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Jyh-Horng Jeng, Shuo-Li Hsu, and Yukon Chang
Department of Information Engineering, I-Shou University, Taiwan

Abstract: Fractal Image Coder (FIC) makes use of the self-similarity inside a natural image to achieve high compression
ratio and maintain good image quality. In FIC, the most important factor affecting the compression ratio and the image quality
is the quantization of the contrast scaling and brightness offset coefficients. Most quantization methods treat the two
coefficients independently and quantize them separately. However, the two coefficients are highly correlated and scatter
around a line. In this paper, a joint coefficient quantization method is proposed that considers the two coefficients together and
thereby achieves better compression ratio and image quality. The proposed method is especially effective under parsimonious
conditions. For example, using only 3bits each to represent the contrast and brightness coefficients of Lena, the proposed
method yields quality of 27.04dB, which is significantly better than 22.87dB obtained from the traditional linear quantization

method.
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1. Introduction

A fractal is a geometric shape that can be divided into
parts each of which is a size-reduced copy of the origin
subject to possible rotation and translation [11], a
property called self-similarity. Fractal Image Coder
(FIC) [4], a technique introduced by Barnsley and
Demko [1], is based on the idea that image
redundancies can be removed by means of exploiting
local self-similarities in the image and representing
them through affine transformations [14]. Due to the
merit in mathematics and interesting phenomenon,
fractal-based image processing has received a great
deal of attentions including robust image compression
[9], image retrieval [20], image recognition [10], and
video compression [15]. During the encoding process,
an image is partitioned into non-overlapping range
blocks and a search for the best match in a domain
pool is carried out for each of these range blocks. Due
to the large size of the domain pool as well as the
introduction of dihedral transformation, the encoding
process is very time consuming. Consequently, a large
portion of FIC-related researches are concerned with
speeding up the encoder. Popular methods include
genetic algorithms [20], one-norm of normalized block
[2], classification method [11], prediction algorithm
[12], and quadtree method [19]. Parallel architectures
are also adopted to speedup the encoder [8].

The improvement of the encoding time is interesting
since a great variety of methods can be applied. As a
consequence, many researchers focus on how to
speedup the encoder. Only few articles address the
problem of compression ratio in which the idea of
entropy is involved. In order to obtain a higher
compression ratio, fractal code requires that the
coefficients representing the contrast adjustment and

brightness offset be represented using fewer bits.
Quantization of these coefficients affects not only
compression ratio but also the quality of the
reconstructed image. Previously proposed coefficient
quantization methods include the traditional linear
coefficient quantization method, the Simulated
Annealing (SA) optimization for near-optimal
quantization [13], the Lloyd-Max quantizer [12], the
LBG algorithm [5], and genetic algorithm [17].
Although contrast adjustment and brightness offset are
to some extent linearly correlated, all except the LBG
algorithm treat them as independent coefficients and
quantize them separately. This results in worse image
quality if the number of bits used is kept the same. On
the other hand, the LBG algorithm, which uses vector
quantization on the correlated coefficients to achieve
better quality, suffers a lower compression ratio
because it must store the coefficient index table for the
given image. The term entropy, defined by Shannon
[16], is a key related to data compression, which is
commonly used to measure the compressibility of an
image coder [7]. The entropy value of a data set stands
for the theoretical minimal bits required to represent an
indivisible unit, i.e., a symbol. On the other hand, as
the mount of bits are pre-specified to represent a data
set, we will prefer the entropy of this new data set be
closing to that amount of bits so that we know we have
already made full use of the bits. Analogous to image
compression, the concept of entropy can also used to
measure the capacity of text and image for information
hiding systems [6].

In this paper, we propose a joint quantization
method to represent the coefficients in FIC in order to
make use of the pre-specified bits, in sense of entropy,
as possible as we can. We first analyze the distribution
pattern and the amount of occupied levels of the
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traditional linear quantization method. We then design
a proper transformation so that we can fully make use
of all the quantization points. We also calculate the
amount of occupied levels and the entropy values in
order to confirm the extent to which we have used the
points. Experimental results show that the proposed
method effectively reduces the number of bits
consumed by the coefficients without degrading the
image quality and outperforms the SA method [13] in
efficiency.

2. Fractal Image Compression

The mathematical foundation of fractal image
compression is the Iteration Function System (IFS) in
which the governing theorems are the Contractive
Mapping Fixed-Point Theorem and the Collage
Theorem [4]. An ideal IFS hardly exists for a natural
image because most of the sub-images are not directly
similar to the whole image. To solve this problem, the
idea of local self-similarity is adopted to form the
Partitioned Iterated Function System (PIFS) [4].

Let f'be a gray level image of size NxN. Divide the
image into a range pool of (N/L)’ non-overlapping
blocks of size LxL. Let the contractility of the fractal
coding be a fixed quantity of 2. The domain pool D is
the set of all possible blocks of size 2L x2L, which has
(N-16+1)* elements. The amount of the domain blocks
can be reduced by introducing the searching step size s,
which is the distance in pixels between two adjacent
domain blocks. Therefore, the reduced amount is
((N/s)-16+1)*. For each range block v, one searches in
the domain pool to find the most similar domain block.
To facilitate comparison, each domain block is first
down-sampled so that it has the same size as the range
block. For simplicity, let the terms domain block and
domain pool refer to the down-sampled LxI blocks
instead of the original 2Lx2L blocks. The full search
method transforms a domain block u using the eight
transformations in the Dihedral group on the pixel
positions to increase the size of the domain pool. If the
origin of the coordinate of u is assumed to be located at
the center of the block, the eight transformations, 7,
k=0, 1, ..., 7, are represented by the following matrices:

el i el e el
1)

01 0 1 0 -1 0 -1
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The transformations 7; and 7, correspond to the flips
of u along the vertical and horizontal lines
respectively. T; is the flip along both the vertical and
horizontal line. T}, Ts, Ts and T, are the transformations
Ty, T, T> and T; followed by an additional flip along
the main diagonal, respectively. Fractal coding also

allows a contrast scaling, denoted by p, and a
brightness offset, denoted by ¢, on the transformed

domain blocks. Thus the fractal affine transformation
@ of u(i, j) in D can be expressed as:

i ay ap O i t; (2)
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where the 2x2 sub-matrix |:a11 a12:| is one of the
ay Ay

dihedral transformations in equation 1 and (z, 7,) is the

search entry in the image. Note that the domain blocks

are regarded as being of size 2Lx2L.

Let u, =0, 1, ...,7, denote the eight transformed
blocks with u,=u. At each search entry, eight separate
MSE computations are required to find the index d
such that:

d = argmin{MSE((pu; +q;),v) :k=01,--7} 3)

where
1 L-1L-1 By
MSE(u,v) =— £ X (u(i, j) = v(i, /) (4)
L ]=Ol=0

The quantities p, and ¢, can be computed directly as:
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where <uy;, v> is the inner product. As u runs over all
of the domain blocks in D, the one that matches v the
best is found and the terms ¢, and ¢, in equation 2 are
obtained. Together with d and the specific p and ¢
corresponding to this d, the affine transformation
equation 2 is constructed for the given range block v. A
fractal code, from equation 2, includes five items: i, J,
k, p, and ¢g. The terms i and j represent the position of
the best matched domain block, where i=t, and j=t,.
Their bit representations are essentially decided by the
sizes of the original image. For an image of size
256x256, 8bits are required to record each of i and ;.
There are eight isometric transformations as shown in
equation 1. Therefore, 3bits are required to represent
the coefficient k. The quantities p and g are the contrast
adjustment and the brightness offset of a domain block,
respectively, so the amount of levels quantizing them,
i.e., bit representation, will affect the image quality
directly. For an image of size 256x256 with 8x8
coding size, we typically allocate 5bits for p and 7 for
g. If more bits are allocated, better image quality can
be obtained but the compression ratio will increase as a
result. The quantization of p and ¢ is the main role
controlling the rate-distortion tradeoff for fractal
coding.
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To retrieve an image from a fractal code, we first
make up the (V/ L)* affine transformations of the form
equation 2 from the compression codes to constitute
the PIFS. We choose an arbitrary image as the initial
image and perform these affine transformations on it to
obtain a new image. Then we perform the
transformations on this image to obtain another new
image. This process is repeated until the stopping
condition is met. The Contractive Mapping Fixed-
Point Theorem and the Collage Theorem guarantee
that the sequence of images will converge. The
stopping criterion is designed according to user’s
application and the final image is the retrieved image
of the given fractal code.

3. Coefficient Quantization

As discussed in the previous section, the quantization
of the coefficients p and ¢ controls the rate-distortion
tradeoff for fractal coding. We will now discuss the
quantization in detail. A quantization function maps a
continuous value ¢ on the real axis R to a quantized
level ¢j in I=/L, U] where j=1, ..., n and n=2" for some
m. The quantization function Q is thus defined by:

O:R—>{cq,e9,,0p}

In practice, the function Q can be implemented through
the definition of intervals partitioning /=[L, U]. We
denote these intervals as /,=[L,;, U,] and I=[L,, U] with
L=U;, for j=2, 3, ..., n and calculate the quantized
level ¢; by:

If the real number ¢ is out of the range of /, the
corresponding minimum level ¢; or maximum level ¢,
will be used. The quantization function of the
coefficients p and g can be defined accordingly, i.e.,

Qp ‘R — {p],pz,...,pn} and Qq :R—> {qlnga"'aqn} (7)

The quantization may be defined by intervals of equal
lengths. This is referred to as the linear quantization for
which only the number of quantized levels need to be
stored. Assume we adopt linear quantization for /= [0,
1] and »= 4. For such case, we do not need to record
the levels ¢; for j=1, ..., 4 and instead, only the number
of levels, i.e., 4, is required to store since the quantized
levels are equally spaced, which can be calculated by
¢~j/4-1/8. It may also be defined according to the
clustering distributions, i.e., nonlinear quantization. In
this case, the interval boundaries need to be saved
together with the quantized levels, and sophisticated
algorithm is required to find the proper boundaries.
Among nonlinear quantization methods, Palazzari et
al. [13] show that the SA optimization algorithm can
achieve very good image quality. In their study,
detailed discussion concerning nonlinear quantization
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outperforming linear quantization, including the
underlying idea and derivations, is given. Essentially,
the problem of quantization is viewed as an
optimization problem, and from all of the possible
quantization functions they pursue the optimal one.

In their terminology, let F denote the coding
function representing the IFS code of the source image
€, which is tied to the quantization functions O=[0,,
0,] given in equation 7. Let Q denote the reconstructed
image in which the coefficients p and ¢ are not
quantized. For decoding from quantized p and ¢, we
denote the retrieved image as F({, Q) which is of
course dependent on the quantization function Q. The
relationship between the qualities affected by O can be
easily seen as:

d(Q,8) <d(F(¢,0),6) = AMQ)

where the function d(., .) is a measure of distortion of
two images. The search of quantization function Q is
thus converted to the optimization problem:

AQ ) = Qneli&lQ(A(Q))

where SQ is the set of all possible quantization
functions. The authors use SA to find a suboptimal
solution that obtains better image quality in
comparison to the linear quantization method.
However, the computation is extremely extensive since
thousands of fractal encodings are required to
determine the quantization function. Their quantization
method is so time consuming that they had to use
supercomputers to speedup the overall encoding
process.

4. The Proposed Coefficient Quantization
Method

For fractal image coding, the contrast and brightness
coefficients p and ¢ are neither uniformly distributed
nor uncorrelated on the p-¢g plane. Figure 1 plots all
1024 (p, q) points for the image Lena of size 256x256

with 8x8 range block. The original p and ¢ are real

numbers. The pairs (p, ¢) are plotted as small grey dots
in Figure 1 as shown, the distribution of (p, ¢) points is
highly non-uniform. Assuming p and ¢ each uses 3bits,
i.e., 8 levels for each and 64 quantization points in
total, the quantization results are displayed in Figure 1
with triangular marks. As can be seen, only 23 (large
dot) out of the 64 (triangle) quantization points are
occupied. A more formal discussion of this
phenomenon in terms of entropy is given below. The
average amount of information of a set 4 with
elements from the symbol set {so, 51, ..., S;,.1} defined
by Shannon [16] is measured by the term entropy H(A)
defined as:
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M-1 1
H(4)= X pjlog,(—) ®)
J=0 pj
where P; is the probability of the symbol s; appearing
in the set 4. It is well known that if each symbol has
equal probability of appearance in the set 4, the
quantity H(A4) will attain the maximal value, i.e., 6,
since 6bits are reserved to represent the data. In Figure
1, calculation according to equation 8 yields an entropy
of 3.63, which is shown in Table 2 in the first row and
the third column. This observation indicates that there
is a rather large room for improvement if we can find a
better way to quantize p and ¢ so as to even out
probabilities P;over the entire set of 4.

+ Real number coefficient
| e Quantization coefficient

Figure 1. Distribution of p, g coefficients for Lena in the proposed
linear quantization method with 3bits for each coefficient.

It is quite obvious from Figure 1 that the un-
quantized (p, q) points are scattered around the line g=-
128p+128 (dash line) on the p-g plane. In other words,
p and ¢ have the tendency of being negatively
correlated more or less linearly. We therefore derive a
transformation on the p-g plane followed by the
traditional linear quantization according to the data
distribution and the scattering tendency so as to
increase the entropy. The transformation consists of a
translation matrix followed by an axis rotation matrix
defined as follows. For the sake of simplicity, we use
the same symbols p and ¢ for the axis notations during
the intermediate steps and use p’ and ¢' for the final
step.

1 0 p
g(p9)=|0 1 Aqlgq )
00 1

cosd sind O p

gy (p,q)=| -sinf cos® 0] g (10)
0 0 11

Specifically, the translation matrix is used first to shift
the line g=-128p+128 to g=-128p with Ap=0 and Ap=-
128. Next, the axis rotation matrix is applied to rotate
the line g=-128p to ¢g=0. The parameters sind and cosé
can be calculated from equations 11 and 12:

0 ab
cosf = ——
Jefle] ()

sin29+c0529:1v (12)
We select two vectors a=(0, -1) and b=(1, -128)
ab  Ox(-D+1x—(128) 128
O o ot e
Since
sin” @+cos” 0 =1
We have

(—128 ;]
V16385 V16385

sin9:\/l—c0520= 1

The transformation therefore can be rewritten as
follows:

128 1 .
V16385 16385
1o o [»
1 128
2(pq) =] - - oo 1 1284 (13)
V16385 /16385 oo 1 I
0 0 1

+ Real number coefficient
® Quantization coefficient

s19
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Figure 2. Distribution of p, ¢ coefficients for Lena the proposed
quantization method with 3bits for each coefficient.

In the p'- ¢' space, we restrict the values such that
p'el-1, lland ¢'€[-256, 256]. They are linearly
quantized subsequently. The quantized values are then
inverse-transformed back to the original p-¢g space to
evaluate the similarity measure. The quantization
results are shown in Figure 2, which is transformed
back to the original space to facilitate the comparison
with Figure 1. As shown in Figure 2, 61 (large dot) out
of 64 quantized points (triangle) are occupied instead
of 23 out of 64 in the traditional method shown in
Figure 1. As illustrated, the traditional quantization is a
rectangle while the proposed quantization exhibits a
shape of parallelogram, which is designed according to
the distribution of the original (p, ¢) pairs. The entropy
calculated from our proposed method is 5.23, shown in
the second row and third column of Table 2, which is
quite close to the maximum value 6. It means that we
have made efficient use of the 6bits available for p and

q.
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Table 2. Experimental results for Case 1 (PSNR, occupied levels, and entropy).

Bits for p, q 2,2 2,3 3,3 3,4 3,7 4,8 5,7
Quantized Levels 16 32 64 256 1024 4096 4096

25.17 25.81 26.71 27.29 28.00 28.34 28.57

Linear 5 11 23 37 200 451 447

Lena 1.87 2.84 3.63 4.42 7.08 8.43 8.37
26.76 27.25 27.71 28.05 28.26 28.58 28.75

Proposed 16 28 61 104 438 731 726

3.58 4.26 5.23 6.00 8.40 9.34 9.33

18.93 18.47 19.42 19.66 19.85 19.95 20.03

Linear 4 10 15 32 175 406 414

1.92 2.51 3.26 4.01 6.79 8.25 8.31

Baboon

19.45 19.63 19.80 19.89 19.93 19.99 20.08

Proposed 15 28 53 96 406 727 727

3.11 3.97 4.86 5.79 8.26 9.34 9.32

5.71 21.99 25.22 25.76 26.48 26.69 27.13

Linear 4 12 154 221 128 303 293

Fi6 1.33 2.53 2.71 3.50 5.89 7.42 7.40
2491 25.86 26.09 26.48 26.78 27.13 27.31

Proposed 13 17 35 56 253 487 474

2.22 2.72 3.69 451 7.19 8.46 8.43
26.18, 26.83 27.84 28.39 29.26 29.71 29.97,

Linear 7 13 20 42 216 476 453

2.09 2.92 3.78 4.67 7.16 8.55 8.48

Pepper

27.86 28.47 28.92 29.32 29.56 30.00 30.22

Proposed 16 31 61 107 469 742 738

3.65 4.40 5.29 6.11 8.53 9.38 9.35

5. Experimental Results

In this section, we show the experimental results of
the proposed coefficient quantization method for
FIC. We compare the qualities of reconstructed images
between the SA method, the traditional linear
coefficient method, and our method. The image quality
is measured in terms of PSNR, given by:

PSNR =10 x log; (255" / MSE)

(14)

where MSE is given in equation 4. The experiment is
implemented using Borland C++ Builder 6.0 running
on a PC with Intel Core 2 Quad Q8400 2.66GHz CPU.
In the encoding of Lena image of size 512x512 with
coding size 8x8 and search step size 2, we use 3 bits to
quantize each of p and g. Table 1 shows the results of
linear, SA, and the proposed method. The linear
method produces a PSNR of only 22.09dB image
quality. Although the SA method successfully
achieved a great improvement of 28.79dB, the
proposed method obtains 29.60dB, which is even
0.8dB better than that of SA method. Moreover, the
proposed method requires only 2.7 hours of running
time on the PC stated above while the SA method
needs 2.5 hours on an APE100/Quadrics
supercomputer (peak computation power: 25.6
Gflops). Note that the executing times are almost the
same for linear and proposed methods. Although the
image qualities of the three methods are roughly the
same as the number of bits used to quantize the
coefficients increases, the proposed method still has

the advantage of outperforming the other two methods
for low bit rate cases.

Table 1. Image quality and time used using various methods for
512x512 Lena.

Bits forp,q | 3,3 3,4 3,7 4,8 Times
Linear 22.09 | 24.84 |29.69|30.22 |2.7 h (PC)

SA 28.79 | 29.17 |30.18 | 30.77 |2.5 h (supercomputer)
Proposed 29.59 | 29.95 |30.64|30.92 |2.7h (PC)

To further discuss the coding performance of the
proposed method, we conduct the experiments on
Lena, Baboon, F-16, and Pepper images, each of which
is of size 256x256 with coding size 8x8 and search
step size 1. We set up two quantization ranges:

o Case l:p €[-2,2], q €[-512,512]
p'el-1,1], q '€[-256,256]

o Case2:p €[-6,6], q €[-1824,1824]
p'el[-1,1], q '€[-768,768]

The retrieved images from Case 1 are shown in
Figure 3 in which there are 3bits for each of p and q.
The first column consists of the original images. The
second and the third columns are the retrieved images
using linear method and the proposed method,
respectively. The image qualities are almost the same
in PSNR for both methods but the images of the
proposed method in the third column are clearly
visually superior to those of the linear method.
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a2) Linear, PSNR=
26.71dB.

a3) Proposed, PSNR
=27.71dB.

b3) Proposed, PSNR

bl) Baboon. b2) Linear, PSNR=
19.42dB. =19.80dB.
[« T ———— ] L:' = ————

¢3) Proposed, PSNR
=26.09dB.
—

¢2) Linear, PSNR=
25.22dB.

d2) Linear, PSNR =
27.84 dB.

d3) Proposed, PSNR
=28.92dB.

d1) Pepper.

Figure 3. Coefficient quantization for Case 1.

In Case 2, the quantization ranges are larger. The
coding results are shown in Figure 4 in which the
linear method in the second column experiences a
serious decay both in the PSNR measure and the visual
effects. The PIFS even fails for F-16 as shown in
Figure 4-c2. This problem is due to the heavily
concentrated distribution of p and ¢ in the p—gq

plane, shown in Figure 5, so that only very few
quantization points are visited. As can be seen from
Figure 4, the proposed method in the third column still
preserve good qualities as that in Case 1.

a3) Proposed, PSNR
=27.04dB.

a2) Linear, PSNR=
22.87dB.

al) Lena.

bl) Baboon.

b2) Linear, PSNR=
17.92dB.

b3) Proposed, PSNR
=19.54dB.

¢3) Proposed, PSNR
=25.71dB.

il {

d3) Proposed, PSNR
=28.25dB.

d2) Linear, PSNR=
19.15dB.

Figure 4. Coefficient quantization for Case 2.

, + Real number coefficient
1200 ® Quantization coefficient

1286
=1286

Figure 5. Distribution of p, ¢ coefficients for F16, linear
quantization method with 3bits for each coefficient.

Tables 2 and 3 show the detailed results for Case 1
and 2, respectively. In the tables, the first number in
each cell is the PSNR in dB. The second number is the
amount of levels occupied and the third is the
corresponding entropy. To illustrate the source of
improvement in the proposed method, consider, for
instance, the first column in Table 2, where 2bits are
used for each of pand ¢, resulting in a total of 2*=16

quantized levels for the coefficients. The rows of Lena
image in Table 2 show that the traditional linear
method uses only 5 out of the 16 levels, while the
proposed method uses all of the 16 levels. The entropy
of the proposed method is 3.58, which is close to the
theoretical value of 4. But it is only 1.87 for the linear
method. Since the proposed method provides finer
quantization steps and makes use of more quantization
levels, better image quality can be obtained, which is
26.76dB while the linear method only yields 25.17dB.
Similar results for Case 2 are shown in Table 3. For
Lena, the occupied levels are 12 and 56 out of 64 and
the entropy values are 2.06 and 4.58 for linear and the
proposed methods, respectively. Since much more
levels are occupied, the proposed method yields quality
of 27.04dB, which is much better than 22.87dB of the
linear method. These tables also show that it is possible
for our method to use fewer bits for quantization to
achieve comparable image quality obtainable by the
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Table 3. Experimental results for Case 2 (PSNR, occupied levels, and entropy).

Bits for p, q 2,2 2,3 3,3 3,4 3,7 4,8 5,7
Quantized Levels 16 32 64 256 1024 4096 4096
7.67 717 22.87 20.74 26.50 27.67 27.94
Linear 4 6 12 23 71 168 155
Lena 1.91 1.00 2.06 3.03 4.56 635 6.19
7.54 26.59 27.04 27.46 28.23 28.60 28.71
Proposed 16 29 56 86 2498 505 511
3.01 3.53 4.58 5.20 732 8.63 8.66
11.81 10.78 17.92 16.50 18.74 19.76 19.82
Linear 4 5 7 10 48 144 124
Bab 1.03 0.69 0.55 291 3.89 6.16 5.79
aboon 18.92 19.32 19.54 19.70 19.93 20.01 20.10
Proposed 9 16 30 53 239 519 510
241 2.89 3.66 4.68 7.17 8.68 8.65
9.88 8.61 10.41 13.20 2328 25.92 25.73
Linear 4 7 8 13 59 136 128
6 0.42 2.08 2.08 2.46 3.70 542 5.36
22.97 22.73 2571 24.84 26.80 26.34 24.75
Proposed 8 13 18 31 152 335 329
1.22 252 277 3.60 6.18 7.67 7.62
10.34 9.43 19.15 23.69 2738 28.85 29.10
Linear 4 6 13 23 85 163 168
1.62 1.35 1.72 3.45 4.73 631 6.27
Pepper 25.15 27.17 28.25 28.61 29.53 30.06 30.11
Proposed 15 26 47 72 268 524 537
2.92 3.44 42 5.10 747 8.71 8.75
linear method. For example, in Table 3, linear method A399, pp. 243-275, 1985.
uses 3 and 7bits to obtain an image quality of 26.50dB, [2] Chen H., Chung K., and Hung J., “Novel Fractal
whereas the proposed method uses only 2 and 3bits to Image Encoding Algorithm Using Normalized
obtain quality of 26.59dB. This translates to a One-Norm and Kick-out Condition,” Image and
reduction of Sbits to represent a range block in the Vision Computing, vol. 28, no. 3, pp. 518-525,
fractal code. 2010.
[3] Duh D., Jeng J., and Chen S., “Direct Allocating
6. Conclusions the Dlhed'ral ”Transformatlon for Frgctal Irpage
Compression,” Journal of Information Science
In this paper, a new coefficient quantization method and Engineering, vol. 23, no. 2, pp. 629-640,
for fractal image compression is proposed. In the 2007.
encoding phase, a pair of translation matrix and axis [4] Fisher Y., Fractal Image Compression: Theory
rotation matrix are used to transform p and g and Application, Springer-Verlag, New York,
coefficients to p' and ¢'. Then we perform linear 1994.
quantization in the transformed space and inverse- [5] Ghazel M., Khandani A., and Vrscay E., “Vrscay,
transform back to the original space. This method Improving Fractal Image Compression Schemes
makes better use of the quantization levels according to Yhrough Quantization and Entropy Coding,” in
the distribution of the coefficients p and g. Therefore, Proceedings of IEEE Canadian Conference on
in comparison to the traditional method, this method Electrical and Computer Engineering, Waterloo,
can improve image quality when the same amount of pp. 661-664, 1998.
quantization levels is used. On the other hand, to [6] Hamad N., “Hiding Text Information in a Digital
obtain the same image quality, fewer levels are Image Based on Entropy Function,” The
required for the proposed method to achieve a better International Arab  Journal of Information
compression ratio. Experiments show the proposed Technology, vol. 7, no. 2, pp. 146-151, 2010.
method outperforms the SA optimization method [7] Hsieh F., Wang C., Lee C., and Fan K., “A
computationally and compares favorably against the Lossless Image Coder Integrating Predictors and
traditional linear coefficient quantization method, Block-Adaptive  Prediction,”  Journal — of
especiqlly when fewer bits are allocated for the Information Science and Engineering, vol. 24, no.
coefficients. 5, pp. 1579-1591, 2008.
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