), (n≤m) refer to the 

portion from locus n to locus m of sy. Substring of 

length calculated as (m-n+1). For example, sub3,5 

of (<AB(AC)D>) is <(AC)D>. 

 Definition 3: (frequent sequence), a support measure 

is the number of included items in a database 

divided by |DB|. Frequent sequences are composed 

of sequence items that satisfy the minimum support 

threshold (minSup) and are referred to as sup (Sb) 

>=minSup. When given a minimum support 

threshold, the main challenge is to find the complete 

set of frequent subsequences. 

 Definition 4: (frequently closed sequence), respect 

two frequent sequential patterns; sy and sz. Frequent 

Closed Sequential Patterns (FCSP) indicate that no 

sz such that sy⊂sz ᶺ sup(sy) =sub (sz), sy. FCSP is 

more compressed than mining the whole set of 

sequential patterns. It keeps information fully 

extracted without affecting the results. If the 

subsequence (sy) has the same support value of the 

super sequence (sz); (sy) will be ingested by (sz). 

 Definition 5: (frequent generator patterns) if there is 

no subsequence sy with the same support of the sz; 

this called Frequent Sequential Generator Patterns 

(FSGP). FGSP is shorter than FCSP and indulgent 

to the noise produced in training data. It has more 

accuracy for the classification of the sequence. 

 Definition 6: (combine FCSP with FGSP), based on 

definitions 4 and 5, it takes advantage of fetching 

additional information. The FCSP can't produce 

alone non-redundant sequential rules with higher 

accuracy.  

 Definition 7: (sequential rule and frequent 

sequential rules) suppose r is a sequential rule in the 

form x→y, which states that if x happens, y will 

obey. Consider x, y are frequent sequences, and r 

has two measures (Sup,Conf).The support value is 

referred to as (minSup) that equals sup(X+Y), 

where the confidence value is indicated as 

(minConf) that regards the probability of the 

following patterns andequal to sup(X+Y)/sup(X). A 

rule that achieved a minSup threshold is named a 

frequent sequential rule. While; the rule that reached 

a min Conf value is a strong sequential rule. 

 Definition 8: (redundant rule and non-redundant 

rule), if a rule can be deduced by another rule, it 

regards a redundant rule. For example, suppose two 

rules r1:< B>→< (AC) CD> and r2: <B>→<CD>. 

So, r2 is a redundant rule if it is included in r1 and 

has the same support as r1. Otherwise, a rule is non-

redundant if x+y∈FCS and x∈kˋ such as k⊂kᶺsup 

(kˋ) =sup (k) referred to as a prefixed generator. 

 

 

Figure 1. Sample sequence database. 

2.2. Related Work 

Sequential Pattern Mining is a significant phase for 

producing sequential rules. It is proposed by 

Ravikumar et al. [20] within the Apriori All technique. 

The purpose of this phase is to discover all sets of 

patterns from large search spaces. It includes two 

principal processes called s-extension and i-extension 

that are needed for growing the patterns. 

The GSP algorithm appeared to solve the database's 

multiple scans problem that caused complex 

computations in cost and time. It is determined by the 

horizontal database and the downward closure property 

Titarenko et al. [25]. Many database searches, non-

existent candidates, and holding candidates in memory 

are just some of the drawbacks. As a result, the depth-

first search algorithms have been developed (vertical 

format). As an example, Spade Zaki [33], Prefix Span 

Mollenhauer et al. [15], Spam Wang and Cao [29], 

LapinSpam Alja’am et al. [1], CM-Spam, and CM-

Spade Naseer and Malsoru [16]. The algorithms can 
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increase the mining performance by searching the 

database once and calculating the pattern's support 

quickly. There are also various short representations of 

producing sequential patterns with higher precision and 

less time required than mining all sequential patterns 

Fournier-Viger, et al. [4]. Closed sequential patterns 

are one of these representations. It is compact with 

fully extracted information. 

A sequential generator pattern is the other succinct 

representation. It's more tolerant regarding the noise in 

candidate patterns. Gen Miner Wu et al. [30], FSGP 

Mukhlash et al. [15], and VGEN Husák et al. [8]. 

Closed patterns are associated with generator patterns 

to generate a sequential rule that provides more detail 

than closed patterns alone Guyet [7]. However, still 

consumes time in building the candidate patterns.  

Mining non-redundant sequential rules, such as 

CNR, Patel and Malviya [17] Spiliopoulou [21] is also 

more efficient than mining sequential rules. Several 

researchers have improved SRM algorithms by relying 

on the prefix tree to enhance their efficiency. They 

reducing search space as included in MNSR and IMSR 

pre-Tree. However still suffer from efficiency 

regarding the consuming time Pham et al. [19] and 

Van et al. [27] particularly for large databases. There 

were two directions for most researchers to improve 

sequential rule mining algorithms. The first direction is 

using the set of procedures that deletes un-candidate 

patterns from the beginning, thus enhancing the 

efficiency of the generated rules and improving 

memory usage. However, it was going through many 

steps, leading to an increase in the required time. The 

second direction is appending an additional constraint 

for producing an extension of the previous algorithm, 

as it is in the TRuleGrowth algorithm. It considers 

window size parameters to control the maximum 

number of the generated rules, but it proved limited 

efficiency with the large datasets Youssef et al. [32]. 

 Numerous researchers fixed this problem by using 

a parallel technique to minimize the processor's 

execution time. Pspade Zhou et al. [34], PHUSP 

Zihayat et al. [35], and other distributed memory-based 

parallel algorithms have appeared. In addition, use a 

parallel approach in generating sequential pattern 

mining to reduce run time and memory consumption, 

but it has limitations by causing data corruption and 

overheating Huynh et al. [10]. 

The multicore processor has emerged as a result of 

enormous developments in modern processor 

engineering, and it has proven to be effective in 

improving performance. It allows several tasks 

completed at the same time Jamsheela and 

Gopalakrishna [11], Huynh et al. [9] Parallel 

algorithms have been used to solve several problems, 

including improving load balancing and achieving 

lock-free parallelism Le et al. [13]. Various researches 

have been proposed for improving association rule 

mining algorithms using a multitasking approach to 

avoid time-consuming, but they are still mining all 

patterns in the sequence database TAŞER et al. [24] 

Suresh Kumar and Thangamani [22], Kuriakose and 

Nedunchezhian [12]. 

Although these algorithms outperform serial 

algorithms efficiently, they require a lot of memory and 

go through multiple phases to construct the data 

structure. There is no previous research that 

concentrated on generating sequential rules and 

improving sequential pattern mining simultaneously. 

The mining process passes through many tasks 

executes the same processes that consume time and 

using a lot of memory. There is a constant needed to 

gain knowledge, predict patterns, and discover 

sequential rules in a reasonable time. Enhancing the 

efficiency of the sequential rule mining algorithms is 

one solution for this challenge. 

3. Data Structure for Parallel Mining NRD-

Rules 

3.1. Architecture of Multi-Core Processor 

Large datasets are searched in a short amount of time 

using a parallel mining method. A multi-core processor 

is one way to implement this strategy. On a single chip, 

it has several processor cores. It can improve 

productivity by doing several tasks at once. 

Two or more autonomous cores are located in the 

same physical package in a multi-core processor 

Upadhyay et al. [26] Czarnul et al. [2]. As seen in 

Figure 2, each processor core has its memory and 

shares the main memory. 

 

Figure 2. Quad-core processor diagram. 

Each core has its L1, and L2 cache, with a single L3 

cache for all cores. The highest resource use is 

accomplished by sharing more resources between 

cores. The data duplication is decreased through the 

shared cache. As a result, communications will be 

more efficient. We can implement it through the 

multiprocessing package in a python that performs 

multiple tasks simultaneously on a multi-core CPU. 

There are four modules included in Python for 

achieving parallelization. The first module is the 

threading module that suitable for I/O operations. 
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When a processor is waiting for the data from remote 

resources, it is in idle mode. It performs inefficiently 

for basic tasks. It increases the complexity degree of 

the program, and causes overhead during managing 

threads. Second, is utilizing the system method in the 

OS module. It allows the external command-line 

programs to run in a separate process. It causes 

overhead and makes it much more expensive than 

others. Third, the subprocess module that is depending 

on facilitates spawning processes. It connects them 

through signals and gathers the produced output with 

their fault message. It doesn't protect operations from 

the fault message. Fourth, the multiprocessing package 

can perform parallel execution through processes, 

pools, queues, and pipes. It provides both local and 

remote synchronization. It can effectively lock the 

global interpreter by using subprocess rather than 

threads. 

The current study proposes apNRD-CloGen 

algorithm for parallel mining to enhance the execution 

time based on the multi-core processor. Utilizing the 

multiprocessing module with Pool class has the 

advantage of controls the execution of processes. It 

supports either synchronous or asynchronous parallel 

implementation. Figure 3 shows the applied method for 

the proposed parallel algorithm. 

 

Figure 3. Parallel approach for a proposed PNRD-CloGen 

algorithm. 

3.2. Generators with Closed-DBV Patterns 

3.2.1. Closed-DBV Patterns 

Closed sequential pattern algorithms that rely on a 

vertical format are more efficient than those dependent 

on a horizontal data format Gan et al. [5]. It has a 

significant advantage in that it scans the database only 

once and speedily calculates the support count of 

sequences. Those formats store additional information. 

So, it demands a great deal of memory.  

A bit vector solves this problem that represents 

itemsets as several transactions Xie and Tan [31]. 

However, it has an obstacle that increases the required 

memory and execution time because depending on a 

fixed size. The size depends on the appearance of each 

item that is expressed by ‘1’ otherwise ‘0’. To 

overcome this problem, they proposed a Dynamic Bit 

Vector (DBV). After clearing the ‘0’ bits at the 

beginning and end of the vector, it generates a bit 

vector. It improves efficiency for item sets with many 

‘0’ bits Tang et al. [23] Gokulapriya and Kumar [6] 

Consider the case where the sequence database has 16 

transactions. It denotes the presence of two things, one 

with a ‘1’ and the other with a ‘0’. As seen in Figure 4, 

the bit vector takes 16 bytes to store this operation, 

while DBV only considers the start of the index and 

the series from the first to the last ‘1’.The proposed 

algorithm uses the DBV structure to save sequences in 

vertical format. It facilitates the computations of 

sequence support. By combining the location of two 

items concerning the position of each item, it performs 

well in the ANDING operation. It provides a more 

accurate result. When performing the ANDING 

operation of item <C> to obtain<CB>, the result of 

DBV only is (111). When we consider the structure of 

DBV, terms of position, it is clear that it does not 

include the <CB>, and the correct result is (00000). 

The ANDING method should produce the precise 

outcome, which is (111) for <BC>. For example in 

Figure 1, item <B> in sequence database that existence 

in sequences 1, 2, and 3. The bit vector for <B> is 

(1,1,1,0,0) that the first appearance of item <B> in 

sequence 1 in the second and third position denoted as 

2:{2,3}. Figure 5 represents the DBV structure of 

item<B>. 

 

 

Figure 4. Example of bit vector. 

 

Figure 5. DBV structure for item <B>. 

3.2.2. Generators Patterns 

Sequential generator patterns are more compressed 

than closed sequential patterns. Numerous algorithms 

are proposed, such as the GenMiner algorithm. It has 

three-phases; compact /generate/ and filter Veroneze et 

al. [28]. The FEAT Mukhlash et al. [15] and 

Mollenhauer and Atzmueller [14] algorithm that relies 

on growth with forward and backward pruning 

techniques helps speed up the mining process. Mining 

Sequential Generator Patterns (MSGPs) Wu et al. [30] 

algorithm depends on sequential generator patterns 

feature and sequence extensions to discover all 
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generator patterns Upadhyay et al. [26]. Generator 

patterns are the prioritized representation of the classes 

in classification and model selection. 

3.2.3. Blend Sequential Closed with Generator 

Patterns  

Using closed with sequential generator patterns can 

add more information than closed alone can't be 

provided. It can generate non-redundant rules with a 

high degree of Precision. 

CSGM method is used to mine both patterns 

simultaneously, but it consumes much time to form 

databases Pham et al. [18]. So we propose the pNRD-

CloGen algorithm to mine both type of sequential 

patterns and prove the higher performance in runtime. 

4. The Proposed Algorithm 

The proposed parallel NRD-CloGen (pNRD-CloGen) 

algorithm is described in this section. It performs in a 

parallel approach and depends on mining patterns from 

two concise representations. The first representation is 

frequent closed sequential patterns that use DBV data 

structure. The second representation is sequential 

generator patterns. 

In the parallel mining approach, each branch in the 

prefix tree is distributed as a single task. Each node is 

dealt with as a separate task, and the total computations 

can perform in a parallel approach. Then, tasks are 

distributed within the available processor cores and 

independently handled to generate pNRD-CloGen 

rules.  

The pNRD-CloGen algorithm consists of six steps:  

1. Converting sequence dataset to DBV structure. 

Producing the first frequent sequence and assigning 

them in a prefix tree. 

2. Utilizing a parallel approach for generated 

sequential patterns. 

3. Pruning the prefix generator. 

4. Sequence extension. 

5. Generating pNRD-CloGen rules as shown in Figure 

6. 

The pseudo-code of the pNRD-CloGen algorithm is 

shown in Algorithm (1). The DB is scanned to create 

the list of items. Next, discovers all Frequent First 

Sequences (F1-S) that achieve the minSup threshold. 

The items in F1-S are set as child nodes in the prefix 

tree. Then, pNRD-CloGen creates new tasks for each 

node of the root. Each task implements the method 

CloGen-extension. 

 

Figure 6. Framework of a proposed pNRD-CloGen algorithm. 

Multiple tasks run in parallel approach to producing 

frequent CloGen sequential patterns. Finally, generate 

NRD-SR that achieves the minConf threshold. 

Algorithm 1: NRD-pCloGen algorithm 

Input: SDB, minSup, minConf  

Result: NRD-SR 

1 Scan DB to create an ID list of items. 

2 Calculate DB length& set the 

3 minSup value 

4 Find F1-S>= minSup  

5 Establish DBV structure in a dictionary to have 

6 the positions of each item 

7 Add F1-S as child nodes, where node=null 

8 For each node do 

9      Create a new task, then call pCloGen- 

10    extension. 

11 Set minConf & generate NRD-SR  
 

Consider the database in Figure 1, and set minSup 

equal to 0.5. The following procedure is executed to 

find the F1-S, as F1={a:5, b:3, c:5}. The procedure that 

extends the F1-S is shown in Algorithm (2), named 

CloGen pattern-Extension. This procedure sets the F1-

S as child nodes in the prefix tree.  

We apply the pruning technique in a parallel 

approach to eliminate candidates that cannot extend 

frequent patterns. For example, consider the DB in 

Figure 1. It is not required to extend prefix ‘B’, as 

there is an item ‘A’ which has (start position=1) that 

usually occurs before an item ‘B’ which has (start 

position=2). The prefix ‘A’ extension already has ‘B’ 

with the same support. So, ‘B’ will be absorbed. After 

that, the CloGen pattern extension procedure extends 

patterns by rendering sequence extension to produce 

new sequential patterns through a parallel approach. 

Algorithm 2: CloGen pattern-Extension 

Input:nodes in prefix tree and minSup 

Output: set of frequent CloGen patterns 

12    set listNode as child nodes 

13    For each SP in listNode do 
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14          If SP is pruned then  

15              set SP as SP node 

16              set Spa as SP child node 

17           If (sup (Spa)≥minSup)then 

18              Add Spa as child node of SP 

19          check and set the attribute of SP 

20          (closed or prefixed generator) 

Algorithm 3. pCloGen algorithm 

Input: nodes, F1-S, MinSup 

Output: all child nodes ready to generate rules 

22    Set process equal to CPUs as pool 

23    Set parameters of listNode as Childs 

24    Get child node by star-map () in pool 
 

The parallel approach is implemented in python by 

using the multiprocessing package. The package 

executes many tasks simultaneously depends on 

Central Processing Unit (CPU) cores. It utilizes a Pool 

object to perform many tasks and passes them to the 

Pool object. Starmap () function. This function can 

accept multiple arguments. So, the user can overcome 

multiple assumptions of one item having in the list, as 

seen in Algorithm (3). 
After discovering all frequent CloGen patterns, the 

algorithm initializes to generate all NRD sequential 

rules, as shown in Algorithm (4). This algorithm 

produces all rules through a sub-tree. Each child node 

may be a prefix or closed. The prefix is pre and closed 

as post of the rule. It performs recursively in parallel 

until child nodes don't achieve the minConf value. 

Algorithm 4: Generate pNRD-CloGen Rule 

Input: root, minConf 

Output: pNRD-CloGen Rule 

25   Set prefix as a sequence of the root 

26   Set sub-node as child node 

27   For SP node in the root 

28      Search prefix (SP node, rules, minConf) 

29If a node is a prefix 

30               Search closed (value of a node, nod, 

31              rules, minConf) 

32                  For a child of a children node  

33                      search prefix (child, rules,  

34                      minConf) 

35           If a sequence is closed 

36              Conf= Sup of seq (Sup)/pre(Sup) 

37                  If Conf ≥ minConf 

38                      Set rules = anterior posterior 

39                       Append the rule 

40           Else stop producing rules 

41           End if 

42                  End for 

43            Call generate NRD-CloGen Rule 

44   End for 

5. Experimental Results 

5.1. Experiments on a Sample Dataset 

We assess the reliability of coding the proposed 

algorithm in python by using sample data. A sample 

data set includes 30 transactions with five consumer 

behavior items that include the purchase of various 

items. We performed it and have the result manually, 

then compared the results with the results of the python 

code. It has proved the validity of the code the 

emergence of the same results. Set the minSup=0.5 and 

minConf=0.5, Figure 7 shows the phases of 

implementing the algorithm. As shown in Figure 8, the 

tested code prints the number of transactions, objects, 

the F1-S count, and the CloGen patterns in the tree, 

generated sequential rules, and the spending time for 

each operation. 

 

Figure 7. Sample execution of the NRD-DBV algorithm. 

 

Figure 8. Executed code of sample dataset. 

5.2. Experiments on a Real Datasets 

We evaluated the proposed algorithm by comparing it 

with the Non-Redundant with Dynamic Bit Vector 

(NRD-DBV) algorithm. The algorithms are run on a 

Windows 7 laptop with an Intel Core i5 2.33GHz 

processor and 6.58 GB of free RAM. They were 

implemented in python and run on Jet Brains Pycharm. 

Four real datasets with different sizes and features 

are utilized to assess the performance of the algorithm. 

The first dataset is named BMSWebView1 (Gazelle), 

which contains 59601 sequences of click stream data 

included in an e-commerce website. The second data 

set called the Sign refers to, sign language utterance. It 

has 800 sequences transcript from videos and 

embedded 267 distinct items. The third dataset is 
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named Korsarak, a large dataset containing 990,000 

sequences of click-stream data from an online news 

portal. The fourth dataset, MSNBC, is huge which has 

over 1 million transactions. All used datasets are 

downloaded from SPMF Fournier-Viger et al. [3]. 

The experiments were applied to compare the 

runtime of the two algorithms for various minSup 

values. For this experiment, the minConf value was set 

to 0.5 % for all states. The parameters' values were 

calculated after a variety of preliminary tests to achieve 

the highest efficiency. 

5.2.1. Runtime on a Gazelle Dataset  

In the Gazelle dataset, items didn't iterate multiple 

times very often. So, we set a lower minSup to get the 

sequential rules. That means when setting minSup 

value as included in other experiments; we didn't have 

any sequential rules during the mining process. In 

general, the runtime increases with low minSup values 

that lead to an increased number of generated rules. 

Experience shows that the proposed pNRD-CloGen 

algorithm takes much less time than the NRD-DBV 

algorithm. When the minSup is set to low values, it has 

proven to be effective, as the time to generate 

sequential rules is roughly half that of the NRD-DBV, 

as shown in Figure 9. 

 

Figure 9. Runtime of Gazelle dataset. 

5.2.2. Runtime on a Sign Dataset 

The sign dataset has a variety of characteristics, 

including sparse, dense, having short and long 

sequences. It has an average sequence length of 

51.997, while the Gazelle dataset has an average of 

2.24.These features, related to its small size, allowed 

the algorithm to generate rules in a fraction of the time 

it took the Gazelle dataset. In both algorithms, runtime 

convergence occurs at low minSup values. When 

setting minSup with the lowest values, the pNRD-

CloGen algorithm took less time to reach the highest 

performance.  

As a result, it takes five times as long as the NRD-

DBV algorithm. Figure 10, shows that when minSup is 

set to 0.1, pNRD-CloGen takes 105.6 (s) to complete, 

while NRD-DBV takes 514.3 (s). 

 

Figure 10. Runtime of sign dataset. 

5.2.3. Runtime on a Korsarak Dataset 

Unlike the Gazelle database, both algorithms didn't 

generate any rules with low values of min Sup because 

of the features of a korsarak dataset. Korsarak dataset 

has an item count of 41, 270 items and an average 

length equal to 8.1, and the Gazelle dataset has 497 

items and 2.24 of average sequence length. The pNRD-

CloGen achieved better performance with minimum 

values of minSup. The execution time required for 

generating the rules increases with the decreasing 

minSup values. This is because of increasing the 

computations for finding increased number of non-

redundant sequential rules from a large search space 

area. The execution time between the two algorithms is 

approximated when setting high values to the minSup, 

but the pNRD-CloGen still consumes less time than the 

NRD-DBV algorithm, as shown in Figure 11. 

 

Figure 11. Runtime of korsarak dataset. 

5.2.4. Runtime on a MSNBC Dataset 

This dataset is a massive collection of click-stream 

data from the MSNBC website. It is a discrete 

sequence and very dense dataset. The proposed 

algorithm generated the sequential rules in the shortest 

amount of time. In terms of time consumption, the 

proposed algorithm, pNRD-CloGen, was achieved the 

most effective performance as shown in Figure 12. 
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Figure 12. Runtime of MSNBC dataset. 

In terms of memory usage, the NRD-DBV 

algorithm uses less memory than the pNRD-CloGen 

algorithm on all databases, as shown in Figures 13, 14, 

15, and 16. Both algorithms, however, used the same 

method to store the sequences, with the pNRD-CloGen 

algorithm requiring more memory due to the parallel 

technique. It breaks down multiple tasks into smaller 

chunks and processes each one separately. As a result, 

more memory is needed to save the data.  

 

Figure 13. Memory usage for webview1 dataset. 

 

Figure 14. Memory usage for sign dataset. 

Since there were fewer produced rules when the 

value of minSup was increased, memory consumption 

and runtime decreased. The proposed pNRD-CloGen 

algorithm has a significant advantage in that it makes a 

parallel approach only on two procedures. First, find 

F1-S and add them as child nodes in a prefix tree. 

Second, check all nodes whether, prefix or closed, to 

generate the sequential rules, so helps in minimizing 

the CPU idle time.  

 

Figure 15. Memory usage for korsarak dataset. 

 

Figure 16. Memory usage for MSNBC dataset. 

5.2.5. Measuring the Computational Cost 

We measure the computational cost to evaluate the 

performance of the proposed algorithm. Producing 

non-redundant rules has a complexity of O (n*c), 

where ‘n’ is the number of nodes and ‘c’ is the average 

number of child nodes. We must apply (n-1) operations 

for testing and generating sequential rules such as 

k<<n for each sequence. As a result, pNRD-CloGen 

has a complexity equal to 𝑂 ≈ (𝑛). It implies the 

algorithm's supreme running time is proportionate to 

the input size. It is the second-best state of big 

𝑂notation after the constant state, so the proposed 

algorithm proves its efficiency. 

5.2.6. Measuring the Scalability 

Scalability measures the system's capacity to raise or 

reduce its performance and cost in reply to changes in 

system processing requirements. We can analyze the 

scalability of a system by assessing how its 

performance diversifies as a function of the input size 
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growth. We examined the scalability of the two 

compared algorithms on the MSNBC dataset for 

various data sizes and a fixed value of minSup equal to 

0.03. The analysis shows the influence of generating 

rules on runtime. The results proved that the pNRD-

CloGen algorithm achieved better scalability than the 

NRD-DBV algorithm, as shown in Figure 17. 

 
Figure 17. Scalability of compared algorithms for various dataset 

sizes with minSup=0.03. 

6. Conclusions 

Most algorithms mining sequential rules through only 

one representation like closed, generator, or maximal 

are time-consuming. The data structure goes through 

many steps that follow the same process. In this study, 

the proposed pNRD-CloGen algorithm is applied on 

four real datasets with different characteristics: sparse, 

dense, large, and very large datasets. We utilized a 

dynamic bit vector structure with a prefix tree to store 

frequent patterns. Also, pruning techniques are applied 

to remove uninteresting sequences early. In addition, a 

parallel approach is implemented on only two 

processes to acquire the highest efficiency. The first 

process of the parallel approach is the extension 

method. The second process is to test all nodes to 

generate sequential rules. The proposed algorithm 

proved its efficiency in saving time the approximately 

half time required from the compared algorithm, 

especially for large datasets and low values of minSup. 

7. Recommendations and Future Works 

The researcher deduced that not time-saving when 

implementing the parallel approach to the overall 

processes of the pNRD-CloGen algorithm. The best 

uses of the parallel technique are to test the child nodes 

that achieved the minSup and check each pattern, 

whether generator or closed pattern, to produce the 

non-redundant sequential rules. 

There is no need to utilize DBV then DBV structure 

as applied in the NRD-DBV algorithm. It will take 

extra time. Using the DBV structure is sufficient and 

more accurate for generating valid rules with actual 

positions of items. 

The use of processes instead of threads provides 

better memory utilization when memory goes down. 

The multiprocessing approach prevents data corruption 

and deadlocks that may appear with a multithreading 

approach.  

The pNRD-DBV algorithm helps in detecting 

errors, intervening, and detecting bugs in much less 

time. It is necessary in areas that ordering sequences 

are needed, such as the therapeutic region (in the case 

of suffering from a fever). The order of symptoms is 

decreasing in coagulation levels, appearance a red 

color on the body. The fact that the quiet will cure 

dengue fever is tolerable. This timing structure is 

critical in predicting the right kind of treatment). 

For future works, we suggest implementing a 

maximal patterns mininginstead of mining closed 

generator patterns. Also, try tostudyits impact on 

produced sequential rules in terms of the runtime, and 

the accuracy of rules. Additionally, increasing the 

number of cores, especially for large data bases and 

studying the performance. We hope to avoid the 

increase of the power consumption by increasing the 

clock frequency, which helps to eliminate overheating. 
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