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Abstract: There are some difficulties encountered in the application of fuzzy Radial Basis Function (RBF) neural network. 

One of them is how to determine the number of hidden rule neurons and another difficulty is about interpretability. In order to 

overcome these difficulties, we have proposed a fuzzy neural network based on RBF network and takagi-sugeno fuzzy system. 

We have used a new structure of fuzzy RBF neural network, which has been proved that it is better than other structures in 

term of interpretability. Our model also use a Rival Penalized Competitive Learning (RPCL) and a swarm based algorithm 

called Quantum-behaved Particle Swarm Optimization (QPSO) to determine design parameters of hidden layer and design 

parameters of output layer, respectively. RPCL is the best clustering algorithm that is introduced so far. The Particle Swarm 

Optimization (PSO) is a well-known population-based swarm intelligence algorithm. The QPSO is also proposed by 

combining the classical CPSO philosophy and quantum mechanics to improve performance of PSO. We have compared the 

performance of the proposed method with gradient based method. Simulation results of nonlinear function approximation 

demonstrate the superiority of the proposed method over gradient based method. 
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1. Introduction 

Fuzzy neural network is an intelligent neuro-fuzzy 

technique used to model and control of ill-defined and 

uncertain systems. It is based on the input-output data 

pairs of the system under consideration. Fuzzy 

inference and neural network have been combined to 

integrate the excellent learning capability of neural 

networks with fuzzy inference systems, resulting in 

neuro-fuzzy modeling approaches that combine the 

benefits of these two powerful paradigms into a single 

system and provide a powerful framework to extract 

good-quality fuzzy rules from numerical data [7, 16]. 

Jang and Sun [3] have shown that Radial Basis 

Function (RBF) networks and a simplified class of 

fuzzy systems are functionally equivalent under some 

mild conditions. This functional equivalence has made 

it possible to combine the features of these two 

systems, which has been developed into a powerful 

type of neuro-fuzzy systems [5]. 

Unfortunately, there are some difficulties 

encountered in the application of fuzzy RBF network. 

One of them is how to determine the number of hidden 

rule neurons, which is also called network structure 

learning problem [1, 8]. On one hand, fuzzy RBF 

network is unable to fulfil a given task if there are too 

few hidden neurons. On the other hand, too many 

hidden neurons not only increase the computation time, 

but also weaken the network generalization 

performance. And another difficulty is about 

interpretability. Traditionally, fuzzy neural networks 

are trained by using gradient-based methods, which 

may fall into a local minimum during the process and 

lose its interpretability or transparency, which is one of 

the most important features of fuzzy systems. 

In order to overcome these difficulties, we propose a 

fuzzy neural network based on RBF network and 

Takagi-Sugeno fuzzy system. We use a new structure 

of fuzzy RBF neural network, which has been proved 

that it is better than other structures in term of 

interpretability [8]. Our model also use a Rival 

Penalized Competitive Learning (RPCL) and a swarm 

based algorithm called QPSO to determine design 

parameters of hidden layer (such as the number of 

hidden neurons, setting parameters of activation 

functions and so on)  and design parameters of output 

layer (the weight of output layer), respectively. 

RPCL is the best clustering algorithm that is 

introduced by Li et al. [8]. RPCL has the ability of 

automatically allocating an appropriate number of units 

for an input data set.  RPCL clustering [17] can be 

regarded as an unsupervised extension of Kohonen's 

supervised learning vector quantization algorithm 

LVQ2 [9]. 

Recently, a novel evolutionary technique, Quantum-

behaved Particle Swarm Optimization (QPSO), has 

been introduced [10, 11, 12]. QPSO is
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proposed by combining the classical Particle Swarm 

Optimization (PSO) philosophy and quantum 

mechanics to improve performance of PSO [10]. It has 

been shown that QPSO outperforms original PSO 

considerably on several widely known benchmark 

functions [10, 11, 12]. In QPSO, the only setting 

parameter is contraction expansion coefficient, which 

is gradually decreased with the number of iterations. 

Simulation results of nonlinear function approximation 

have shown that the proposed fuzzy RBF networks 

have good results. 

The paper is organized as follows. RBF networks, 

fuzzy systems and rival penalized competitive learning 

are reviewed in section 2. In section 3, quantum 

behaved particle swarm optimization is reviewed.  In 

section 4, the proposed approach is discussed in 

details. Some experimental studies are presented in 

section 5. Finally, we draw some conclusions in 

section 6. 

 

2. RBF Networks, Fuzzy Systems and Rival 
Penalized Competitive Learning 

2.1. Radial Basis Function Neural Networks   

Radial basis function neural networks are one of the 

most important models of artificial neural networks. 

They were proposed in [9, 10] among others in the 

context of different research motivations. Generally, a 

RBF network with a single output can be expressed as 

follows: 
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Where jϕ is called the j
th 

radial-basis function or the j
th 

receptive field unit, jc and jσ  are the center and the 

variance vectors of the j
th 

basis function, and jw  is the 

weight or strength of the j
th 

receptive field unit. If the 

basis functions of the RBF network are gaussian 

functions and the output is normalized, an RBF 

network can be described as: 
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Where Mjm ≤≤1 is the dimension of the j
th 

basis 

function, M is the dimension of the input space, and N 

is the number of hidden nodes. Figure 1 shows an RBF 

network. 
 

 
 

Figure 1. RBF network with p input variables. 

        
2.2. Fuzzy Systems  

The theory of fuzzy sets and fuzzy inference systems 

originated from a completely different research field 

[18]. Fuzzy inference systems are composed of a set of 

if-then rules. A Sugeno-Takagi fuzzy model has the 

following form of fuzzy rules [15]: 
 

Rj : IF x1 is A1j and x2 is A2j and … and xM is AMj,                 

Then y=gj(x1, x2,…, xM), 
 

Where gi(.) is a crisp function of xi. The overall output 

of the fuzzy model can be obtained by: 
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Where ,1 Mm j ≤≤  is the number of input variables that 

appear in the rule premise, M is the number of inputs, 

ijϕ is the membership function for fuzzy set Aij and T is 

a t-norm for fuzzy conjunction. It is noticed that the 

RBF network expressed in equation 2. And the fuzzy 

systems described by equation 4 are mathematically 

equivalent provided that multiplication is used for the 

t-norm in fuzzy systems. Both systems use gaussian 

basis functions. Figure 2 shows a fuzzy system with 

two input variables. 

 

 
 

Figure 2. Fuzzy system with two input variables. 

 

2.3. Rival Penalized Competitive Learning  

In most of the clustering algorithms, the number of 

clusters must be given in advance. However it’s hard  

  (1) 

(2) 

(4) 

(3)
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do so without prior knowledge. RPCL has the ability of 

automatically allocating an appropriate number of 

clusters for an input data set. The basic idea is that for 

each input not only the winner unit is modified to adapt 

to the input, but also its rival the sub winner is 

delearned by a smaller learning rate. Assuming there 

are k cluster centers, the cluster center for the winner's 

unit is accentuated whereas the weight for the second 

winner, or the rival, is attenuated. The remaining k-2 

centers are unaffected. The winner is defined as the 

cluster center that is closest to the randomly selected 

feature vector [17]. 

 RPCL clustering [17] can be regarded as an 

unsupervised extension of Kohonen's supervised 

learning vector quantization algorithm LVQ2. It can 

also be regarded as a variation to the more typical 

Competitive Learning (CL) algorithms [17]. RPCL is a 

stochastic clustering algorithm that is able to perform 

adaptive clustering efficiently and quickly leading to 

an approximation of clusters that are statistically 

adequate.  

 

3. Quantum-Behaved Particle Swarm 
Optimization  

3.1. Particle Swarm Optimization  

The PSO algorithm, firstly proposed by Kennedy and 

Eberhart [6], is a population-based evolutionary search 

technique. It is underlying motivation for the 

development of PSO was social behaviour of animals 

such as bird flocking, fish schooling, and animal 

herding and swarm theory. In PSO with M individuals, 

a potential solution to a problem is represented as a 

particle flying in D dimensional search space, with the 

position vector Xi =(xi1, xi2, …, xiD) and velocity Vi =(vi1, 

vi2, …, viD). Each particle records its best previous 

position (the position giving the best fitness value) as 

pbesti=(pbesti1, pbesti2, …, pbestiD) called personal best 

position. At each iteration, each particle competes with 

the others in the neighborhood or in the whole 

population for the best particle (with best fitness value 

among neighborhood or the population) with best 

position gbesti=(gbesti1, gbesti2, …, gbestiD) called 

global best position, and then makes stochastic 

adjustment according to the following evolution 

equations. 
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For i =1, 2, …, M; d=1, 2, …, D. In the above 

equations, c1 and c2 are positive constant; rand() and 

rand() are two random functions generating uniformly 

distributed random numbers within [0, 1]. Parameter w 

is the inertia weight introduced to accelerate the 

convergence speed of the PSO. At each iteration, the 

value of Vid is restricted in [-Vmax, Vmax]. 

3.2. Quantum-Behaved Particle Swarm 
Optimization 

PSO is not a global convergence-guaranteed 

optimization algorithm, as Wang and Mendel has 

demonstrated [16]. Therefore, Sun et al. [10, 11] 

proposed a global convergence-guaranteed search 

technique QPSO, whose performance is superior to the 

PSO.  

In the quantum model of a PSO, the state of a 

particle is depicted by wave function ψ(x, t), instead of 

position and velocity. The dynamic behaviour of the 

particle is widely different from that of the particle in 

traditional PSO systems in that the exact values of 

position and velocity cannot be determined 

simultaneously. We can only learn the probability of 

the particle’s appearing in position x from probability 

density function 2|),(| txΨ , the form of which depends 

on the potential field the particle lies in. The particles 

move according to the following iterative equation: 
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mbest (mean best position or mainstream thought 

point) is defined as the mean value of all particles’ the 

best position, ϕ  and u are random number distributed 

uniformly on [0, 1] respectively and m is the number of 

particles. )/1ln(.|)(|. utxmbestL idd −= β  can be viewed 

as the strength of creativity or imagination because it 

characterizes the knowledge seeking scope of the 

particle, and therefore the larger the value L, the more 

likely the particle find out new knowledge. The 

parameterβ  called contraction-expansion coefficient, 

is the only parameter in QPSO algorithm. From the 

results of stochastic simulations, QPSO has relatively 

better performance by varying the value of β  from 1.0 

at the beginning of the search to 0.5 at the end of the 

search to balance the exploration and exploitation [16]. 

 

4. The Proposed Model of the Fuzzy Neural 

Network 

It has been proved that RBFN is functional equivalent 

with a simplified class of fuzzy inference systems [2]. 

However, the only difference between the two systems 

is interpretability, which makes fuzzy systems easy to 

understand [4]. Representing a fuzzy system with a 

general RBFN weakens the outstanding interpretability 

of fuzzy systems. Therefore, most RBFNs used to 

(7) 

(8) 

(9) 

(5) 

(6) 
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implement fuzzy inference are the transformed ones of 

the whole linkage form in practice. Those transformed 

RBFNs can improve the interpretability of networks 

used to express fuzzy systems. From the analysis and 

comparison of well-known structures, it can be 

observed that some structures are simple and capable 

of describing clearly the fuzzy partitions of input space 

whereas other structures are not simple and clear but 

they have better representational power on the 

interpretability of fuzzy systems. 

Li and Hori [8] have proposed a new structure of 

RBFN for the purpose of improving the interpretability 

of fuzzy system and simplicity. Figure 4 gives the new 

network structure, which integrates the natures of well-

known networks that are proposed so far. The new 

structure can not only represent the fuzzy partitions of 

input space clearly but can also give the formal 

description of fuzzy systems intuitively. It is proved 

that the representational power of the new structure is 

improved greatly, and the ability to clearly express 

fuzzy partitions is maintained for more details [8].  

According to the network structure, the learning 

algorithm is composed of a fuzzy partition algorithm of 

input space, a fuzzy inference algorithm which are 

given in following subsections. 

 

4.1. Fuzzy Partition Part 

Let x=(x1, x2, ..., xN) denote the N-dimensional input 

space, where xi i=1, 2, ..., N is an input variable; and  Y 

denote the single-dimensional output space. The input 

layer and hidden layer 1 of the network form the fuzzy 

partition part. Each input node xi is connected to the 

corresponding si nodes in hidden layer 1, and si 
denotes the number of fuzzy partition for variable xi. In 

this paper, s=(s1, s2, ..., sN) denotes the number of all 

the fuzzy partitions, notation
iikc ki=1, 2, …, si denotes 

the weights from the i
th 

input node to the ki
th 

node in 

hidden layer 1, and ki denotes the ki
th 

fuzzy partition of 

the i
th 

input variable. The fuzzy partition labels of N 

input variables are denoted by notation k=(k1, k2, ..., 

kN), where each ki corresponds to si ∈  (s1, s2, ..., sN). 
The gaussian function is used as the transfer functions 

of the nodes in hidden layer 1; hence, the output of the 

nodes can be written as: 
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Where 
iikc and 

iikσ  are the center and width of the 

gaussian function, respectively. In order to determine 

parameter
iikσ , a conception of overlap degree is 

introduced [8]. The overlap degree is the degree by 

which two fuzzy subsets overlap. In fuzzy control, 

overlap degree is an important factor that affects 

control performance. Generally, overlap degree should 

be around 0.5; a value that is too big or too small may 

result in an unexpected control effect [8].  

Equation 11 gives the mathematical description of 

nonsymmetrical membership function. As long as 

membership functions are defined by equation 11 and 

the selection of widths 
ilσ and 

irσ  are defined by 

equations 12 and 13 it can be ensured that the overlap 

degree of two adjacent fuzzy subsets will be kept about 

0.5. 
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Where γ is the overlap coefficient.  

Figure 3 shows a fuzzy partition example that the 

membership functions are described by equation 11.  
 

 
 

Figure 3. Fuzzy partition when membership functions are described 

by equation 11. 

 

4.2. Fuzzy Inference Part 

The inference task of fuzzy systems is implemented by 

hidden layer 2 and hidden layer 3. The L node groups 

denote L rules. In each group, there are N input 

nodes
iik

lP , i=1, 2, ..., N ki ∈  (1, 2, ..., si), which 

correspond to the N premises of the l
th 

rule. Notation 

iik
lP  denotes that the i

th 
premise of the l

th 
rule takes the 

ki
th 

linguistic value ik
lA . When there is a crisp input 

x
0
(x

0
1, x

0
2, ..., x

0
 N), 

iik
lP should be the membership 

degree of x
0
i that belongs to 

iik
lA . In other words, for l 

outputs in hidden layer 2  
iik

lP  is equal to fi, ki(x
0
i). The 

transfer function of each node Rl in hidden layer 3 is 

product operation. Therefore, the output of node Rl can 

be given by equation 14: 
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The output of system y is composed of the L 

consequents of a fuzzy rule. Using weight vl between
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(14) 
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the inference layer and the output layer. The output of 

the network is represented by equation 15. 
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4.3. Learning Algorithm of Fuzzy Neural 
Network 

Based on the viewpoint of functional equivalence, the 

center value 
iikc  the width of the gaussian function

iikσ , 

and the weight value vl denote just the three key 

parameters of the fuzzy system. These parameters need 

to be modified via learning of the network. It is very 

useful for the fuzzy RBF network that the structuring 

and modifying of the fuzzy inference system 

parameters can be accomplished by learning of the 

network. The learning algorithm of the fuzzy neural 

network consists of two parts: the method of 

structuring the network center 
iikc fuzzy partition 

algorithm and the learning algorithm of the network 

weight vl fuzzy inference algorithm. 

In this paper, the RPCL is used to determine the 

network center 
iikc and the QPSO is used to adjust the 

network weight vl. 

 

4.3.1. Fuzzy Partition Algorithm of Input Space 

In this paper we use the RPCL clustering algorithm to 

determine the network center 
iikc  and also the 

equations 12 and 13 to determine the width of the 

gaussian functions
iikσ . 

 

 
 

Figure 4. The new fuzzy RBF neural network. 

 

 Then we use equation 11 to determine
iik

lP , which 

is the membership degree of the input variable xi that 

belongs to 
iik

lA . The detailed process of the RPCL is 

as follows: 

1. Step 0: Initialization randomly pick ci: i=1, 2, …, k 

as the initial cluster centers. 

2. Step 1: Winner-take-all rule randomly take a feature 

vector x from the feature sample set X, and for i=1, 

2, …, k, we let:  
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Where k is number of samples and w is the winner 

index, r is the second winner rival index, 

∑ =
=

k

i ijj nn
1

/γ  and ni is the cumulative number of 

the occurrences of ui=1. This term is added to 

ensure that every cluster center will eventually 

become the winner during the updating process. 

3. Step 2: Updating cluster centers update the cluster 

center vector ci by equation 17: 
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Where ,1,0 ≤≤ rw αα  are the learning rates for the 

winner and rival unit, respectively. 

Since we use equations 11, 12 and 13 to determine the 

width of the gaussian functions and the membership 

degree of the input variable xi, we guarantee that the 

overlap degree of the adjacent fuzzy subsets is kept 

about 0.5. 

 

4.3.2. Fuzzy Inference Algorithm 

In order to adjust the network weight vl by QPSO, the 

fitness function and the encoding of individuals (also 

known as particle position) must be defined. So, we 

define particle position as shown in equation 18:  
 

],...,,...,2,1[ Lvl
vvvV =  

Where vl is weight between the inference layer and the 

output layer and L is number of nodes in inference 

layer. 

For the M sample data (Xh, yh) h=1, 2, 3, …, M. we 

consider oh as the desired output of the network,  yh as 

network output and ∑ = −= M
h hohyE

1
2)(

2

1
 as the target 

error function. The performance of each particle is 

evaluated according to its fitness. The fitness function 

is defined as follows: 
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Where M is number of training samples, yh, oh are the 

network output and desired output for sample h 

respectively. The following is the procedure of QPSO 

for learning weights: 

Step 0: Initialize the population by randomly generate 

the position vector Vi of each particle and set pbesti =Vi. 

(15) 
(16) 

(17) 

(19) 

(18) 
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2. Step 1: Evaluate the fitness value of each particle by 

equation 19, update the personal best position pbesti 

and obtain the global best position gbest across the 

population. 

3. Step 2: If the stop criterion is met, go to step 4; or 

else go to step 3. 

4. Step 3: Update the position vector of each particle 

according to equation 7 and go to step 1. 

5. Step 4: Output the gbest as optimized parameters. 
 

In QPSO, the only setting parameter is contraction-

expansion coefficient β , which is gradually decreased 

for the interval [1.2, 0.5] with the number of iterations. 

There are two alternatives for stop criterion of the 

algorithm. One method is that the algorithm stops 

when ∑ = −= M
h hohyE

1
2)(

2

1
 is less than a given threshold 

ε; the other is that it terminates after executing a pre-

specified number of iterations.  

 

5. Computer Simulation 

To determine the efficiency of the algorithm, we run 

experiments on a general purpose PC (CPU: 1.2GHZ 

Pentium III; Memory: 128MB; OS: Windows XP). The 

algorithm is programmed in Java language. The initial 

populations consist of random particles and each of the 

experiments was repeated 30 runs. In our proposed 

algorithm, the only setting parameter is contraction-

expansion coefficient β , which was gradually 

decreased for the interval [1.2, 0.5] with the number of 

iterations. To demonstrate the effectiveness of the 

proposed algorithm, there are two examples problems. 

The results of this proposed algorithm are compared 

with gradient base method. 

Example 1: Two-input nonlinear sinc function.  The 

function is defined as: 
 

xy
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z
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The training data consisted of uniformly sampled 400 

two-input data and the corresponding target data. 

Another set of uniformly sampled 100 input-target data 

was used as the testing data. 

Figure 5 shows the Root Mean Square Error 

(RMSE) curve of the fuzzy neural network trained by 

the QPSO and gradient-based methods with learning 

rate 0.02, after 300 iterations of learning, respectively. 

For the M sample data (Xh, yh) h=1, 2, 3, …, M. The 

RMSE is calculated as follow: 
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Where oh is a desired output of the network and yh is a 

network output. 
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Figure 5. RSME during training. 

 

The RMSE of training of proposed method is 

0.00532 and the RMSE of testing is 0.00956 whereas 

the RMSE of training of gradient based method is 

0.01737 and the RMSE of testing is 0.01903. Figure 5 

shows that the proposed algorithm is better than 

gradient base method in term of RMSE. Figures 6 and 

7 show the error curve of the fuzzy neural network 

during training and testing, respectively. 
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Figure 6. Errors during training. 
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In order to test the learning effect and verify the 

generalized ability of the network, a set of new data 

different from the trained pattern data is used as the 

input to the network which was trained. The simulation 

result of the generalization ability of the proposed 

network as shown in Figure 8. 
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a) The desired output.                      b) The actual output. 

 

Figure 8. Model of the fuzzy neural network. 

 

Example 2: Two-input nonlinear function. The 

function is defined as: 
 

)
2
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The training data consisted of uniformly sampled 400 

two-input data and the corresponding target data. 

Another set of uniformly sampled 100 input-target data 

was used as the testing data. The results are presented 

in Figures 9 and 12. 
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Figure 9. RMSE during training. 
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Figure 10. Errors during training. 

 

The RMSE of training is 0.00152 and the RMSE of 

testing is 0.0103 whereas the RMSE of training of 

gradient based method is 0.06709 and the RMSE of 

testing is 0.08903. Figure 5 shows that the proposed 

algorithm is better than gradient base method in term 

of RMSE. 

 

 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 9
17 25 33 41 49 57 65 73 81 89 97

Errors during testing

 
Number of samples 

 

Figure 11. Errors during training. 

 

 
 

a) The desired output.                      b) The actual output. 
 

Figure 12. Model of the fuzzy neural network. 

 

6. Conclusions 

In this paper, four-layer fuzzy-neural network structure 

based on RBF neural network and some algorithms for 

determining design parameters of hidden layers (such 

as the number of hidden neurons, setting parameters of 

activation functions and so on)  and design parameters 

of output layer (the weight of output layer) have been 

proposed. According to the new structure, we have 

used nonsymmetric gaussian function as activation 

function. This function has one center and two widths, 

which have been described in the paper. To determine 

the number of neurons and center of the nonsymmetric 

gaussian function, RPCL has been used. RPCL is the 

best clustering algorithm that has the ability of 

automatically allocating an appropriate number of 

clusters without any knowledge. The widths of the 

nonsymmetric gaussian function have been calculated 

by equations 12 and 13. In order to adjust the network 

weight, QPSO has been used. QPSO is a global 

convergence-guaranteed optimization algorithm. It not 

only is better them PSO in term of performance but 

also has only one setting parameter.  

At the end, we have compared the performance of 

our method with gradient-based method under the 

same condition. Our method and gradient-base method 

have been applied to nonlinear function approximation.  

From the simulated experiment, the result of our 

method is better than gradient-base method and 

requires less number of iterations. On the other hand, 

our method can solve these problems with faster

(22) 
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convergence speed and have more powerful optimizing 

ability. 
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